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Meltdown
Allows user applications to access |

operating system memory P L

Spectre

Almost every modern
processor is affected
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Foreshadow
Can expose the cryptographic keys that
protect the integrity of SGX enclaves
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[Date Prev][Date Next] [Thread Prev][Thread Next] [Date Index] [Thread Index]

[WARNING] Intel Skylake/Kaby Lake processors: broken hyper-threading

To: debian-user@lists.debian.org, debian-devel@lists.debian.org

Subject: [WARNING] Intel Skylake/Kaby Lake processors: broken hyper-threading
From: Henrique de Moraes Holschuh <hmh@debian.org>

Date: Sun, 25 Jun 2017 09:19:36 -0300

The Pentium FOOF Bug

by Robert R. Collins

The Cyrix 6x86 Coma Bug

Hypervisor headaches: Hosts hosed
by x86 exception bugs

Microsoft, Xen, KVM et al need patches

By Richard Chirgwin 13 Nov 2015 at 04:56 16 SHARE v

Various hypervisors and operating systems are scrambling to patch
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Software Security

Buffer overflow

Integer overflow

Format string

SQL injection

Directory crawling
Cross-site scripting
Cross-site request forgery

C. Sturton

5



Software Security

Buffer overflow
Integer overflow
Format string
SQL injection
Directory crawling
Cross-site scripting
Cross-site request forgery

N 2 N 7

stack smashing
heap overflow
return to libC
return oriented
programming
jump oriented
programming
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Hardware Security

e Secure languages

e Manual review



Hardware Security

e Side channels
=> Extract private keys

e Transient faults
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How can we identify
vulnerabilities and
their exploits In

hardware designs?



property
How can we identify~ violations

vulnerabilities>and
their exploits In
hardware designs?



executable
How can we identify~ programs

vulnerabilities and
theiriexploits in
hardware designs?



code
How can we identify

vulnerabilities and
their exploits In
hardwareldesigns?



Design & Synthesis Fabrication & Package
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mod = Logic — Place - Fabrication Test,
i‘: Synthesis & Route Package
RTL Gate Level Fitted Wafer Chip

Design Netlist Design
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1"
// Internal wires and regs

"

wire [dw- from rfa;
wire  [dw-1: from_rfb;
wire  [aw- rf_addra;
wire  [aw- rf_addrw;
wire  [dw- rf_dataw;
wire rf_ve;

wire spr_valid;
wire rf_ena;

wire rf_enb;

reg rf_ve_allow;

// Logic to restore output on RFA after debug unit has read out via SER if.
// Problem was that the incorrect output would be on RFA after debug unit
// had read out - this is bad if that cutput is relied upon by execute

// stage for nmext instruction. We simply save the last address for rf A and
// and re-read it whenever the SPR select goes low, 30 we must remember

// the last address and generate a signal for falling edge of SER cs.

// == Julius

// Detect falling edge of SER select

reg spr_du_cs;
spr_cs_fe;

// Track RF A's address each time it's enabled

reg [aw-1:0] addra_last;

always @(posedge clk)
if (rf_ena & !(spr_cs_fe | (du_read & spr_cs)))
addra_last <= addra;

alvays @(posedge clk)
spr_du_cs <= spr_cs & du_read;

assign spr_cs_fe = spr_du cs & !(spr_cs & du_read);

// SPR access is valid when spr_cs is asserted and
// SPR address matches GPR addresses

assign spr_valid = spr_cs & (spr_addr[

= "OR1200_SER RF) ;

"

/ SER data output is always from RF A
"

assign spr_dat_o = from rfa;

1
// Operand A comes from RF or
"

assign dataa = from_rfa;

om saved A register

b4

// Operand B comes from RF or from saved B register
1

assign datab = from rfb;

C. Sturton
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Vulnerabilities:
An Analysis of
Exploitable Bugs

[ASPLOS 2015]
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AMD Errata #776

Incorrect Processor Branch Prediction
for Two Consecutive Linear Pages

Under a highly specific and detailed set of internal timing
conditions, the processor core may incorrectly fetch instructions

Potential effect: unpredictable system behavior

C. Sturton 22
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Classifying Exploitable Bugs

Exception
Related

Incorrect
Results

Memory
Access

Incorrect
Instruction

Register
Related
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Manually Writing
Security Properties

[ASPLOS 2015]



Writing Security Properties

Specification Documents (14): @ @ @ @ @

» @
» 99999 0Q



Writing Security Properties

Specification Documents (14): @ @ @ @ @

» @
» 99 Q@@

@. Processor mode changes from low privilege to
high privilege only by an exception or a reset.



Writing Security Properties

Specification Documents (14): @ @ @ @ @

» @
» 99 Q@@

AMD Errata (3): @ @ @



Writing Security Properties

Specification Documents (14): @ @ @ @ @

» @
» 99 Q@@

AMD Errata (3): @ @ @

@. When a register changes, it must be
specified as the target of the instruction.



Writing Security Properties

Specification Documents (14): @ @ @ @ @

» @
» 99 Q@@

AMD Errata (3): @ @ @

Initial Evaluation (1): @



Writing Security Properties

Specification Documents (14): @ @ @ @ @

» @
» 99 Q@@

AMD Errata (3): @ @ @

Initial Evaluation (1): @

@. The instruction does not change in the pipeline.



Security Property
Specification

[ASPLOS 2017]



Traces
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Patterns

Miner

Properties
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ctrl:
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Traces
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Pattern

Miner

ctrl[0] A ctri[1] A ctri[2]

Property
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Example of Exploitable Bug

assign a_It_ b =comp_op[3] 7 ((a[width - 1] & Ib[width - 1]) |
('a[width - 1] & Ib[width - 1] & result_sum[width - 1]) |
(a[width - 1] & b[width - 1] & result_sum[width - 1])) :
result sum([width - 1];
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Example of Exploitable Bug

assign a_It_ b =comp_op[3] 7 ((a[width - 1] & Ib[width - 1]) |
('a[width - 1] & Ib[width - 1] & result_sum[width - 1]) |
(a[width - 1] & b[width - 1] & result_sum[width - 1]))
(a < b);
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Traces

w

Security Errata

Miner

Properties
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C. Sturton

Known bugs — Demonstrate exploit — Security properties

1.



1. Known bugs — Demonstrate exploit — Security properties
2. Machine learning — Additional security properties
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SCIFinder

. Properties
Miner W P
[Daikon]
Traces
Bug ,
Securit
Classification Bugsy
[Manual]
Processor
Errata
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SCIFinder

Properties

Property Security
Security | Identification Properties
Bugs

Security W Initial
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SCIFinder

Initial

/

Security
Properties

-

Logistic

~

Regression

Security
Properties

/
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Evaluation

e How well does SCIFinder identify security properties?

e Will the generated properties find security vulnerabilities?



OR1200

e 26GB trace data

e 17 programs
e full instruction
coverage
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OR1200

e 26GB trace data
e 17 programs

e full instruction

- ¥
¥

W

17 bugs /‘

e 3 RISC architectures
® processor core
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OR1200

e 26GB trace data
e 17 programs

e full instruction

coverage
P4
¥
17 bugS / 87 properties

e 3 RISC architectures : gg bugddlri:j/gn
® processor core modet driven
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Properties

Bug Driven

e 54 properties from 17 bugs
e 47% false discovery rate
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Properties

Bug Driven

e 54 properties from 17 bugs

e 47% false discovery rate

w
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PP
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Properties

Bug Driven

e 54 properties from 17 bugs

e 47% false discovery rate

w

PP
PP

Model Driven

e 33 additional properties
e 27% false discovery rate

C. Sturton
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Comparison to State of the Art

s B0y 1 not recognized as
- security critical

| ]

found in found in  property
step 1 step 2 not mined




Comparison to State of the Art

New
properties




Finding and Exploiting
Property Violations

[FMS 2018, MICRO 2018]



Problem Statement

Given  and a processor design

e (Can we find a violation of 1 ?

e How do we reach the violating state?

e (Can the violating state be exploited?
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Existing Tools

Simulation Based Testing

C. Sturton 56



Existing Tools

Simulation Based Testing Model Checking

L

v

?

|
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Problem Statement

Given ¢ and a processor design testing model
checking

e (Can we find a violation of 1 ?

e How do we reach the violating state? -

e (Can the violating state be exploited? = -
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Symbolic Execution

symbolic
state
reset :=r,
if (reset) count := ¢,
count = 0;
else

count = count+1;

if (count > 3)
ERROR;

C. Sturton 59



Symbolic Execution

path symbolic
condition state
True reset :=r,
if (reset) count := ¢,
count = 0;
else

count = count+1;

if (count > 3)
ERROR;
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Symbolic Execution

path symbolic
condition state
True reset :=r,
=) if (reset) — count := C,
count = 0;
else

count = count+1;

if (count > 3)
ERROR;
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Symbolic Execution

path symbolic
condition state
True reset :=r,
if (reset) count := ¢,
count = 0;
else ) r,=0
@[count = count+1;

if (count > 3)
ERROR;
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Symbolic Execution

path symbolic
condition state
True reset :=r,
if (reset) count := ¢,
count = 0;
clse 8 r,=0 reset :=r,
@[count = count+1; count:=c,+ 1

if (count > 3)
ERROR;

C. Sturton 63



Symbolic Execution

path symbolic
condition state
True reset :=r,
if (reset) count := ¢,
count = 0;
else r, = 0 reset :=r,
count = count+1; count:=c,+ 1
if (count > 3)
@[ERROR;
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Symbolic Execution

path symbolic
condition state
True reset :=r,
Ec (reset) count := C,
count = 0;
else r,="1 reset :=r,
count = count+1; count:=0
if (count > 3) r =1

ERROR; 0>3

C. Sturton 65



Symbolic Execution of a
Hardware Design




Symbolic Execution of a
Hardware Design

Realizable processor states
000049
EINEY /




Symbolic Execution of a
Hardware Design

>~ one clock cycle




Symbolic Execution of a
Hardware Design

>~ one clock cycle




Backward Search

-
@% ~ instruction i
)




Backward Search

~ Instruction i




Backward Search

QR QO K >~ instruction i
OQ-0©Q n-2
O O O..0 O O
© 0o O
CP-0 00
0.6
© © O
CP-0 0O



Backward Search

QR QO K >~ instruction i
OQ-0©Q n-2
O O O..0 O O
O © O
Q-0 00 _
ODO.600 trigger:
“ - . . . .
2 2 Ly Ly oy b oyl L
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If a sequence of inputs is
returned, it will take the
processor from the initial
state to an error state.



Requirements

0.0 &0 Processor’s . path
@ 00.60 T Initial state condition
Q-0 QQ
©0O.60 00
® O O
Q-0 QQ
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Requirements

0.0 @O symbolic ‘- assertion
© 00.00 T state — failure
© © O
QQP-0 0 Q
O0O.0 00
O © O
Q-0 0Q

C. Sturton 76



Requirements




Requirements

symbolic ‘- path
state of — condition of
leaf j leaf j+ 1/

-
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Making it Work

Q
® 0 @
QQP-09Q
@ 00.600 T
® 0 °
QY- 09 @
©00.000 _
S o o 1. Internal and
QA-0QQ > input signals
©0900.000 are symbolic
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Making it Work

©
Q O

S o 0o 2. lIs this an
QQ-00Q initial state?



Making it Work

©
@ © O
OQ-0 OO
© 00.00 O 3. How much does
®© O O this differ from an
RO-0Q O initial state?
O 0O.O 0O
O © O
QQ-00Q
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Making it Work

© 00.00 © 3. Are we in a loop?



Making it Work

©
@ © O
OQ-00Q
© 00.00 T 4. Have we exceeded
®© O @ the bound?
QQ-0 00
©00.0 00
© O O
QD-0 00
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always @ (posedge clk)
begin
if (present_state == sigd)

signal = 4'b1000;

te == 3ig3)

gnal = 4'b0100;
else if (present, te == 3ig2)
gnal = 4'b0010;
1se if (presen t_state = sigl)
signal = 4'b0001;
els
signal = 4'b0000;

CPU Design 4 A

—{cormn|— B
Coppelia .

- / Exploit C
¢ Program

Security
Property
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Coppelia

Transcompiler |C Code
[Verilator]

CPU
Design

4

Security
Property
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Coppelia

C Code /~ I
Symbolic
Execution
w/Recursive
fP Strategy
Security - /

Property
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Coppelia

Triggering
Instructions

4
Exploit C

Program
@ g

Program h
Stub
Generation | Payload
[Manual] )
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Optimizations

e EXxplore only legal instructions
e Alternate depth-first and breadth-first searching
e Cone of Influence analysis for slicing

C. Sturton 88



Evaluating Optimizations

Baseline DES + BFS Cone of
Influence
> 19h > 1.2h 4m 12s

e Average CPU time to find bug
e Considered only bugs triggerable with a single instruction
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Evaluating Coppelia

e Does Coppelia find bugs and generate their exploits?

e Will our approach find new bugs?

C. Sturton



Processor
e OR1200
e 31 known bugs

{Coppelia]-» g

C. Sturton 91



Processor
e OR1200
e 31 known bugs

,,,,,,,,,,,,,,,,,,,

prE—
i if (preseat_stete =

35 properties }

e SPECS
e SecurityCheckers
e SCIFinder C.Sturton 92
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Processor
e OR1200
e 31 known bugs

,,,,,,,,,,,,,,,,,,,
prE—
e 55 e et e

a[Coppelia]—> %
35 properties } \ 29 exploits

e SPECS
e SecurityCheckers
o SCIFlnder C. Sturton 93




Finding Bugs (ground truth: 31)

not
replayable

replayable

Coppelia Cadence IFV EBMC



Processor
e Mor1kx
e PULPIno

;;;;;;;;;;;;;;;;;;;;;;;;;;

{Coppelia]-» ;
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Processor
e Mor1kx
e PULPIno

,,,,,,,,,,,,,,,,,,,
prE—
e 55 e et e

190 37 presenc_svate = s1q1)

Properties }

e SPECS
e SecurityCheckers
o SCIFlnder C. Sturton 96
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Processor
e Mor1kx
e PULPIno

,,,,,,,,,,,,,,,,,,,
prE—
e 55 e et e

190 37 presenc_svate = s1q1)

a[Coppelia]—> #
Properties } \ 4 new bugs

e SPECS
e SecurityCheckers
e SCIFinder C.Sturton 97




Finding New Bugs

1

Mor1kx-Espresso

new
design

3
PULPino-RI5CY

new
architecture!

C. Sturton
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Security validation of
hardware designs can be
done algorithmically



Our Products So Far

e SCIFinder to produce security critical properties
e Coppelia to find and generate exploits for property violations

e Security properties for RISC processor designs
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