
Application-screen Masking: A Hybrid Approach

Abigail Goldsteen, Ksenya Kveler, Tamar Domany, Igor Gokhman, Boris Rozenberg, Ariel Farkash
Information Privacy and Security, IBM Research – Haifa
{abigailt,ksenya,tamar,igorgok,borisr,arielf}@il.ibm.com

Abstract—Large organizations often face difficult trade-offs
in balancing the need to share information with the need to
safeguard the privacy and security of sensitive data. A prominent
technique for dealing with this trade-off is on-the-fly screen-
masking of sensitive data in applications. In this paper we present
a unique hybrid approach to screen-masking by combining the
advantages of the context available at the presentation layer with
the flexibility and low overhead of masking at the network layer.
Our solution enables the identification of sensitive information in
the visual context of the application screen, then automatically
generates the masking rules to be enforced at runtime on the
network traffic. This approach is more powerful and user-
friendly than the regular expression based mechanism typically
employed by traditional network-based solutions. We show that
our approach supports the creation of highly expressive masking
rules, while keeping the rule-authoring process easy and intuitive,
thus resulting in a system that is both easy to use and effective.

I. INTRODUCTION

Large organizations often face difficult trade-offs in balanc-
ing the need to share information with the need to safeguard
the privacy and security of sensitive data. They must share
data, both internally and externally, to remain competitive, yet
regulations and client expectations often restrict the exposure
of sensitive information.

Organizational data is often accessed using software appli-
cations. An application can be accessed by different users for a
variety of purposes over its life-span. For example, new users
may be introduced when outsourcing business processes, or
regulations regarding what type of information can be exposed
to whom may change. As a result, the privacy and security
needs of the application evolve and require changes to existing
access control mechanisms.

As a concrete example, assume an insurance company
based in Germany needs to outsource its claims processing
center to India for financial reasons. The European Data
Protection Directive 95/46/EC [1] imposes restrictions on the
transfer of personal data from European countries to third
countries. Therefore, to allow call-center agents located in
India to access the company’s web application, all sensi-
tive personal information must be removed from application
screens.

The hiding of sensitive information can be implemented
in various ways. Some claim that the best approach is to re-
engineer the application to ensure that no sensitive data is
transmitted at all, using techniques such as Program Analysis
[2] or Aspect Oriented Programming [3]. These techniques
are used to either verify that an application does not expose
any sensitive data or to rewrite an application to support
new privacy requirements. These methods, however, can be
costly, time-consuming and error-prone. Moreover, the original

application designers are not always available, and locating
someone with the appropriate skills to implement this strategy
is not always feasible.

An alternative approach is to mask the sensitive data that is
being displayed by the application at the data layer. Databases
can be copied, and sanitization techniques applied to their con-
tents to either remove or transform parts of the data to match
new requirements [4]. However, when sharing applications
with third-party users, an organization could want to restrict
certain users from viewing certain pieces of information while
enabling other users to see them. Thus, the organization would
need to create several copies of the database for each involved
entity, which would be onerous to create and maintain, if at
all feasible.

Masking at the application-screen level can be used to hide
sensitive information without interfering with the application
that generated those screens. This is done by introducing an
additional layer between the application and the end-user that
operates on the application screens. Screen masking can be
used to mask not only sensitive data but also sensitive actions,
such as preventing clicking on a web link and thereby reaching
a sensitive page. Thus, this feature can provide an additional
layer of security and control over what users can see or do.
Because only the display data is changed, another benefit of
using this method is that the application itself still contains the
original data and can interact with it, thus enabling scenarios
in which it is required to reveal the masked data due to some
urgent business or ethical need, known as “breaking the glass”
[5]. This is sometines the case in medical scenarios when it is
imperative to see a patients record in order to save his life.

There are several ways in which a screen masking policy
can be defined. We divide the masking rules into two basic
types: Content-based rules that take into consideration only
the content of the text and can be defined either by regu-
lar expressions or more advanced text analytics tools; and
Context-based rules, that are based on the visual structure of
the screen, i.e., the presentation layer. This means that a rule
author navigating the application can, figuratively speaking, tap
a finger on the screen and say: ”I need this column masked”
or ”I want to mask the field next to this label”. Context-
based rules can be based on UI constructs, such as labeled
fields, table columns, drop-down boxes, etc., or defined by
a relationship between two entities on the screen or by their
absolute locations.

An example of a context-based rule would be to mask
all labeled fields in which the label is “Email Address”, as
depicted in Figure 1. A content-based rule may simply contain
a regular expression depicting email adresses. In this case, all
emails will be masked, without the need of a specific label.

Content-based rules are more straightforward to define and



Fig. 1. Context-based labeled field rule

enforce. For context-based rules, the task is more complicated.
The gap between the concepts with which the administrator
defines the rules, i.e., what is seen on the screen, and the code
that executes at runtime, is much wider. Context-based rules
must somehow match between entities at the presentation layer
(e.g., objects on the screen) and instructions that are executed
at runtime (such as an exact coordinate or XPath [6]). For
example, a rule author who wants to mask a table column with
the header “Phone”, as seen in Figure 3, needs to translate this
into a formal instruction set that will implement the runtime
masking.

Context-based rules give more flexibility than content-
based rules. An example would be masking only home phone
numbers and not work phone numbers. The tradeoff in creating
this kind of rule is the need to formulate several rules to cover
all instances in the application of home phone numbers (for
example, if they appear both in a form and in a table), whereas
a content-based rule can cover all phone numbers in one rule.

Several methods exist for implementing masking at the
application-screen level. One method uses network-traffic in-
spection, or “protocol-sniffing” [7], to intercept data as it
flows through the network toward the client machines and then
analyzes and alters it. Current protocol-sniffing solutions are
efficient, but they offer only simple content-based masking
rules. A different approach is to focus on the presentation
layer, using Optical Character Recognition (OCR) [8] (for
more details see Section II). In this method, the screen is
captured as an image, then analyzed and modified before
being displayed on the end-user’s screen. While this method
provides powerful capabilities for context-based rule definition,
it suffers from difficulties in handling complex screens and
severe performance issues.

In this paper, we present a novel method for performing
context-based screen-masking, that can conceal sensitive data
from specific user roles, without requiring any changes to the
existing application or data stores, and without impacting the
application’s functionality or the end-user’s experience. We
address applications that are delivered from a server to any
client software, with particular focus on web applications.

We tackle cases in which it is necessary to conceal sensitive
information on screens in a way that is transparent to the
end-users operating them, while striving to minimize the
performance impact. We use the protocol-sniffing approach to
perform the masking, which does not require any changes to
the existing application or data stores, nor does it require any
installation on the end-user’s machine.

Our main contribution is a hybrid approach that combines
enforcement at the network level with powerful context capa-
bilities resulting from defining the masking rules at the pre-
sentation level. We provide an intuitive, visual rule-authoring
process, that does not require great technical expertise, making
it easy to create and modify masking rules. Our network-based
implementation has negligible impact on runtime performance.
This results in a system that is both easy to use and effective.
Combining visual context capabilites with masking at the
network level is a novel approach which presented several
technical difficulties that are discussed in later sections.

This paper is organized as follows: Section II describes
related work, Section III describes details of our approach
and Section IV discusses the advantages and drawbacks of
our solution compared to the alternatives. Section V includes
some performance results. We summarize our implementation
and suggest directions for future work in Section VI.

II. RELATED WORK

The subject of privacy, security, and integrity of web
applications has received much research attention. A large
volume of work deals with identifying vulnerabilities [9][10]
and faulty input sanitization procedures [11] using various code
analysis techniques. Side-channel weakness is analyzed in [12]
to demonstrate that sensitive information is being leaked from
web traffic despite encryption.

Techniques for proactive security and privacy integration
into applications have also been suggested. The Servlet Infor-
mation Flow (SIF) framework [13] can be used for building
high-assurance web applications and using language-based
information-flow control to enforce the appropriate release
of confidential information to clients. In cases in which it
is not possible to proactively integrate security and privacy
into the design of the system because of economic, practical,
or historical reasons, retroactive program analysis techniques
and tools can assist in retrofitting appropriate mechanisms into
legacy code [14] as the need arises.

A number of research efforts and commercial products
deal with sensitive-data leakage prevention by modifying data
stores. These techniques and tools usually hide sensitive data
in databases by systematically removing or transforming their
contents, in a way that keeps data realistic yet de-identified
[15]. Sophisticated data masking algorithms are employed [16]
to ensure that dataset-level properties and statistics remain
approximately the same, allowing for research and data min-
ing. Commercial products such as IBM Optim [17], Oracle
Data Masking [18], Camouflage [19], and Voltage SecureData
Masking [20] offer data-masking capabilities while preserving
data usefulness and referential integrity.

Unfortunately, methods such as proactively designing ap-
plications with privacy in mind, re-engineering legacy appli-
cations, or masking data stores, are costly and not always
feasible. Existing applications, especially legacy programs, are
rarely re-written, and maintaining separate copies of the appli-
cation database for different user roles can be very difficult.
Changes to the underlying database may also impact the ap-
plication’s functionality. In such cases, on-the-fly application-
screen masking is a potential solution.



Verdasys Digital Guardian Application Logging and Mask-
ing Module [21] provides screen-masking support on Windows
platforms. However the Verdasys technology depends on a
software component which must be be installed on every
client machine where screen-masking capabilities are required.
In addition, client-side solutions are considered less safe as
the sensitive information arrives at the client machine and is
masked there.

Another screen-masking method uses OCR [8] as the core
technology to capture, analyze, and mask application screens.
Screens are intercepted at the point where the screen image
is rendered, and then rerouted to discover and mask the
sensitive texts before displaying them to the end user. This
method is independent of the protocol and platform, but it has
many challenges in recognizing entities on the screen due to
overlapping, scrolling, and other complex screen structures.
This technique also requires that operations like copy&paste
or print-screen be prevented to avoid revealing the sensitive
information. However, the main drawback of this method is
the performance impact.

Network-traffic inspection is a widely used method for
application-screen masking and other purposes. The Intellinx
Enterprise Fraud Detection and Prevention solution [22] em-
ploys network-traffic sniffing to record end-user interactions
for auditing and fraud detection. This solution allows the
masking of recorded screens to prevent an auditor from
seeing sensitive information. However, to the best of our
knowledge, no on-the-fly masking is performed while end-
users are working with application screens. IBM Infosphere
Guardium [23] employs network-sniffing techniques for real-
time database security, monitoring, and auditing. Check Point
DLP Software Blade

TM
[24] inspects data transmitted over

networks in order to detect and avoid sensitive information
loss. However this application does not seem to allow masking
of the data in-motion. Sensitive data can be identified by their
similarity to commonly-used templates, which is a primitive
form of context-based rules, but with a much smaller scope
and flexibility than our approach. They also use a scripting
language for tailoring custom cases, but it suffers from severe
usability issues.

Privacy Infrastructure Appliance (PIA) [25], inspects com-
munications to anonymize sensitive data sent from service
takers to service providers, without changing the application.
However, this appliance deals with the use of a third-party
application supplied by a service provider, where the sensitive
data can be seen and manipulated by the application users,
but cannot be stored in the application database. The system
also requires sensitive data tagging, so that it can be identified
and replaced with masking tokens at runtime. Riverbed R©

Stingray
TM

Traffic Manager [26] provides application-screen
masking by network-traffic inspection. It employs content-
based string-matching techniques, such as regular expressions,
to define the targets to mask. The approach we present in this
paper enables the definition of comprehensive context-based
masking rules, which take into consideration UI constructs
without any explicit tagging.

III. OUR APPROACH

In this section, we describe our solution for application-
screen masking with context-based rules. Our approach is

Fig. 2. High level architecture

based on intercepting network messages sent between a server
and a client and altering them according to rules.

A. Solution design

The core component of the system is a “sniffer”, which
intercepts all requests sent from the client to the server and
all response messages sent from the server to the client. For
each response that carries information for display, a rule set
is traversed to check if any masking rule should be applied.
If such a rule is found, the response is altered according to
the rule before it is sent to the client. Note that the sensitive
information is completely removed from the message and does
not reach the client machine. The client that receives the
messages renders the screen to the display.

The client requests are also intercepted to check if they
include information that was previously masked. If so, the
request is reconstructed with the correct data, meaning the
masked data in the request is replaced with the original data,
which was saved in the “sniffer”, before being sent to the
server. This way the application gets the correct data in the
request, and we do not “break” the application.

In the first phase of the work we focus on web applications,
thus restricting ourselves to dealing with the HTTP and HTTPS
protocols out of the many available application networking
protocols. Figure 2 illustrates a sample architecture for web
applications. The network is configured to send all communi-
cations between the application server and the client browsers
through a proxy server. The proxy then passes the messages
to an ICAP [27] server. An ICAP service parses the message
headers and passes the relevant information to the enforcer
component. The enforcer uses the message headers to search
for relevant rules in the rule set. If it finds one or more rules
that should be applied to the message, it parses the payload
and enforces those rules.

Since all sensitive information is removed from the mes-
sage, it does not reach the browser, and thus cannot be revealed
by the end user, even when performing ’view source’. In



addition, both the masking server and the proxy itself are
placed within the enterprise’s internal network or firewall,
thus preventing any sensitive information from leaving the
premises.

Our implementation uses several Open Source components.
For the HTTP proxy capabilities, we use the Squid proxy
[28], for the ICAP implementation, we chose c-icap [29] and
added an ICAP service that transfers the messages to the rule
enforcer.

HTTP message payloads may come in many different for-
mats (e.g., HyperText Markup Language (HTML), Extensible
Markup Language (XML), JavaScript, JavaScript Object Nota-
tion (JSON), plain text, etc.). After observing a representative
sample of applications, we found that the most frequent data
formats are HTML and XML. In newer applications, JSON
has become prevalent. Consequently, we integrated parsers for
HTML, XML and JSON, using the the Libxml2 [30] and
Jansson [31] implementations respectively.

B. Rule language and enforcement

Placing our enforcement component on the network allows
us to access and alter almost any piece of information that
appears on the screen. When creating a masking rule, the rule
author may choose to apply certain filters that affect which
messages the rule will be applied to. Such filters may include
the server or client IP addresses, a certain user or group of
users, and a URL pattern. At runtime, the server and client IPs
as well as the request URL are provided as part of the HTTP
protocol. To identify the current user, the system recognizes
the application login process and extracts the username from
the corresponding message. That username is then bound to the
current session until a logout is performed. All this information
is taken into account when deciding whether to apply a rule.

Once the system has decided that a rule should be applied
to a message, the information to mask must be identified within
the message. Our masking system supports both content-based
and context-based masking rules. This enables the rule author
to select the more suitable type of rule according to his
masking needs. For example, if all email addresses in the
application need to be masked, using a content-based rule is
best. On the other hand, if only a few email addresses should be
masked (and others should not), a context-based masking rule
is more suitable. Context-based masking is also appropriate
for masking texts that do not have a pre-defined format, such
as names. The focus of this paper is the context-based part
of our rule language, since content-based rules are relatively
straightforward to create and enforce.

A masking rule must also specify what type of masking to
perform. There are numerous possibilites, ranging from simply
removing the values, changing the visual representation (such
as modifying the background color in addition to removing
the text value), replacing the original value with a different
fictitious one, and many more.

To achieve this level of flexibility, in addition to the major
requirement of minimizing the impact on performance, we
describe our rules in JavaScript and use the SpiderMonkey in-
terpreter [32] to execute them. Each rule contains a JavaScript
script describing the changes to be performed on a given

Fig. 3. Column masked by enforcing the script from Listing 1

message at runtime. This expressive scripting language enables
specifying any type of context-based rule, including any screen
construct and any type of relationship between elements on the
screen, regardless of the data format. Listing 1 shows a script
that can change a message where the payload carrying the data
is in HTML. The result of executing it can be seen in Figure
3.

The fact that our solution resides on the network, can
inspect all passing messages and employ scripts on them gives
us fine-grain control over the masked elements and enables us
to mask exactly what is needed. The limitation of such an
approach is that we cannot mask information that does not
flow over the network, i.e., that is generated on the client-side.
An example of such information is an average that is calculated
in the browser using Javascript.

var elements =
html.xpath("/html/body[1]/div[2]/div[1]/table[1]/

tbody[1]/tr[1]/td[1]/div[2]/form[3]/table[1]/
tbody[1]/tr/td[7]/text()");

for (n in elements) {html.mask(elements[n]);}

Listing 1. Masking script to cover a table column arriving in an HTML
message

C. Visual rule-authoring

A usable masking system should allow the rule author to
easily create a new rule or modify an existing one. However,
it is generally the case that the more powerful a language is,
the more complicated it is to generate rules.

Generating context-based masking rules can be signif-
icantly more complex than rules handled by traditional
protocol-sniffing mechanisms, as they relate to how the infor-
mation is displayed on the screen and not just to the content
of the texts. Part of the problem stems from the fact that
information flowing through the network is not easily mapped
to a displayed element. A simple table appearing on the screen
can arrive as several messages, possibly in different formats,
each carrying a chunk of information, which is ultimately
translated to a single table on the client side. For example,
a table in a web application may arrive in three separate
messages: one HTML message describing the column headers,
fonts, and colors, the second message containing the actual
data in JSON format, and a third message containing a script
that generates totals and summaries for the table.



Defining these rules manually would result in a significant
loss in usability, due to the expertise required for correlating
the presentation layer with the underlying network traffic.

For example, to define a rule for masking a table column
on a web application page, rule authors would first need
to see how that page is presented by the browser. They
would then check the page source or intercept network traffic
messages to determine whether the table content is in HTML,
or is built on demand by Asynchronous JavaScript and XML
(AJAX) requests. The authors may be required to understand
the association between Document Object Model (DOM) ele-
ments and the target column. They may also need to analyze
the network message payload to discover exactly where the
information to mask is located. After the masking target is
isolated, the author still needs to create a masking script,
validate its syntactic correctness, and confirm that the masking
is performed correctly on the displayed page.

The rule author thus requires expertise in several disparate
technologies and tools, and is involved in a lengthy error-
prone process. To overcome this difficulty, we propose a hybrid
approach that enables creating rules in the “language” of the
presentation even though they are enforced in the “language”
of the protocol, using a visual rule-authoring tool to aid in this
complicated task.

Our rule-authoring tool is a visual editor that enables the
creation of powerful context-based rules in an intuitive and
user-friendly manner, while navigating the target application
screens and selecting areas to mask. A panel attached to
the application enables the selection of a context on the
presentation layer by pointing the mouse and indicating that
this area (e.g., table column) is to be masked. The selection is
then transformed into a machine-readable masking rule to be
run during enforcement.

Figure 4 demonstrates our implementation of the visual
rule-authoring tool for web applications. To avoid installation
on authors’ machines, we implemented a web-based tool,
allowing authors to define rules using a web browser. In rule-
authoring mode, authors can navigate the target application in a
natural manner, emulating end-users’ normal operation. When
an area to be masked is selected (such as the table column
selection in Figure 4), the tool performs a combined analysis
of both presentation and network traffic data to automatically
create JavaScript-based rules for masking the selection. By
performing contextual analysis of the page structure, the tool
is able to provide visual hints to the administrator, such
as automatically expanding the selection to the whole table
column when hovering over one of the table cells or when
a certain cell is selected. After the selection is made and the
rules are generated, the tool can show an in-place preview of
the resulting masking, providing immediate feedback for rule
validation.

Defining the masking rule in the visual context of the
presentation layer allows an intuitive and humanly-manageable
way to author masking rules. Transforming these rules to a
machine-readable format to be applied at the network protocol
level prevents common maladies of existing presentation-based
methods, e.g., difficulty in handling complex screens and
performance issues. Extensive user studies with real admin-
istrators are planned to test the usability of our rule authoring

Fig. 4. Visual rule-authoring panel on top of a web application page with
table column is selected

mechanism.

The main technical challenges in implementing the visual
rule-authoring tool were:

• Automatically translating the visually described poli-
cies into machine-readable instructions

• Overcoming the security barriers so that the tool can
interact with and inspect the target application

These issues are addressed below.

1. Automatic rule generation

The first task in automatic rule generation is determining
the origin of each visual element that appears on the screen.
This involves identifying the event that caused the display, and
the source of the data content that is displayed

Each modification of an element on the screen can originate
either from an incoming HTTP message (network-originated
modification) or from some other activity, such as JavaScript
code (locally-originated modification). It is not always straight-
forward to deduce which event caused an element on the
screen to be created or modified. For example, JavaScript code
activated on a timer event or as a result of user input could
occur simultaneously with the arrival of an HTTP message.

It is also complicated to identify the data source of each
screen element, i.e., to determine which message supplied the
data, as well as detect the data location within the message.
The source of the data may be any HTTP message received
from the web server as a result of a GET/POST request from
the browser, an AJAX request initiated by the web application
itself, or even a value computed locally by the browser.

The method we will describe shortly enables:

• Automatic differentiation between network-originated
and locally-originated modifications.

• Automatic identification of the data source (specific
message) for each element presented on the screen.

• Automatic detection of the exact location of the pre-
sented data in the corresponding message.



Returning to the example in Figure 3, our method can
automatically identify that the data in the “Phone” column
comes from the specified HTTP message and create the
masking script presented in Listing 1.

To acheive this, we monitor web page modifications in
terms of DOM tree changes and capture only those changes on
the web page that were initiated by HTTP messages (network-
originated changes), while filtering out all other changes
(locally-originated changes). The modified DOM elements that
pass this filter are then mapped to the pieces of data within
the HTTP messages that caused the change in these elements.

The following algorithm produces a map between visual
elements presented in the browser and the HTTP messages
and locations within the messages that contain the elements’
data.

1) Capture the original HTML message that built the
page and create a temporal DOM tree from its con-
tents (not including script tags).

2) For each element in the tree, save the URL of the
message it originated from and the location of the
element within the message (e.g., XPath).

3) Capture all AJAX requests and responses during page
loading and modification. This is achieved by overrid-
ing the native XMLHTTPRequest JavaScript object
implementation provided by the web browser, and
adding sniffing functionality to the ”send” method
and the ”onreadystatechange” event handler.

4) For each AJAX request, compare the DOM trees
before and after the request is completed. Mark all
DOM elements that were added or modified as proba-
bly originating from the AJAX request (although they
may also have been created or modified by JavaScript
code or by the browser itself).

5) For each element collected in the previous stage, ex-
tract its textual content and check whether the content
indeed appears in the incoming AJAX response. If it
does, save the URL of the HTTP message containing
the data and the location of the data within the
message.

6) Compare the resulting DOM after the page has been
loaded with the initial DOM. Define as ”locally
modified” any elements that exist in the resulting
DOM, that do not exist in the original DOM and did
not receive their values from AJAX requests.

Once a UI element is selected by the user, the relevant
message is extracted from the map and a script for masking
that element can be easily created

2. Security barriers Naturally, the rule authoring tool
and the target application to mask are installed on distinct
application servers or possibly even in a different domains.
Thus the browser’s same-origin security policy restrictions [33]
prevented us from pursuing the naı̈ve approach of presenting
the application to be masked in its own frame within a larger
rule-authoring tool page and intercepting its mouse events to
generate rules according to the selection.

A few options are available for overcoming this challenge,
including implementing the rule-authoring tool as a browser
add-on, thus possibly requiring re-coding for each supported

Fig. 5. Cross-origin solution. Target application and selection panel are
colored accoding to application server domain.

browser type, or falling back on a stand-alone tool. Both solu-
tions require installation of software on the author’s machine.

We chose an alternative approach that leverages the ar-
chitecture that is already in place for the rule enforcement
and does not require any additional installation. As shown in
Figure 2, the network is configured to send all communications
between the application server and the client browsers through
a proxy server, routing them to the sniffer component. When
the application is navigated for the purpose of visual rule-
authoring, the same sniffer component modifies each appli-
cation page by injecting a pointer to an external JavaScript
file with our implementation of the rule-authoring tool. When
this modified page is later processed by the author’s browser,
the rule authoring code is loaded and executed, as shown in
Figure 5. Specifically, it draws the panel shown in Figure 4 and
registers mouse-event listeners that will serve for automatic
rule generation. No same-origin restrictions exist for loading
external JavaScript files, hence the visual rule-authoring tool
can analyze and create rules for web applications even if they
are deployed on a different application server than the tool
itself. As a result, our rule-authoring tool does not require any
changes to the application, to the server where it is deployed,
or to the authors’ machines.

In conclusion, despite the fact that presentation-layer rules
are inevitably complicated to create, the visual rule-authoring
tool enables a simple rule-authoring mechanism. Rule authors
merely need to navigate the application to select a context
on the presentation layer, while behind the scenes a complex
machine-readable masking rule, to be run during enforcement,
is created.

The current implementation of the visual rule-authoring
tool can automatically create fully functional masking scripts
for table columns with data coming within an HTML page
or from JSON-formatted AJAX responses. Masking script
creation is also supported for labeled fields coming within
HTML pages. Moreover, any area on the screen can be selected
and any text elements within that area that come from the
original HTML page will be masked.



IV. COMPARISON WITH OTHER APPROACHES

In this section we argue that the choice of a screen-based
rule-authoring approach coupled with rule enforcement at the
network level results in a system that is both usable and
powerful. We discuss performance issues in Section V.

We evaluate our system by analyzing its advantages and
shortcomings based on several criteria:

A. Rule strength and granularity

A commonly used masking language uses only content-
based rules. Content-based rules can be defined in several
ways: by a regular expression that defines what text to mask;
by using more advanced text analytics tools that utilize Natural
Language Processing (NLP); or by other classification meth-
ods. Another alternative masking technique is to apply the
masking on the application’s data layer, i.e., mask the data in
the underlying database. We start by comparing the strength
and granularity of our context-based masking rules with the
content-based and data layer alternatives, as summarized in
Figure 6.

A masking system’s effectiveness is primarily measured by
how powerful the rule language is and the masking granularity
it offers. This measure assesses the capability of a rule author
using the system to create a rule that is specific enough to
mask all the items of his/her intention, but leave all other items
untouched.

An additional metric to evaluate a policy and rule language
is logical rule coverage which assesses the ability to describe
a rule by its logical content, e.g., declare a rule like “mask
emails of patients”. The term visual rule coverage describes
the ability to mask all or part of the elements in a given area of
the screen, whereas visual screen context refers to the ability
to create rules in the context of the presentation layer.

Content-based rules have inferior masking granularity than
context-based rules. If, for example, there is a need for a rule
to mask phone numbers, a content-based rule can be defined
using one or more regular expressions (one for each possible
format), whereas in a context-based rule system we need to
define a rule for each of the places where sensitive phone
numbers appear. However, the content-based rule will always
mask all phone numbers in the application. It does not enable,
for example, masking only patient phone numbers and not
physician phone numbers. Moreover, in cases where a phone
number may simply appear as 9 consecutive digits, the regular
expression will also mask other 9-digit numbers that are not
phone numbers. In other cases, where the texts to mask are
not easily represented as regular expressions (such as names
and addresses), a regular expression will not suffice and more
sophisticated techniques may be required.

Rules defined at the data layer have the advantage that
any data item that requires masking is specified for masking
only once, regardless of whether it appears on several different
pages in the web application or has several formats. For
example, if the goal is to mask all customer phone numbers,
this can be done by specifying a single logical rule on
the relevant database column, thus giving good logical rule
coverage, whereas in our approach it could require several
rules. However, visually defining a rule at the presentation

Fig. 6. Comparison of the strength of the different rule authoring mechanisms
A feature is marked as 0 if it is not supported at all, + if it is

somewhat supported, and ++ if it is fully supported.

layer has greater strength in terms of granularity of the context.
A data item in a table can appear in two different contexts, one
that should be masked and one that should not. An example of
this is masking customers’ phone numbers. These numbers can
appear in two contexts in the application: (1) the page where
all customer details are displayed, an instance that requires
masking to maintain customer privacy; (2) the order page,
where the phone number is specified as a contact method for
shipment. Masking this instance is not needed and could even
cause problems in distribution. In this example, two phone
number instances are extracted from the same table, but given
the context, only one needs to be masked.

Furthermore the visual rule coverage will be better in a
context-based rule system. A rule author may want to mask all
items in a given area of the screen. Since there may not be any
correlation in the format or source table at the back-end for
these to appear adjacent on the presentation layer, this would
be extremely difficult using the data layer or content-based
approaches.

B. Rule enforcement mechanisms

Three distinct rule enforcement methods are analyzed: (1)
enforcement performed at the back-end of the application, e.g.,
at the database level; (2) enforcement done at the network
level, as in our approach; and (3) enforcement done at the
presentation-layer, e.g., the OCR-based approach [8]. This
comparison is summarized in the table in Figure 7.

Masking an application can have detrimental results on the
proper functioning of the application. Thus, maintaining appli-
cation integrity is a primary concern that must be addressed
when enforcing masking rules. Of the three enforcement
mechanisms listed above, masking at the presentation layer is
the safest. The masking is done ”on screen”, so only the user
is aware of it, while the application is unaffected. Masking
done in the database has potentially the worst repercussions,
since illegal or missing values can result in a “breaking” of
the application. When enforcement is performed at the network
level, masking is executed on a proxy that resides between the
application server and the client-side browser. Thus, the server-
side application is not affected by the masking. However, value
validation or sorting that is performed on the client-side, e.g.,
using Javascript, may be compromised.

The impact of screen complexity on the enforcement of
masking rules is reversed. While database masking is indepen-
dent of the complexity of the screens of an application, mask-
ing at the presentation layer is directly correlated to screen
complexity. Overlapping or partially visible windows pose a



Fig. 7. Comparison of the different enforcement mechanisms
A feature is marked as 0 if it is not supported at all, + if it is

somewhat supported, and ++ if it is fully supported.

significant challenge for the enforcement of masking rules at
the presentation layer. Network-based masking enforcement is
somewhat affected by application complexity, but since the
proxy resides on the network, all passing traffic is available
for scrutiny and masking, and can therefore be ”seen” by the
masking engine.

Role-based masking is problematic when masking at the
back-end as the application must extract the values from
different versions of the database, depending on the user
accessing the application. At the network and presentation-
layer, this is not a problem, as these solutions are located after
the application server and can use existing session information
to achieve role-based masking.

V. PERFORMANCE RESULTS

In this section we show that the runtime performance
impact of our system is negligible, and without any meaningful
effect on the users’ experience. We compared performance
results only to content-based rules as it is supported by our
architecture and can be fairly compared to context-based rules.
The other alternatives were either not available for us or could
not be compared to our solution. The OCR-based solution
[8] is implemented only for Mainframe applications, and the
database level enforcement cannot mask at the same granular-
ity (e.g, cannot mask a single labeled field). We measured the
performance of our system using two different applications:

1) SugarCRM - an Open Source customer relation-
ship management application, containing mainly pure
HTML pages.

2) Report System - a proprietary application that enables
building and viewing reports generated from audit
logs. Most pages in this application are composed of
one main HTML document, a number of messages
in JSON format that bring the data to display, and
additional scripts, images and style sheets.

The performance measurements were made using a Linux
Redhat server as the masking server, with 2 Intel Xeon 2.5
GHz processors, 24 cores and 20GB of memory.

Figure 8 shows the elapsed time between sending a request
and receiving the corresponding response at the client browser
for a 300KB HTML page. The same page was requested in
four different setups: (1) direct access between the client and
server (without any extra layer between them); (2) using a
proxy layer between the client and server, but no masking; (3)
content-based masking is performed using a regular expression
rule; and (4) context-based masking is performed using a

Fig. 8. Masking performance impact

rule defined with the visual rule-authoring tool. This test was
performed once using the HTTP protocol and once using the
secure HTTPS protocol.

Figure 8 shows that adding the additional proxy layer
between the client and server adds 2.2% to the overall response
time, even with no masking taking place. Discounting the delay
due to the proxy, the masking process itself only adds 3.4-4.6%
to the response time. When comparing between content- and
context-based rules, we can see that there is no significant
difference in their processing times, with a slight advantage
to the context-based rule (5.7% overhead versus 6.9%, when
compared to direct access). This is attributable to the time
taken for the message to be parsed and all text nodes to be
extracted before the regular expression can be applied, whereas
the context-based rule indicates the exact place to mask. The
HTTPS protocol entails a higher overhead in all setups due
to the fact that the proxy layer introduces an encryption
and decryption process in addition to the one performed on
the server and client. Therefore, the overhead of adding the
masking layer is higher (7.4%-8.5% overhead) when compared
to direct access.

Figure 9 shows the effect of the number of masked ele-
ments on the performance overhead. For both applications we
defined rules that mask a table column and in each run we
increased the number of rows in the table. In the SugarCRM
application the measurements were performed on a table where
the data arrived in an HTML message whereas in the Report
System application the data arrived in JSON format. The
graphs show that the overhead introduced by the masking layer
increases with the message size as expected. In SugarCRM it
can again be seen that the overhead incurred by the context-
based rule is slightly lower than that of the content-based
one. In the Report System we see a small advantage to the
content-based rule. This can be explained by the fact that
JSON messages are much smaller than HTML messages so
extracting the text nodes and checking regular expressions in
JSON is quite fast. On the other hand, the scripts that mask a
column are more complicated in JSON than in HTML.

To test the performance of the system under load, we used
the open-source tool Apache JMeter

TM
[34], which enables

running a number of concurrent threads sending requests to
the application server. Figure 10 shows the effect of the
number of concurrent threads on the performance overhead.
In both applications we increased the number of client threads
requesting the same page at the same time and measured the
elapsed time to process a message. In SugarCRM the message



Fig. 9. Influence of message size and number of masked elements on masking
overhead

Fig. 10. Influence of number of client threads on masking overhead

was in HTML format and in the Report System it was in
JSON. In SugarCRM there is a small impact of the number
of threads on the overhead introduced by the masking layer,
which ranges from 4.1% with a single client thread to 2.1%
with 100 client threads. There is even a slight decrease in the

masking overhead as the thread number increases, which we
attribute to the fact that the application server itself did not
cope well with the higher numbers of threads. In the Report
System, for a small number of threads (up to 50) the impact
of masking is relatively low, 4% to 10%. When the number
of concurrent threads increases, the impact of the masking
increases as well.

In both applications the performance of the context-based
rule degraded with the increase in the of number of threads
due to a limitation in the Javascript engine that does not
enable the same script to be executed concurrently in different
threads. Therefore, although most of the system supports multi-
threading, part of the rule enforcement is performed serially.

The JMeter tool simulates multiple users working with
a web application simultaneously by running a number of
concurrent threads, each one sending sequential requests to
the application. However, in reality, application users behave
quite differently. After loading a page one typically needs
some time to read the information the page provides, make
a decision as to what to do next, or input data to a form. This
time may differ significantly, not only between users, but also
between applications, and could range from a few seconds
to even minutes. Thus, users will not all load new pages at
exactly the same time. Therefore, the number of concurrent
users that can be supported by an application is typically much
larger than the number of concurrent threads accessing the
application at a given time. Relying on the fact that users will
typically spend 1-2 minutes on each page, it is estimated that
100 concurent threads is simulating approximately 2000-2400
concurrent users.

VI. SUMMARY AND FUTURE WORK

This work focuses on masking sensitive data in web appli-
cations. We show that a hybrid approach, combining context-
based rule creation at the presentation level with enforcement
at the network level, enables a powerful and flexible mech-
anism for masking sensitive information. The rule-authoring
tool supports the creation of complex masking rules while
keeping the rule authoring process easy and straight-forward.
Our system enables rule authors to define masking rules in
a simple and intuitive manner while navigating the target
application and clicking on the sensitive areas. These rules
are then transformed into machine-readable instructions to be
enforced at runtime. This system is planned to be part of an
IBM product.

Our work can be extended in the following ways:

• Enhance the existing protocol-based implementation,
that currently supports the HTTP and HTTPS network
protocols and the common payload formats HTML,
JSON, and XML. Our solution can be easily extended
to support additional protocols and formats.

• Extend the visual rule-authoring tool to handle addi-
tional application types (e.g., based on Dojo1, partic-
ularly tables rendered using the Dojo Grid widget)
and formats (e.g., XML), and to support additional
UI constructs and more complex context-based rules
involving more than one visual element.

1http://dojotoolkit.org/



• Improve the script-based mechanism to be more flex-
ible to changes in the document structure, both to
cover cases where two pages may look identical to
the rule-author but have slightly different underlying
structures, and to prevent malicious users from ex-
ploiting XSS vulnerabilities to change the document
structure and avoid masking.

• Improve the request reconstruction mechanism to pre-
vent malicious users from revealing sensitive informa-
tion by copying masked values to other fields in the
request.

• Perform URL canonicalization to ensure that a page
will be masked regardless of changes to the URL (i.e.,
use of non-canonical forms).

• Add a verification component to analyze the masked
application offline and verify that all sensitive infor-
mation was indeed masked.

Our approach has many advantages but it also has some
limitations. Sensitive content may appear within an object (e.g.
Flash, Java Applets, or simply images) transmitted in binary
format and not as part of the textual network protocol, or
generated on the client-side. This cannot be masked by our
system. We experimented with combining visual and protocol
information during masking-rules authoring; however, we be-
lieve that a holistic solution should include such a combination
at the enforcement point as well.

In addition, applications that perform client side validation
(e.g., of formats or ranges) may generate unjustified warnings
on masked or removed values. This can be solved by replacing
the values using format-preserving methods.

ACKNOWLEDGMENTS

We would like to thank the IBM Guardium development
team for enabling and contributing to the development of the
network-based enforcement engine. We thank Irit Cohen who
contributed to the development of the visual rule-authoring
tool, and Ming Dong who helped in gathering the system’s
performance measurements.

REFERENCES

[1] “Directive 95/46/EC of the European Parliament and of the Council,”
http://ec.europa.eu/justice/data-protection/index en.htm, 1995.

[2] D. Binkley, “Source code analysis: A road map,” in Future of Software
Engineering, May 2007, pp. 104 – 119.

[3] T. Elrad, R. E. Filman, and A. Bader, “Aspect-oriented programming:
Introduction,” Communications of the ACM, vol. 44, no. 10, October
2001.

[4] S. R. M. Oliveira and O. R. Zaane, “An efficient one-scan sanitization
for improving the balance between privacy and knowledge discovery,”
Department of Computing Science, University of Alberta, Canada, Tech.
Rep., 2003.

[5] A. D. Brucker and H. Petritsch, “Extending access control models with
break-glass,” in Proc. 14th ACM symposium on Access control models
and technologies, ser. SACMAT ’09. ACM, 2009, pp. 197–206.

[6] “XML path language (XPath) 2.0,” W3C Recommendation
http://www.w3.org/TR/2007/REC-xpath20-20070123/, World Wide
Web Consortium, January 2007.

[7] S. Ansari, S. Rajeev, and H. Chandrashekar, “Packet sniffing: a brief
introduction,” Potentials, IEEE, vol. 21, no. 5, pp. 17–19, January 2002.

[8] S. Porat, B. Carmeli, T. Domany, T. Drory, A. Geva, and A. Tarem,
“Dynamic masking of application displays using OCR technologies,”
IBM Journal of Research and Development, vol. 53, no. 6, 2009.

[9] J. Bau, E. Bursztein, D. Gupta, and J. Mitchell, “State of the art:
Automated black-box web application vulnerability testing,” in Proc.
2010 IEEE Symposium on Security and Privacy, 2010, pp. 332–345.

[10] N. Jovanovic, C. Kruegel, and E. Kirda, “Pixy: a static analysis tool
for detecting web application vulnerabilities,” in Proc. 2006 IEEE
Symposium on Security and Privacy, 2006, pp. 258 – 263.

[11] M. Cova, V. Felmetsger, D. Balzarotti, N. Jovanovic, C. Kruegel,
E. Kirda, and G. Vigna, “Saner: Composing static and dynamic analysis
to validate sanitization in web applications,” in Proc. 2008 IEEE
Symposium on Security and Privacy, 2008, pp. 387 – 401.

[12] S. Chen, R. Wang, X. Wang, and K. Zhang, “Side-channel leaks in web
applications: A reality today, a challenge tomorrow,” in Proc. 2010 IEEE
Symposium on Security and Privacy, 2010, pp. 191 – 206.

[13] S. Chong, K. Vikram, and A. C. Myers, “SIF: Enforcing confidentiality
and integrity in web applications,” in Proc. 16th USENIX Security
Symposium, 2007, pp. 1 – 16.

[14] V. Ganapathy, T. Jaeger, and S. Jha, “Retrofitting legacy code for
authorization policy enforcement,” in Proc. 2006 IEEE Symposium on
Security and Privacy, 2006, pp. 214 – 229.

[15] S. Lodha and S. Sundaram, “Data privacy,” in Proc. 2nd World TCS
Technical Architects’ Conference, Hyderabad, India, 2005.

[16] X.-B. Li and L. Motiwalla, “Protecting patient privacy with data
masking,” in Proc. 4th Annual AIS SIGSEC Workshop on Information
Security and Privacy, Phoenix, AZ, USA, 2009, pp. 214 – 229.

[17] “IBM Infosphere Optim,” http://www.optimsolution.com, IBM.
[18] “Oracle Data Masking,” http://www.oracle.com/us/products/database/data-

masking-161222.html, Oracle.
[19] “Camouflage Data Masking,” http://www.datamasking.com/solutions/products/datamasking,

Camouflage.
[20] “Voltage SecureData Masking,” http://www.voltage.com/products/data-

masking.htm, Voltage Security.
[21] “Verdasys Digital Guardian application logging and masking module,”

http://www.verdasys.com/pdf/Digital Guardian ALM DS.pdf,
Verdasys.

[22] “Intellinx Enterprise Fraud Detection & Prevention,”
http://www.intellinx-sw.com/, Intellinx.

[23] “IBM Infosphere Guardium Data Security,” http://www-
01.ibm.com/software/data/guardium/, IBM.

[24] “Check Point DLP Software Blade,”
http://www.checkpoint.com/products/downloads/datasheets/DLP-
software-blade-datasheet.pdf, Check Point.

[25] B. Liver and K. Tice, “Privacy application infrastructure: Confidential
data masking,” in Proc. 2009 IEEE Conference on Commerce and
Enterprise Computing, 2009, pp. 324 – 332.

[26] “Riverbed Stingray Traffic Manager,”
http://www.riverbed.com/products-solutions/products/application-
delivery-stingray/, Riverbed.

[27] J. Elson and A. Cerpa, “Internet content adaptation protocol (ICAP),”
RFC 3507 http://tools.ietf.org/html/rfc3507, April 2003.

[28] “Squid: Optimising web delivery,” http://www.squid-cache.org.
[29] “The c-icap project,” http://c-icap.sourceforge.net.
[30] “Libxml2,” http://www.xmlsoft.org/.
[31] “Jansson,” http://www.digip.org/jansson/.
[32] “Mozilla Spidermonkey,” https://developer.mozilla.org/en-

US/docs/SpiderMonkey, Mozilla Developer Network.
[33] J. Ruderman, “The same origin policy,”

http://www.mozilla.org/projects/security/components/same-origin.html,
August 2001.

[34] “Apache JMeter,” http://jmeter.apache.org/, The Apache Software Foun-
dation.


