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Abstract—We propose PriView, an interactive privacy-
preserving personalized video consumption system, that
protects a user’s privacy while delivering relevant content
recommendations to the user. PriView provides the user
with three functionalities: transparency on privacy risk,
control of privacy risk, and personalized content recom-
mendations. PriView bridges privacy theory and practice:
it successfully implements an information theoretic frame-
work to design a utility-aware privacy-preserving mapping
that perturbs a user’s video ratings to prevent inference
of user private attributes, e.g. political views, age, gender,
while maintaining the utility of the released perturbed
ratings for recommendation. Our model uses convex op-
timization to learn a probability mapping from actual
ratings to perturbed ratings that minimizes distortion
subject to a privacy constraint. One practical challenge
of the optimization is scalability, when the size of the
underlying alphabet of the user data is very large, e.g. due
to a large number of features representing the data. To
reduce the optimization size, we introduce a quantization
step that allows to control the number of optimization
variables, and explore using low rank approximations
of the rating matrix. Evaluations on the Politics and
TV dataset show that these methods can achieve perfect
privacy with little change in recommendation quality.

I. INTRODUCTION

With the advent of targeted advertising and the pop-
ularity of mining user data, users find their privacy
threatened. To address this rising concern, many privacy-
preserving mechanisms have been proposed [1]. Most
of these mechanisms have strong theoretical guarantees,
but often lack practicality. For instance, reaching a
sufficiently high level of privacy often requires that the
user data be distorted to the point where it is not us-
able. PriView demonstrates an interactive privacy system,
which brings together theory and practice, and shows
how information-theoretic privacy can lead to practical
policies for protecting user profiles, while maintaining
the utility of sanitized data.

We consider the setting where the user has two kinds

of data: some dataA that should remain private, such as
the user’s political views, age, gender; and some dataB

that the user wishes to release to a service provider in
exchange for some utility, such as video ratings to get
content recommendations. As these two kinds of data are
correlated, releasing video ratings could potentially lead
to revealing user’s private data through inference attacks.
Indeed, large scale surveys [2], [3] have shown that the
audiences for a number of TV shows can be distinctly
characterized.

A. Contributions

PriView is an interactive privacy-preserving system for
video consumption and recommendation that provides
a user withprivacy transparency and control, while
maintaining thequality of recommendations the user
receives. The PriView system shows the risk of releasing
data related to media preferences (e.g. tv show viewing)
with respect to private attributes (e.g. political views, age,
gender), and how these risks can be controlled while
providing relevant personalized recommendations to a
user. The modules of PriView:

• help the user monitor his privacy status,
• inform the user, before he releases data, of the

potential threat that he may incur by releasing such
data,

• give means to the user to control the information
leaked on private attributes by the released data,
and inform him of the measures taken to ensure his
privacy,

• maintain the quality and relevance of personalized
recommendations while preserving privacy.

PriView has the potential to be interfaced with online
video services, as well as TV and VoD services. It could
also be extended to other media content, e.g. music,
books, news, and to other products, services, or locations
rated online by users.

Implementing each module of PriView required solv-
ing practical challenges. More precisely, PriView imple-



ments an information-theoretic privacy-utility framework
[4], that successfully reduces the privacy risk to zero
while maintaining utility of the sanitized data released by
the user. The first practical challenge, encountered when
implementing this privacy-utility framework, is that of
scalability. The framework relies on convex optimization
to generate a probability mapping that perturb video
ratings, however the number of optimization variables
in the original framework grows quadratically with the
number of possible rating vectors to map to. For instance,
for rating vectors of length 50 shows, and a 0-5 star
rating scale, there exist650 possible rating vectors, thus
6100 optimization variables. We reduce the number of
optimization variables by introducing a quantization step
prior to the optimization [5]. Clustering techniques, e.g.
K-means clustering, are used to quantize rating vectors
into K clusters, prior to solving the privacy optimization,
in order to reduce the size of the optimization toK2.
The second challenge is that the framework requires
estimating the prior distribution between private data
A and data to be releasedB, yet the Politics and TV
dataset that we use to estimate the prior distribution is a
relatively small dataset. Thanks to the quantization step,
we adapted the framework to use the prior distribution
between private data and quantized data, and used kernel
density estimation to smooth our distribution estimate.

We analyze the performance of our system in terms of
privacy and utility. First, the mutual information between
the user’s private data and perturbed dataI(A; B̂) is
used as a privacy measure. We show that our privacy
mapping fromB to B̂ successfully breaks the existing
correlation betweenA and B by bringing the mutual
information I(A; B̂) to 0, which is equivalent to sta-
tistical independence between the private variableA and
the distorted datâB. Consequently, inference attacks that
try to infer A from B̂ fail, as shown by our evaluations.
The second performance metric measures the utility at
the recommendation end, by comparing the root mean
square error (RMSE) of rating prediction based on actual
and privatized ratings. Our evaluations show that PriView
succeeds in ensuring perfect privacy while maintaining
the quality of recommendations.

B. Related Work

To the best of our knowledge, PriView is the first
practical interactive system whichinforms a user of the
privacy risks for multiple sensitive attributes (political
views, age, gender) fromany inference attackprior to the
release of the user’s data (ratings) to a service provider,
and that gives means to the user to continuously monitor

and control his privacy risk through data perturbation.
PriView is the first practical system to implement an
information-theoretic privacy-utility framework [4] all
the way from the user end to the recommender end–
and thus to be supported by strong theoretical guarantees
against any inference attack algorithm. PriView success-
fully runs a matrix-factorization recommender system on
top of privatized data.

Privacy-utility tradeoffs have been studied under either
a local privacy setting, or a centralized privacy setting.

In the local privacy setting, users do not trust the entity
aggregating data. Thus, each user holds her data lo-
cally, and processes it according to a privacy-preserving
mechanism before releasing it to the aggregator. Local
privacy dates back to randomized response in surveys
[6], and has been considered in privacy for data mining
and statistics [4], [5], [7]–[14]. The setup we consider
falls under the local privacy setting, since the service
provider is assumed to be untrusted, and users wish to
protect against statistical inference of private information
from data they release to the service provider. Local
privacy has also been considered in the differential pri-
vacy [15], [16] corpus, e.g. for learning concept classes
[12], clustering [13], and statistical parameter estimation
[14]. These works are concerned with the problem of
learning aggregate statistical properties from the data of
several users. In contrast, we focus on devising content
recommendations for an individual user while maintain-
ing the privacy of this individual user’s attributes.

In the centralized privacy setting, a trusted entity
aggregates data from users in a database, while an un-
trusted analyst asks queries on the database. The trusted
aggregator jointly processes data from multiple users
according to a centralized privacy-preserving mechanism
to produce a privatized answer to the query, that is
released to the analyst. The centralized privacy setting is
less stringent than the local privacy setting. Information
theoretic frameworks have been used to analyze privacy-
utility tradeoffs in the centralized database setting. One
line of work [17], [18] asymptotically characterizes rate-
distortion-equivocation regions as the number of data
samples grows large. Traditionally, many differential pri-
vacy works assumed a centralized setting with a trusted
database owner, and focused on making the output of an
application running on the database differentially private,
e.g. data mining [19], social recommendations [20] and
recommender systems [21]. More specifically, [21] con-
siders the case of a trusted recommender system who has
access to ratings from privacy-conscious users, and ad-
dresses the challenge of training a differentially-private



recommendation algorithm based on these original rat-
ings. In contrast, we study a local privacy setup where the
recommender system is not trusted by privacy-conscious
users, who wish to protect against statistical inference of
private information from data they release to the recom-
mender. We also assume that the recommender system
already owns a recommendation algorithm, trained on
ratings from non-privacy conscious users, and we address
the privacy challenges faced by any privacy-conscious
user who wishes to use the recommender system.

II. SETTING AND SYSTEM

A. Privacy-Utility Framework

We consider the local privacy setting described in [4],
[5], [10], where a user has two types of data: some data
that he would like to remain private, e.g. his political
views, age, gender, and some data that he is willing to
release publicly and from which he will derive some
utility, for example the release of his media preferences
(TV show ratings) to a service provider allows the user
to receive content recommendations. We denote byA the
vector of personal attributes that the user wants to keep
private, and byB the vector of data he is willing to make
public. We assume that the user private attributesA are
linked to his dataB by the joint probability distribution
pA,B. Thus, an adversary— the service provider or a
third party with whom he may exchange data— who
would observeB could infer some information aboutA
from B.

To reduce this inference threat, instead of releasingB,
the user will release adistorted version of B, denotedB̂,
generated according to a conditional probabilistic map-
ping p

B̂|B, called theprivacy-preserving mapping. The
privacy-preserving mappingp

B̂|B should be designed in
such a way that it renders any statistical inference of
A based on the observation of̂B harder, yet, at the
same time, preserves some utility to the released data
B̂, by limiting the distortion generated by the mapping.
We adopt the privacy-utility framework in [4], where
the privacy-preserving mapping is designed to control
the privacy leakage, modeled as the mutual information
I(A; B̂) between the private attributesA and the publicly
released datâB, subject to a utility requirement, modeled
by a constraint on the average distortionE

B,B̂
[d(B, B̂)].

We focus onperfect privacy I(A; B̂) = 0: the privacy-
preserving mappingp

B̂|B renders the released datâB
statistically independent from the private dataA, andany
inference algorithm that tries to infer the private dataA

from the released datâB cannot outperform an unin-
formed random guess. The privacy and utility metrics,

and the design of the privacy-preserving mapping, are
discussed in greater details in Section III.

We would like to point out that in the local setting,
perfect privacyI(A; B̂) = 0 is equivalent to statisti-
cal independence betweenA and B̂, i.e. p

B̂|A(b̂|a) =

p
B̂|A(b̂|a

′) = p
B̂
(b̂), for all a, a′ and b̂, which in turn is

equivalent toB̂ being locally0-differential private with
respect toA. Indeed, in the local setting, on one hand
the local databaseA is of size 1 as it contains only
the data of a single individual user, thus all databases
a, a′ are neighboring databases [12], [14]; on the other
hand, the service provider asks for the queryB which
due to its correlation withA can be considered as a
randomized function ofA, and receives the sanitized
versionB̂. Thus, in the local privacy setting at perfect
privacy, the information theoretic privacy metric and the
differential privacy metric are equivalent with respect to
private dataA [22].

B. System functionalities

Based on research on information theoretic privacy,
PriView showcases a service that allows the user to
release data about his media consumption (e.g. TV
viewing habits) to get content recommendations, while
ensuring that attributes he deems sensitive (e.g. political
views) and wants to remain private, are protected against
inference attacks. PriView system provides the following
functionalities:

• Transparency: On one hand, the system allows the
user to monitor his privacy status through a privacy
dashboard. On the other hand, the system informs
the user about the potential increase in privacy risk
from releasing additional pieces of data, e.g. new
ratings.

• Control : First, the system allows the user to select
which attributes (political views, age, gender) he
would like to remain private. Second, the system
implements a privacy-preserving mechanism for the
release of the user TV show ratings to a service
provider, that ensures perfect privacy(I(A; B̂) = 0)
against statistical inference of his private features
[4], while at the same time minimizing the distor-
tion to the released data. Third, a TV show history
log allows the user to know at all time his true rating
for a show, and what the distorted released rating
was, to protect his privacy.

• Personalized Recommendations: the service
provider sends content recommendations to
the user, based on the released ratings. The



demonstration shows how the recommendations
obtained when privacy is activated compare
with the recommendations the user would have
obtained if he did not activate privacy protection. It
demonstrates that utility can be maintained while
ensuring privacy.

Providing these functionalities require addressing techni-
cal challenges, that we describe in details in Section III.

C. Dataset

The PriView system makes use of thePolitics-
and-TV dataset [5], which contains data on political
views and TV preferences of viewers in the USA
in Fall 2012. The dataset contains entries for 1,218
users, broken into 744 Democrats, and 474 Repub-
licans. For each user, the dataset entry is a vector
[age, gender,State,politics, B1, . . . B50] where Bi ∈
{0, 1, . . . , 5} is the user’s 5-star rating for TV showi
if the user rated the show, and 0 otherwise, for a total of
50 TV shows in 6 categories: Sitcoms, Reality Shows,
TV series, Talk Shows, News, and Sports.

D. System Architecture

The system consists of three components: a user client,
a privacy server, and a recommendation server. The client
is a web interface written in HTML5 and javascript.
The servers are written in flask, which is a python
based micro web framework. The user client has three
roles: Let the user interact with various privacy settings;
Let the user watch and provide ratings for TV shows;
Display recommendations based on the user’s privacy
settings and privatized ratings. Both the privacy and
the recommendation servers serve client requests (web
pages), and store and fetch data from databases (user
and privacy mapping data for the privacy server, content
and recommender system data for the recommendation
server). Additionally, the privacy server performs rating
privatization based on the user’s privacy settings, and
send privatized ratings to the recommendation server,
and to the user client. On the other hand, the recom-
mendation server generates recommendations based on
the user’s privatized ratings, and send them to the user
client.

Finally, four types of data collections (tables) are
stored in MongoDB databases. One collection stores
the user privacy settings and user interactions with the
content (e.g. ratings), while another collection stores data
related to the privacy mapping. Both are accessed by the
privacy server. A third collection stores the content meta-
data used to display on the web interface at the client

side, while the last collection stores content profiles
for recommendation purposes. These two collections are
accessed by the recommendation server.

III. PRIV IEW OVERVIEW

A. Transparency: Informing users about privacy risks

Privacy monitoring dashboard: The privacy dashboard,
in Fig. 1a, contains the privacy settings of the user,
and the privacy monitor. Theprivacy settings allow the
user to select any combination of three attributes— age,
gender, and political views— that he deems private and
would like to protect. It should be noted that the user
does not need to reveal what his political view, age, or
gender are, but only whether he considers any of these
features as sensitive information that he wants to remain
private. Theprivacy monitor shows the inference threat
for each private attribute from the actual TV show ratings
of the user, and from the distorted privacy-preserving
ratings. Thus, the privacy monitor allows the user to
compare what his risk would have been if he did not
activate privacy protection, with his risk after the privacy-
preserving mechanism sanitized his ratings.

To model the inference threat for each private attribute
from a particular rating vector representing the user
history of ratings, we propose a privacy risk metric on
a scale [0,100]. For a private attributeA and a specific
vector of ratingsB = b, we define the privacy risk by

Risk(A, b) =

(

1−
H(A|B = b)

H(A)

)+

∗ 100, (1)

whereH(A) = −
∑

a pA(a) log pA(a) denotes the en-
tropy of the variableA distributed according topA(a),
and represents the inherent uncertainty onA. Similarly,
H(A|B = b) = −

∑

a pA|b(a|b) log pA|b(a|b) denotes
the remaining entropy ofA given the observationB = b,
and represents the remaining uncertainty onA after
observingB = b. Intuitively, the privacy riskRisk(A, b)
measures the percentage by which the uncertainty onA

decreases due to the observation ofB = b, relative to
the original uncertainty prior to observingB. A privacy
Risk(A, b) = 0 means that the rating vectorB = b does
not provide any information about the private attribute
A, while aRisk(A, b) = 100 implies that no uncertainty
is left about the attributeA from observing the rating
vectorB = b. The privacy risk based on the user’s actual
rating vectorB = b is Risk(A, b), while the privacy risk
based on the distorted ratingŝB = b̂ is Risk(A, b̂), and
is obtained by replacingB = b in (1) by B̂ = b̂. Note
that the mutual information between the private dataA



(a) Privacy Dashboard (b) Show Page

(c) History Page (d) Recommendations Page

Fig. 1: Sample PriView Screenshots



and the distorted datâB is

I(A; B̂) = H(A)

(

1− E
B̂

[

H(A|B̂ = b̂)

H(A)

])

which is related to the average of the privacy risks over
all possible distorted rating vectorŝB. Achieving perfect
privacy(I(A; B̂) = 0) ensures a0-privacy risk, meaning
that any inference algorithm that would try to inferA
from B̂ would not outperform an uninformed random
guess.
Instantaneous privacy risk information: After com-
pleting his privacy settings, the user can move to the
TV guide (not shown for the sake of conciseness), and
pick a show that he would like to watch. On each TV
show page, e.g. Fig. 1b, the user can give a star rating
to the show. Prior to rating this new show, a privacy risk
tool reminds the user of his privacy risk based on his
current history of actual ratings. When the user hovers
above the stars for this new show, for each possible rating
in {1,..,5}, the privacy risk tool dynamically updates its
numbers to inform the user of how his privacy risk would
evolve if he added a particular rating. It should be noted
that this privacy risk tool shows the risk based on actual
ratings, before sanitization. Once the user picks a rating,
and submits it to the system, the privacy-preserving
mechanism operates on the rating vector to sanitize it.
The privacy dashboard mentioned earlier allows the user
to check that the privacy risk after distortion of the
ratings is 0 for the attributes he selected as private.

B. Control: privacy-preserving mechanism

Privacy-preserving mechanism: Based on the privacy-
utility framework in [4], the system implements a
privacy-preserving mechanism for the release of the user
TV show ratings to a service provider, that ensures
perfect privacy(I(A; B̂) = 0) against statistical infer-
ence of his private features [4], while at the same time
minimizing the distortion to the released data. The TV
show history page in Fig. 1c shows the user’s actual
ratings and the perturbed ratings generated by PriView.
While implementing the privacy-utility framework, we
encountered technical challenges, that we describe below
and that required adapting the framework.
Challenge: Scalability: Designing the privacy-
preserving mappingp

B̂|B requires characterizing the

value ofp
B̂|B(b̂|b) for all possible pairs(b, b̂) ∈ B × B̂,

i.e. solving the convex optimization problem over|B||B̂|
variables. WhenB̂ = B, and the size of the alphabet
|B| = 650 is large, solving the convex optimization over

Algorithm 1 Quantized privacy-preserving mapping

Input: prior pA,C

Solve: convex optimization

minimize
pB̂|C

EpC,B̂

[

d(C, B̂)
]

subject to I(A; B̂) ≤ ǫ, and p
B̂|C ∈ Simplex

Remap :p
B̂|B ⇐ p

B̂|C(B)
Output: mappingp

B̂|B

|B|2 variables may become intractable. Quantization
was proposed in [5] as a method to reduce the number
of optimization variables, from|B|2 to K2, whereK

denotes the number of quantization levels. It should be
noted that the choice ofK is a tradeoff between the
size of the optimization, and the additional distortion
introduced by quantization.

Quantization assumes that vectorsB lie in a metric
space. Directly applying quantization on the original
rating vectorB as in [5], where unrated shows are
assigned a 0 rating, would make our model perceive
unrated shows as strongly disliked by the user, when they
actually may not be disliked, but simply unknown to the
user for example. To circumvent this issue, we propose to
first complete the rating vectorB into Bc using low rank
matrix factorization, a standard collaborative filtering
technique. We then feed the completed rating vectorBc

to the quantization module that mapsBc to a cluster
centerC. For quantization, we used K-means clustering,
with K = 75 cluster centers, where our choice ofK was
guided empirically. The cluster centerC is then fed to
the privacy optimization algorithm, that finally outputs a
distorted rating vector̂B. In summary, the design of the
privacy-preserving mapping, described in Algorithm 1,
follows the Markov chainA → B → Bc → C → B̂.
Challenge: Estimating the prior distribution : Com-
puting the privacyRisk(A, b), as well as finding the
privacy-preserving mapping as the solution to the privacy
convex optimization in [4], rely on the fundamental
assumption that the prior distributionpA,B that links
private attributesA and dataB is known and can
be fed as an input to the algorithm. In practice, the
true distribution may not be known, but may rather
be estimated from a set of sample data that can be
observed, for example from a set of users who do
not have privacy concerns and publicly release both
their attributesA and their original dataB. However,
the dataset may contain a small number of samples,
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Fig. 2: Privacy-Utility Tradeoff

or be incomplete, which makes the estimation of the
prior distribution challenging. Thanks to the completion
and quantization step, we adapted the framework in [4]
to use the prior distribution between private data and
quantized completed data in Algorithm 1. We estimated
the distribution using Kernel Density Estimation, with a
Gaussian kernel with widthσ = 9.5.
Evaluation: In Algorithm 1, ǫ bounds the amount of
information about the private dataA that is leaked by
the distorted dataB̂, and thus represents the level of
privacy requirement on the user side. Varyingǫ allows
to study the tradeoff between privacy requirement and
distortion. Fig. 2 shows the privacy-utility tradeoff: mu-
tual information I(A; B̂) against end-to-end distortion
(quantization + privacy mapping) per rating. K-means
quantization introduces a distortion 1.08 per rating and
yields a mutual informationI(A;C) = 0.2. With 0.14
additional distortion, the privacy-preserving mapping
achieves perfect privacyI(A; B̂) = 0 for an end-to-end
distortion of 1.22.

As mentioned previously, PriView system focuses on
perfect privacyI(A; B̂) = 0, thus onǫ close to 0. At
perfect privacy, any inference algorithm that tries to infer
A from B̂ can only perform as well as an uninformed
random guess. Intuitively,̂B is statistically independent
from A, thus the privacy mapping statistically ’erased’
any information about the private dataA from B̂, and
an inference algorithm that tries to inferA from B̂

can only perform as well as an uninformed inference
algorithm that would try to inferA without knowledge
of B̂. Fig. 3 is an ROC curve showing the performance
of an example logistic regression classifier, that tries to
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Fig. 3: ROC curve Logistic Regression of political views
from TV show ratings

infer the user’s political views from the original rating
vector (blue curve), from a binarized version of the rating
vector where ratings>= 4 are mapped to 1 (like), and
ratings <= 3 are mapped to zero (dislike), or from
rating vectors distorted according to a privacy-preserving
mapping with average distortion<= 1 (pink curve),
or distortion<= 2 (red curve). We used 10-fold cross
validation, and plot the false positive rate (Democrats
falsely classified as Republicans) against the true positive
rate (Republicans correctly classified). The blue curve
illustrates the privacy risk on inferring the political views
from the original rating vectors. The green curve is close
to the blue curve, and shows that merely binarizing
the ratings is not enough to ensure privacy. The red
curve is very close to the red diagonal line, which
represents an uninformed random guess: this proves that
with distortion<= 2, the privacy-preserving mechanism
successfully ensures perfect privacy against logistic re-
gression of political views from distorted ratings. We
conducted further inference attacks with other classifiers,
including Naive Bayes, and SVM, and observed similar
results, as predicted by theory.

C. Utility: maintaining the quality of service running on
privatized data

A natural question is whether the relevance of rec-
ommendations can be preserved when recommendations
are obtained based on ratings distorted for privacy. The
recommendations page of PriView, a sample of which is
shown in Fig. 1d, allows to compare the top 6 TV show
recommendations, based on the actual ratings, and based
on the distorted ratings for privacy. The recommendation



engine implemented in PriView uses low rank matrix
factorization (MF) [24], a standard collaborative filtering
method, to predict missing show ratings from ratings
provided by the user for some other shows. We trained
the MF recommender engine by alternating regularized
least square [24]. Fig. 1d shows an overlap of 4 out
of 6 recommendations without and with privacy, which
illustrates that PriView manages to maintain utility while
protecting user privacy.

We conducted further testing, to illustrate that PriView
is able to eliminate the privacy threat from̂B for
chosen attributesA with little effect on the quality of
recommendations. We used 5-fold cross validation, to
split our dataset into a training set containing80% of the
data, and a test set containing the remaining20% of the
data on which we tested the MF recommender engine,
both with and without privacy activated to compare the
relevance of recommendations in these two cases. The
random splitting into training and test sets was performed
5 times, as shown in the first row of Table I. More pre-
cisely, in each test set, we randomly removed and tried
to predict10% of the ratings. Table I shows the RMSE in
rating prediction based on actual ratings, and on distorted
ratings. r̂ denotes predicted ratings based on the the
actual ratings provided by users for other shows, whileˆ̂r
denotes predicted ratings based on the ratings distorted
for privacy. The prediction RMSE for̂r (RMSE1, privacy
not activated) and for̂̂r (RMSE2, privacy activated)
are calculated on the10% of ratings that we removed.
Table I shows that the RMSE for rating prediction does
not degrade much when privacy protection is activated,
with respect to rating prediction without privacy. Note
that these results are for the case of perfect privacy
(I(A; B̂) = 0), meaning that any inference algorithm
that would try to inferA, e.g. political views, from
ratingsB̂ would not outperform an uninformed random
guess. If the privacy requirements were less stringent,
e.g. (I(A; B̂) ≤ ǫ), for someǫ > 0, then the RMSE
for rating prediction with privacy protection would be
even closer to the RMSE without privacy. Finally, we
would like to point out that using a more advanced
and optimized recommendation engine, instead of the
aforementioned standard MF recommendation engine,
could only yield better rating prediction quality both
without and with privacy protection.

IV. EXTENSIONS AND PERSPECTIVE

PriView has been implemented for video consump-
tions and recommendation, and it has the potential to be
interfaced with online video services, as well as TV and

TABLE I: Rating prediction RMSE

Set 1 2 3 4 5

RMSE1 (r̂) 1.2434 1.3208 1.2657 1.3359 1.2928
RMSE2 (ˆ̂r) 1.3469 1.3522 1.4182 1.3969 1.3708

VoD services. Future work includes extending PriView
to other media content, e.g. music, books, news, and to
other products, services, or locations rated or reviewed
online by users. PriView could also be adapted to protect
privacy in the context of social networks: users could be
informed of the privacy risks of actions such as likes,
connecting to friends... prior to taking those actions,
and provided means to control these risks. In such a
context, data distortion could for example amount to
simply avoiding to take some actions, or avoiding the
release of some data. Extensions also include broadening
the set of private attributes that can be deemed sensitive
by users, and analyzing the temporal dynamics of privacy
and utility in a real-time setting in a system such as
PriView.

The original privacy-utility framework in [4] assumes
that the true prior distributionpA,B is known by both
the adversary and the privacy agent. A natural question
is how the privacy-utility tradeoff is impacted when the
adversary and the privacy agent have different knowledge
of the statistical properties ofA andB. In the case of
a weaker adversary whose knowledge of the statistical
properties of the prior distributionpA,B is less accurate
than that of the privacy agent, the privacy-utility tradeoff
derived assuming a stronger adversary still holds. Indeed,
a weaker adversary who would try to infer private data
A based on a less accurate knowledge of the statistics
of A andB cannot outperform a stronger adversary who
would try to inferA based on a more accurate statistical
model. The general case of a stronger adversary, who
has a more accurate knowledge of the statistics ofA

and B than the privacy agent, is an interesting open
problem in general. The case of a mismatched prior
distribution, where an estimated prior distributionqA,B

that differs from the true distributionpA,B is fed to
the privacy-utility optimization in [4] was addressed in
[23]. More precisely, the mismatch was measured in
terms of the l1 distance between the true prior and
the mismatched prior, and bounds on the impact of the
mismatch on the privacy-utility tradeoff were derived.
The design of privacy mappings under partial knowledge
of the prior distributionpA,B, such as knowledge of
marginal distributions, or statistical moments of the prior
distribution, was addressed in [10].



V. CONCLUSION

We propose PriView, an interactive privacy-preserving
system for video consumption and recommendation that
provides a user with privacy transparency and control,
while maintaining the quality of recommendations the
user receives. PriView informs the user about the risk
of releasing data related to media preferences (e.g. tv
show viewing) with respect to private attributes (e.g.
political views, age, gender) prior to the release, and
gives means to the user to control and monitor these
risks, while maintaining the relevance of personalized
recommendations based on the released sanitized data.
PriView bridges privacy theory and practice: the pri-
vacy mappings implemented by PriView ensures perfect
privacy against statistical inference of private attributes
from the sanitized data. PriView has the potential to be
interfaced with online video services, as well as TV and
VoD services, and to be extended to other products or
services, e.g. music, books, news, locations rated online
by users.
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