Privacy, Online Data, and the JobSeeker

Raquel L. Hill
School of Informatics and Computing
Indiana University, Bloomington, IN

Funded by National Science Foundation:1537768

Introduction

- While evaluating job applications, recruiters try to determine whether:
 - the information that is provided by a job seeker is accurate
 - it describes a person with sufficient skills
- Prior Research has shown this process to be fraught with bias.

SCHOOL OF
INFORMATICS
AND COMPUTING

Resume Experiments and Bias

RESUME

(Bertrand 2004)

Racism in a resume

Job applicants with African American—sounding names got fewer callbacks.

White names

White names

African American names

Low

High

Low

High

O 2 4 6 8 10 12

Average callback rate, %

(Moss-Racusin 2012)

Think you're hiring the right person? You might not be. Studies show that stereotypes and biases often lead employers to select male candidates, regardless of qualifications. #addwomen

AAUW

INFORMATICS
AND COMPUTING

(Acquisti 2015)

Possible Solution

- Anonymize Resume
 - Remove all identifying information
- Is this a simple or hard task?
- What makes information identifying?

Uniqueness and Re-Identification

- Uniqueness is required, but is not a sufficient condition for re-identification.
- To re-identify humans in a dataset, uniqueness must be linked with outside knowledge.

The "Re-Identification Problem"

Zip Code

Birthdate

Gender

Re-identification

of William Weld

Ethnicity

Visit date

Diagnosis

Procedure

Medication

Total charge

Hospital

Quasi-Identifier

Name

Address

Date registered

Party affiliation

Date last voted

Voter List

INFORMATICS
AND COMPUTING

Discharge Data L. Sweeney. Journal of Law, Medicine, and Ethics. 1997.

5-Digit Zip Code

+ Birthdate

63-87% of USA estimated to be unique

L. Sweeney. Uniqueness of Simple Demographics in the U.S Population. 2000.

INFORMATICS
AND COMPUTING
P. Golle. Revisiting the Uniqueness of US Population. ACM WPES. 2006.

The Search Log Case (2006)

- □ Goal: Support web search research
- 650k customers, 20 million queries, 3 month period
- Names replaced with persistent pseudonyms

Name	Query	Date	Time		User	Query	Date	Time
John Doe	Books	1/2/05	16:52	\longrightarrow	8123	Books	1/2/05	16:52
Bob Smith	Payscale	1/4/05	23:41		9010	Payscale	1/4/05	23:41
John Doe	Porn	1/8/05	03:15		8123	Porn	1/8/05	03:15

Barbaro & Zeller. A face exposed for AOL searcher no. 4417749. New York Times. Aug 9, 2006.

User 4417749 issued

Thelma Arnold & Dudley

Related Work: Re-Identification

- To re-identify humans in a dataset, uniqueness must be linked with outside knowledge.
 - Sweeney (1997): Link gender, birthdate, zipcode with a hospital's discharge records
 - Malin & Sweeney (2001): Link DNA sequences with multiple hospital discharge records

SCHOOL OF
INFORMATICS
AND COMPUTING

Re-Identification

- Malin (2006): Link genealogical data with online death records and obituaries
- Narayanan and Shmatikov (2008): Link movie ratings and watch dates with attacker's own knowledge, or IMDb forum posts

Social Media and New Identifiers

- There is so much data being self-reported in social media outlets
- Our preliminary studies show:
 - 70% of individuals self-reporting about medical related issues use weak privacy settings
 - 27% use the strongest possible settings
 - 3% use settings that reveal more than name and gender, but less than the maximum amount of information

SCHOOL OF
INFORMATICS
AND COMPUTING

Social Media Cont.

- (Chaabane 2012) "You are what you like, Information Leakage through User Interests"
 - Age, gender, relationship status, country level location
- Acquisti (2015):
 - Resume study with online data
 - Created social media profile that indicated religious preference

Online Data and Hiring

Concerns

- Jobseekers
 - Try to hide their age
 - Obfuscate career transitions
 - Conceal qualifications
 - Limited training
 - Over qualified
 - Lack tools to express and present their skills

- Employers
 - Seek to identify discrepancies in applications
 - Lack automated tools to evaluate applications

Next Steps

- Move Beyond Resume Experiments
- Build a Framework that:
 - Uses online and resume information to create jobseeker profiles
 - Develop means for identifying discrepancies in information in order to provide better feedback to individuals
 - Enable semantic comparisons between profiles

Our Approach

- Develop a skills ontology
 - hierarchy of job skills
 - relationships between the specified skills
- The proposed framework uses the web as its language corpus
- Data mining approach to the problem

Challenges

- Hidden skills problem:
 - Concerns representing, identifying and measuring skills that haven't been explicitly mentioned in the job description or resume
 - For example a job description may state that the applicant should know PHP, and an applicant's resume lists Symfony.
- Skills Resolution problem:
 - Involves taking text from online social media and online blogs and mapping that text to actual skill terms

Meeting the Challenge

- Any automatic software aiming to help the hiring process and address the mentioned challenges should benefit from skills taxonomy
- A comprehensive skills taxonomy is needed in order to:
 - represent the skill set of job applicants
 - help the employers to describe job description in welldefined way
 - measure the distance between their skills set and the required skills of the ideal applicant

SCHOOL OF
INFORMATICS
AND COMPUTING

Motivating Example

- Let's see how a simple flat dataset of skills(related to IT) can help automatic tools
 - For Skill resolution problem
- Used Stackoverflow API to retrieve posts of users
- Aim is to create skill clouds for some active users in Stackoverflow
 - Derive skills from demonstrated knowledge

1st Experiment

 Keyword Cloud using posts authored by user

```
The sure of the su
```


2nd Experiment

- Tag Cloud using frequent tags in posts authored by user
 - Just using top frequent tags
 - No filtering

3rd Experiment

- Tag Cloud using frequent associated tags in posts with Skill dataset
 - Filtering is considered using simple skill dataset

How to Create Skills Taxonomy

- Automatic tool to develop a skills taxonomy
 - capable of automatically bootstrapping the taxonomy
- Bootstrapping:
 - a process for learning relationship rules that alternates between learning rules or rule accuracy from sets of instances of included entities and finding instances using sets of rules
- We will use a data mining approach to this problem
- Input
 - minimal skills taxonomy
 - Web
- Output:
 - More comprehensive taxonomy

Bootstrapping Taxonomy

- We will benefit from 3 approaches:
 - Word2Vec
 - Learn language model from a text corpus and find similar words based on learned model
 - No semantic relationship between words
 - Wikipedia Structure
 - Can learn some semantic relationship
 - Article titles are not always good enough for skills but relevant
 - Search Engine Result mining
 - Broader source of knowledge but with more noise
 - Can be used for learning semantic relationship but with lots of noise
 - Can benefit from searching in job descriptions

Exploiting Wikipedia Structure

- Wikipedia as a source of knowledge
 - large corpus containing millions of articles about named entities
 - Lots of knowledge
 - Embedded structure is not enough to be used directly for ontologies
- Relationship between articles can be defined in many ways
- One way is to use Wikipedia "category":
 - Relationship between articles
 - These relationships may not be the "Is-a relation", which introduces noise into the relationship structure

Creating Wikipedia Graph

- Using the Wikipedia API we started scraping from one article with the title 'Python (programming language)'.
- Using categories relationships
 - Scraped parent categories
 - Subcategories of each category in the path
 - Stopping condition: 2 hops away from source
- The resulted undirected graph had 1359 nodes and 1581 edges
- Manual annotation of the article titles indicates:
 - 80 percent of the nodes are non-relevant to skills and 20 percent have some information related to skills

---- Not Related

Related

Graph Mining

Simple feature
 engineering to create
 a structured table for
 classification
 algorithm

Feature	Definition				
degree	number of adjacent nodes				
AVG degree of neighbors'	average degree of adjacent nodes				
exist in k-core	whether node exist				
exist in k-core	in 2-core subgraph				
No of neighbours as skills	number of adjacent nodes				
No of fleighbours as skins	within the path equal to 2				
Path to skill	minimum path to skill node				
Cluster no	the id of the cluster				
Cluster no	that node is assigned				
Cosine similarity	maximum cosine similarity value				
	with skills in dataset				
No of similar skills	number of skills that the cosine				
140 of Sililiar Skills	similarity value is above threshold				
target column	article is related to IT skills				

SCHOOL OF INFORMATICS AND COMPUTING

Performance of Classifiers

- We randomly chose 80% of dataset as the training set and 20% as the test set
- We used cross validation with 10 folds
- Maximum likelihood estimator is considered as baseline
 - Meaning prediction of mode(not related to skill) for all records

algorithm	Acc.	Prec.	Rec.	F1-score
MLE	0.80	80	0.80	0.80
Logistic Regression	0.81	0.78	0.37	0.53
Decision Tree	0.98	0.98	0.94	0.96

SCHOOL OF
INFORMATICS
AND COMPUTING

Future Work

- Experiments related to search engine results mining
- Test Wikipedia graph with larger graph
- Test Meta Classifier and analyze final results
- Run skill cloud generation with the final skills taxonomy

Thanks

- National Science Foundation
- Collaborators: Mohsen Sayyadi, Ilana Gershon