Hardware is the New Software:
Finding Exploitable Bugs in Hardware Designs

Hardware Security @ UNC
Cynthia Sturton

el THE UNIVERSITY
" Il of NORTH CAROLINA
é at CHAPEL HILL

Meltdown
Allows user applications to access |

operating system memory P L

Spectre

Almost every modern
processor is affected

[

4
-

Foreshadow
Can expose the cryptographic keys that
protect the integrity of SGX enclaves

C. Sturton 2

[Date Prev][Date Next] [Thread Prev][Thread Next] [Date Index] [Thread Index]

[WARNING] Intel Skylake/Kaby Lake processors: broken hyper-threading

To: debian-user@lists.debian.org, debian-devel@lists.debian.org

Subject: [WARNING] Intel Skylake/Kaby Lake processors: broken hyper-threading
From: Henrique de Moraes Holschuh <hmh@debian.org>

Date: Sun, 25 Jun 2017 09:19:36 -0300

The Pentium FOOF Bug

by Robert R. Collins

The Cyrix 6x86 Coma Bug

Hypervisor headaches: Hosts hosed
by x86 exception bugs

Microsoft, Xen, KVM et al need patches

By Richard Chirgwin 13 Nov 2015 at 04:56 16 SHARE v

Various hypervisors and operating systems are scrambling to patch

C. Sturton 3

[Date Prev][Date Next] [Thread Prev][Thread Next] [Date Index] [Thread Index]

[WARNING] Intel Skylake/Kaby Lake processors: broken hyper-threading

o To: debian-user@lists.debian.org, debian-devel@lists.debian.org

o Subject: [WARNING] Intel Skylake/Kaby Lake processors: broken hyper-threading
» From: Henrique de Moraes Holschuh <hmh@debian.org>

e Date: Sun, 25 Jun 2017 09:19:36 -0300

The Pentium FOOF Bug

by Robert R. Collins

The Cyrix 6x86 Coma Bug

Hypervisor headaches: Hosts hosed
by x86 exception bugs

1 997 Microsoft, Xen, KVM et al need patches 1 998

By Richard Chirgwin 13 Nov 2015 at 04:56 16 SHARE v

Various hypervisors and operating systems are scrambling to patch

C. Sturton 4

Software Security

Buffer overflow

Integer overflow

Format string

SQL injection

Directory crawling
Cross-site scripting
Cross-site request forgery

C. Sturton

5

Software Security

Buffer overflow
Integer overflow
Format string
SQL injection
Directory crawling
Cross-site scripting
Cross-site request forgery

N 2 N 7

stack smashing
heap overflow
return to libC
return oriented
programming
jump oriented
programming

C. Sturton

6

o()o
OSS-Fuzz

O

o()o
OSS-Fuzz

SAGE

fuzzing

program
analysis

secure
languages

Hardware Security

e Secure languages

e Manual review

Hardware Security

e Side channels
=> Extract private keys

e Transient faults

C. Sturton 12

How can we identify
vulnerabilities and
their exploits In

hardware designs?

property
How can we identify~ violations

vulnerabilities>and
their exploits In
hardware designs?

executable
How can we identify~ programs

vulnerabilities and
theiriexploits in
hardware designs?

code
How can we identify

vulnerabilities and
their exploits In
hardwareldesigns?

Design & Synthesis Fabrication & Package

NG .
s il g
mod = Logic — Place - Fabrication Test,
i‘: Synthesis & Route Package
RTL Gate Level Fitted Wafer Chip

Design Netlist Design

C. Sturton 17

Design & Synthesis

Fabrication & Package

g

NG
/’
mod Logic — Place
clk, Synthesis & Route
rSt, % _
RTL Gate Level
Design Netlist

v \

Fabrication Test,
hzviory:

Package - :

Fitted Wafer Chip

C. Sturton 18

119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
13e
139
140
141

143

I

T
I

T

1"
// Internal wires and regs

"

wire [dw- from rfa;
wire [dw-1: from_rfb;
wire [aw- rf_addra;
wire [aw- rf_addrw;
wire [dw- rf_dataw;
wire rf_ve;

wire spr_valid;
wire rf_ena;

wire rf_enb;

reg rf_ve_allow;

// Logic to restore output on RFA after debug unit has read out via SER if.
// Problem was that the incorrect output would be on RFA after debug unit
// had read out - this is bad if that cutput is relied upon by execute

// stage for nmext instruction. We simply save the last address for rf A and
// and re-read it whenever the SPR select goes low, 30 we must remember

// the last address and generate a signal for falling edge of SER cs.

// == Julius

// Detect falling edge of SER select

reg spr_du_cs;
spr_cs_fe;

// Track RF A's address each time it's enabled

reg [aw-1:0] addra_last;

always @(posedge clk)
if (rf_ena & !(spr_cs_fe | (du_read & spr_cs)))
addra_last <= addra;

alvays @(posedge clk)
spr_du_cs <= spr_cs & du_read;

assign spr_cs_fe = spr_du cs & !(spr_cs & du_read);

// SPR access is valid when spr_cs is asserted and
// SPR address matches GPR addresses

assign spr_valid = spr_cs & (spr_addr[

= "OR1200_SER RF) ;

"

/ SER data output is always from RF A
"

assign spr_dat_o = from rfa;

1
// Operand A comes from RF or
"

assign dataa = from_rfa;

om saved A register

b4

// Operand B comes from RF or from saved B register
1

assign datab = from rfb;

C. Sturton

19

Vulnerabilities:
An Analysis of
Exploitable Bugs

[ASPLOS 2015]

21

C. Sturton

AMD Errata #776

Incorrect Processor Branch Prediction
for Two Consecutive Linear Pages

Under a highly specific and detailed set of internal timing
conditions, the processor core may incorrectly fetch instructions

Potential effect: unpredictable system behavior

C. Sturton 22

rrrrrrrrrrrrrrrrrrr

44444444444444444444444444444444444444

44444444444444444444
rrrrrrrrrrrrrrrrrrr

SHODHHHHHBDHSDHSDDD

. S . S . S . . . S . S U S . S S . . S U S U S U S T

SHOBEDABEAABEEAABEAS

44444444444444444444
rrrrrrrrrrrrrrrrrrr

44444444444444444444444444444444444444

44444444444444444444
rrrrrrrrrrrrrrrrrrr

44444444444444444444
rrrrrrrrrrrrrrrrrrr

< < < < < < =~ <~ =~ <~ =~ <~ =~ <~ =~ <~ =~ <~ -~ <
rrrrrrrrrrrrrrrrr

rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr

44444444444444444444
rrrrrrrrrrrrrrrrrrr

rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr

444444444444444444
rrrrrrrrrrrrrrrrrrr

SHODHHHDHDHSDHSDDD

P . . . S U T U TG TG S . S S S U T TG S . S S

SHOBEAABEAABBEEAABEAS

C. Sturton 23

44444444444444444444
rrrrrrrrrrrrrrrrrrrr

44444444444444444444

N M
S5

D$2

Me_/_ -

AC T =
o O ©
<O %W
o 5

rrrrrrrrrrrrrrrrrrr

44444444444444444444444444444444444444

44444444444444444444
rrrrrrrrrrrrrrrrrrr

SHODHHHHHBDHSDHSDDD

. S . S . S . . . S . S U S . S S . . S U S U S U S T

SHOBEDABEAABEEAABEAS

44444444444444444444
rrrrrrrrrrrrrrrrrrr

44444444444444444444444444444444444444

44444444444444444444
rrrrrrrrrrrrrrrrrrr

44444444444444444444
rrrrrrrrrrrrrrrrrrr

< < < < < < =~ <~ =~ <~ =~ <~ =~ <~ =~ <~ =~ <~ -~ <
rrrrrrrrrrrrrrrrr

rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr

44444444444444444444
rrrrrrrrrrrrrrrrrrr

rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr

444444444444444444
rrrrrrrrrrrrrrrrrrr

SHODHHHDHDHSDHSDDD

P . . . S U T U TG TG S . S S S U T TG S . S S

SHOBEAABEAABBEEAABEAS

C. Sturton 24

44444444444444444444
rrrrrrrrrrrrrrrrrrrr

44444444444444444444

N

n ™M
S S
)
Q5 > _
Me_/_ = ®
< 38o Q3 E
= O n/_C.n
n N %C

Classifying Exploitable Bugs

Exception
Related

Incorrect
Results

Memory
Access

Incorrect
Instruction

Register
Related

C. Sturton 25

Manually Writing
Security Properties

[ASPLOS 2015]

Writing Security Properties

Specification Documents (14): @ @ @ @ @

» @
» 99999 0Q

Writing Security Properties

Specification Documents (14): @ @ @ @ @

» @
» 99 Q@@

@. Processor mode changes from low privilege to
high privilege only by an exception or a reset.

Writing Security Properties

Specification Documents (14): @ @ @ @ @

» @
» 99 Q@@

AMD Errata (3): @ @ @

Writing Security Properties

Specification Documents (14): @ @ @ @ @

» @
» 99 Q@@

AMD Errata (3): @ @ @

@. When a register changes, it must be
specified as the target of the instruction.

Writing Security Properties

Specification Documents (14): @ @ @ @ @

» @
» 99 Q@@

AMD Errata (3): @ @ @

Initial Evaluation (1): @

Writing Security Properties

Specification Documents (14): @ @ @ @ @

» @
» 99 Q@@

AMD Errata (3): @ @ @

Initial Evaluation (1): @

@. The instruction does not change in the pipeline.

Security Property
Specification

[ASPLOS 2017]

Traces

°* D,

* p,

Patterns

Miner

Properties

C. Sturton 34

ctrl:

001 010 100 ——

Traces

O] A r[1]1 A ... Arln]

Pattern

Miner

ctrl[0] A ctri[1] A ctri[2]

Property

C. Sturton 35

Example of Exploitable Bug

assign a_It_ b =comp_op[3] 7 ((a[width - 1] & Ib[width - 1]) |
('a[width - 1] & Ib[width - 1] & result_sum[width - 1]) |
(a[width - 1] & b[width - 1] & result_sum[width - 1])) :
result sum([width - 1];

C. Sturton 36

Example of Exploitable Bug

assign a_It_ b =comp_op[3] 7 ((a[width - 1] & Ib[width - 1]) |
('a[width - 1] & Ib[width - 1] & result_sum[width - 1]) |
(a[width - 1] & b[width - 1] & result_sum[width - 1]))
(a < b);

C. Sturton 37

Traces

w

Security Errata

Miner

Properties

C. Sturton 38

C. Sturton 39

C. Sturton

Known bugs — Demonstrate exploit — Security properties

1.

1. Known bugs — Demonstrate exploit — Security properties
2. Machine learning — Additional security properties

C. Sturton 41

SCIFinder

. Properties
Miner W P
[Daikon]
Traces
Bug ,
Securit
Classification Bugsy
[Manual]
Processor
Errata

C. Sturton 42

SCIFinder

Properties

Property Security
Security | Identification Properties
Bugs

Security W Initial

C. Sturton 43

SCIFinder

Initial

/

Security
Properties

-

Logistic

~

Regression

Security
Properties

/

C. Sturton 44

Evaluation

e How well does SCIFinder identify security properties?

e Will the generated properties find security vulnerabilities?

OR1200

e 26GB trace data

e 17 programs
e full instruction
coverage

C. Sturton 46

OR1200

e 26GB trace data
e 17 programs

e full instruction

- ¥
¥

W

17 bugs /‘

e 3 RISC architectures
® processor core

C. Sturton 47

OR1200

e 26GB trace data
e 17 programs

e full instruction

coverage
P4
¥
17 bugS / 87 properties

e 3 RISC architectures : gg bugddlri:j/gn
® processor core modet driven

C. Sturton 48

Properties

Bug Driven

e 54 properties from 17 bugs
e 47% false discovery rate

C. Sturton 49

Properties

Bug Driven

e 54 properties from 17 bugs

e 47% false discovery rate

w

PP
PP

C. Sturton

50

Properties

Bug Driven

e 54 properties from 17 bugs

e 47% false discovery rate

w

PP
PP

Model Driven

e 33 additional properties
e 27% false discovery rate

C. Sturton

51

Comparison to State of the Art

s B0y 1 not recognized as
- security critical

|]

found in found in property
step 1 step 2 not mined

Comparison to State of the Art

New
properties

Finding and Exploiting
Property Violations

[FMS 2018, MICRO 2018]

Problem Statement

Given and a processor design

e (Can we find a violation of 1 ?

e How do we reach the violating state?

e (Can the violating state be exploited?

C. Sturton 55

Existing Tools

Simulation Based Testing

C. Sturton 56

Existing Tools

Simulation Based Testing Model Checking

L

v

?

|
C. Sturton 57

Problem Statement

Given ¢ and a processor design testing model
checking

e (Can we find a violation of 1 ?

e How do we reach the violating state? -

e (Can the violating state be exploited? = -

C. Sturton 58

Symbolic Execution

symbolic
state
reset :=r,
if (reset) count := ¢,
count = 0;
else

count = count+1;

if (count > 3)
ERROR;

C. Sturton 59

Symbolic Execution

path symbolic
condition state
True reset :=r,
if (reset) count := ¢,
count = 0;
else

count = count+1;

if (count > 3)
ERROR;

C. Sturton 60

Symbolic Execution

path symbolic
condition state
True reset :=r,
=) if (reset) — count := C,
count = 0;
else

count = count+1;

if (count > 3)
ERROR;

C. Sturton 61

Symbolic Execution

path symbolic
condition state
True reset :=r,
if (reset) count := ¢,
count = 0;
else) r,=0
@[count = count+1;

if (count > 3)
ERROR;

C. Sturton 62

Symbolic Execution

path symbolic
condition state
True reset :=r,
if (reset) count := ¢,
count = 0;
clse 8 r,=0 reset :=r,
@[count = count+1; count:=c,+ 1

if (count > 3)
ERROR;

C. Sturton 63

Symbolic Execution

path symbolic
condition state
True reset :=r,
if (reset) count := ¢,
count = 0;
else r, = 0 reset :=r,
count = count+1; count:=c,+ 1
if (count > 3)
@[ERROR;

C. Sturton 64

Symbolic Execution

path symbolic
condition state
True reset :=r,
Ec (reset) count := C,
count = 0;
else r,="1 reset :=r,
count = count+1; count:=0
if (count > 3) r =1

ERROR; 0>3

C. Sturton 65

Symbolic Execution of a
Hardware Design

Symbolic Execution of a
Hardware Design

Realizable processor states
000049
EINEY /

Symbolic Execution of a
Hardware Design

>~ one clock cycle

Symbolic Execution of a
Hardware Design

>~ one clock cycle

Backward Search

-
@% ~ instruction i
)

Backward Search

~ Instruction i

Backward Search

QR QO K >~ instruction i
OQ-0©Q n-2
O O O..0 O O
© 0o O
CP-0 00
0.6
© © O
CP-0 0O

Backward Search

QR QO K >~ instruction i
OQ-0©Q n-2
O O O..0 O O
O © O
Q-0 00 _
ODO.600 trigger:
“ -
2 2 Ly Ly oy b oyl L

C. Sturton 73

If a sequence of inputs is
returned, it will take the
processor from the initial
state to an error state.

Requirements

0.0 &0 Processor’s . path
@ 00.60 T Initial state condition
Q-0 QQ
©0O.60 00
® O O
Q-0 QQ

C. Sturton 75

Requirements

0.0 @O symbolic ‘- assertion
© 00.00 T state — failure
© © O
QQP-0 0 Q
O0O.0 00
O © O
Q-0 0Q

C. Sturton 76

Requirements

Requirements

symbolic ‘- path
state of — condition of
leaf j leaf j+ 1/

-

C. Sturton 78

Making it Work

Q
® 0 @
QQP-09Q
@ 00.600 T
® 0 °
QY- 09 @
©00.000 _
S o o 1. Internal and
QA-0QQ > input signals
©0900.000 are symbolic

C. Sturton 79

Making it Work

©
Q O

S o 0o 2. lIs this an
QQ-00Q initial state?

Making it Work

©
@ © O
OQ-0 OO
© 00.00 O 3. How much does
®© O O this differ from an
RO-0Q O initial state?
O 0O.O 0O
O © O
QQ-00Q

C. Sturton 81

Making it Work

© 00.00 © 3. Are we in a loop?

Making it Work

©
@ © O
OQ-00Q
© 00.00 T 4. Have we exceeded
®© O @ the bound?
QQ-0 00
©00.0 00
© O O
QD-0 00

C. Sturton 83

always @ (posedge clk)
begin
if (present_state == sigd)

signal = 4'b1000;

te == 3ig3)

gnal = 4'b0100;
else if (present, te == 3ig2)
gnal = 4'b0010;
1se if (presen t_state = sigl)
signal = 4'b0001;
els
signal = 4'b0000;

CPU Design 4 A

—{cormn|— B
Coppelia .

- / Exploit C
¢ Program

Security
Property

C. Sturton 84

Coppelia

Transcompiler |C Code
[Verilator]

CPU
Design

4

Security
Property

C. Sturton 85

Coppelia

C Code /~ I
Symbolic
Execution
w/Recursive
fP Strategy
Security - /

Property

C. Sturton 86

Coppelia

Triggering
Instructions

4
Exploit C

Program
@ g

Program h
Stub
Generation | Payload
[Manual])

C. Sturton 87

Optimizations

e EXxplore only legal instructions
e Alternate depth-first and breadth-first searching
e Cone of Influence analysis for slicing

C. Sturton 88

Evaluating Optimizations

Baseline DES + BFS Cone of
Influence
> 19h > 1.2h 4m 12s

e Average CPU time to find bug
e Considered only bugs triggerable with a single instruction

C. Sturton 89

Evaluating Coppelia

e Does Coppelia find bugs and generate their exploits?

e Will our approach find new bugs?

C. Sturton

Processor
e OR1200
e 31 known bugs

{Coppelia]-» g

C. Sturton 91

Processor
e OR1200
e 31 known bugs

,,,,,,,,,,,,,,,,,,,

prE—
i if (preseat_stete =

35 properties }

e SPECS
e SecurityCheckers
e SCIFinder C.Sturton 92

{Coppelia]-» g

Processor
e OR1200
e 31 known bugs

,,,,,,,,,,,,,,,,,,,
prE—
e 55 e et e

a[Coppelia]—> %
35 properties } \ 29 exploits

e SPECS
e SecurityCheckers
o SCIFlnder C. Sturton 93

Finding Bugs (ground truth: 31)

not
replayable

replayable

Coppelia Cadence IFV EBMC

Processor
e Mor1kx
e PULPIno

;;;;;;;;;;;;;;;;;;;;;;;;;;

{Coppelia]-» ;

C. Sturton 95

Processor
e Mor1kx
e PULPIno

,,,,,,,,,,,,,,,,,,,
prE—
e 55 e et e

190 37 presenc_svate = s1q1)

Properties }

e SPECS
e SecurityCheckers
o SCIFlnder C. Sturton 96

{Coppelia]-» g

Processor
e Mor1kx
e PULPIno

,,,,,,,,,,,,,,,,,,,
prE—
e 55 e et e

190 37 presenc_svate = s1q1)

a[Coppelia]—> #
Properties } \ 4 new bugs

e SPECS
e SecurityCheckers
e SCIFinder C.Sturton 97

Finding New Bugs

1

Mor1kx-Espresso

new
design

3
PULPino-RI5CY

new
architecture!

C. Sturton

98

Security validation of
hardware designs can be
done algorithmically

Our Products So Far

e SCIFinder to produce security critical properties
e Coppelia to find and generate exploits for property violations

e Security properties for RISC processor designs

C. Sturton 100

Thank you

Rui Zhang, Calvin Deutschbein, Natalie Stanley,
Chris Griggs, Andrew Chi, Ryan Huang, Alyssa Byrnes,
Matthew Hicks, Jonathan M. Smith, Sam T. King.

el THE UNIVERSITY

L] | o ones canovina Hardware Security @ UNC

y at CHAPEL HILL

