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Abstract—We present the first published large-scale study of
mobile web tracking.1 We compare tracking across five physical
and emulated mobile devices with one desktop device as a
benchmark. Our crawler is based on FourthParty; however,
our architecture avoids clearing state which has the benefit of
continual observation of (and by) third-parties. We confirm
many intuitive predictions and report a few surprises.

The lists of top third-party domains across different cate-
gories devices are substantially similar; we found surprisingly
few mobile-specific ad networks. The use of JavaScript by
tracking domains increases gradually as we consider more
powerful devices. We also analyze cookie longevity by device.
Finally, we analyze a curious phenomenon of cookies that are
used to store information about the user’s browsing history on
the client.

Mobile tracking appears to be an under-researched area,
and this paper is only a first step. We have made our code
and data available at http://webtransparency.org/ for others to
build on.

I. INTRODUCTION

A. Web privacy measurement

Web measurement has recently emerged as a powerful
methodology and an important first step in addressing online
privacy violations. There is an inherent information asym-
metry in web privacy for two reasons: a lack of adequate
disclosure of data collection practices and data use policies
by websites, and cognitive limitations of users in understand-
ing these disclosures [10], [1]. Web privacy measurement
seeks to correct this asymmetry by detecting, quantifying
and sometimes reverse engineering privacy-infringing data
collection and use.

There have been numerous notable results in the last
year or two, including uncovering Google’s practice of
bypassing Safari cookie blocking [2], quantification of the
top trackers [12], measurement of effectiveness of tools
to limit behavioral advertising [3], preliminary evidence of
price discrimination [11], a comparison of anti-tracking tools
[8], and exposing rampant accidental leakage in social media
[6]. These efforts have been highly effective — they have
led to better browser privacy tools, given regulators evidence
to bring enforcement actions, and put reputational pressure
on companies to change their practices.

The key to scalable web privacy measurement is the use
of an instrumented browser to interact with websites in an

1We chose floodlights for our titular metaphor, rather than (say) a
spotlight, to emphasize this scalability.

authentic manner, mimicking the behavior of a real user. The
browser logs all interactions on each website visited, saving
the data for later offline analysis. Fortunately, just such a tool
is already available: FourthParty2, built on top of Firefox [9].
It has already led to some of the results mentioned in the
previous paragraph. FourthParty must be used in conjunction
with a browser automation framework.

The mobile vacuum. Somewhat surprisingly, this flurry
of research has been largely confined to the desktop context,
and little is known about web tracking on mobile devices
(mobile app privacy measurement has attracted some atten-
tion: see, for instance, MobileScope3 and [5], [13]). This is
in spite of the fact that mobile devices might be particularly
attractive targets for businesses and advertisers because they
are attached to individuals, and potentially provide signals
like location which can lead to more effective advertising.
Mobile devices are gradually catching up to the computing
power of desktop computers, so we should expect mobile
tracking to become very elaborate in the next few years.

Folk knowledge in the community suggests that this
vacuum is because of the relative difficulty of carrying out
measurements on smartphones and other devices, given that
they are typically locked down in some way and compar-
atively underpowered. The primary challenge in data col-
lection is the limited programmability of mobile browsers.
In addition, researchers must contend with various other
limitations including RAM and persistent storage.

B. Our contributions

Our first contribution is the design and implementation of
a mobile web privacy measurement tool based on Fourth-
Party. We posit that mobile crawling should be carried out
with a client-server architecture, i.e., with the mobile device
offloading the storage and computation to a more powerful
computer. Within this framework, we discuss several possi-
ble designs for browser instrumentation (Section II-B). Our
design involved porting FourthParty to Android, and driving
the crawl via JavaScript (Section II-D). We are currently
workin on merging our fork back into FourthParty.

Second, we use this tool to carry out crawls of the Alexa
top 500 websites on one desktop computer and five mobile
devices — two tablets, a smartphone, an emulated tablet and

2http://fourthparty.info/
3http://mobilescope.net/



an emulated smartphone, all running Android (Section II-E).
We have made this data (as well as crawling code) available
for other researchers to build upon. Our database schema is
identical to FourthParty’s, which streamlines data analysis.

Third, we use the data collected above to survey the
state of mobile web tracking in general and compare it
with vanilla (desktop) web tracking. We find that client-side
third-party functionality in general is not very complex, as
measured by the fact that third-party sites set only about
one cookie or make one JavaScript call on average, across
all the first-party sites they appear on (Section III-A). We
also find that the lists of top destkop and mobile third-party
trackers are very similar — we found only two mobile-
specific ad networks among the top 100 tracking domains
on mobile devices (Section III-B, III-C, III-D). We analyze
cookie longevity on various devices in Section III-E.

Finally, we study growing cookies, which are third-party
cookies that gradually increase in size with repeated visits
(to the same third party across multiple first-party sites).
While the existence of such cookies is known [7], this is
the first time such cookies have been reported and analyzed
in the academic literature. A surprising number of third-
party sites set at least one growing cookie on desktops,
but far fewer do so on mobile. (Section IV). We provide
evidence that some of these cookies store the user’s browsing
history (at the granularity of interest segments, and possibly
individual sites visited) and reverse engineer the format in
some cases. We argue that automatic reverse engineering of
cookie data could be a fruitful direction for future research
in web privacy measurement.

II. DESIGN AND IMPLEMENTATION

A. Client-Server Architecture

Our data collection architecture (see Figure 1) delegates
most of the computation and storage to a supporting server.
The device’s sole responsibilities are fetching one website
at a time and generating a log of its latest interactions (e.g.
cookies, JavaScript, embedded HTTP objects). The crawling
plugin running on the mobile device sends the interaction
log corresponding to the website being visited in the form
of SQL statements to the crawling backend running on the
supporting server. This way, the amount of state kept in
the mobile device’s main memory is minimal and the crawl
database, which can be several MB in size, is generated on
the supporting server’s side.

B. Driving the crawl

One architectural decision is how to automate, or “drive,”
the crawl — FourthParty does not do this; it only intercepts
and logs various events and traffic.

WebDriver, recently standardized by the W3C, is a
language-neutral API for scripting the browser from a sep-
arate process. It was originally defined and implemented by
the automation framework Selenium, and has since been

Figure 1: Prototype’s Runtime Interactions.

adopted by others like Watir and Marionette. WebDriver
is quickly becoming the most popular choice for browser
automation and testing.

While WebDriver is very attractive, it does not yet seem
to be ready for mobile Firefox (Fennec). Although it has
been worked on since 2011,4, the driver is not yet stable, so
we decided against it.

Mozmill is a testing framework similar to Selenium and
others mentioned above, but operates more directly on UI
elements (e.g., it allows moving the mouse to specified
(x,y) coordinates). Mozmill is also an attractive choice in
principle, but again does not support Fennec.

Other automation tools we tried were Robocop and Scrip-
tish, in each case running into roadblocks. We have no doubt
that one or more of these tools will eventually mature, and
allow easy and streamlined automation of mobile Firefox.
However, things are still in flux and for now we were left
to pursue a simpler approach.

Our approach: JavaScript. We simply use a web page
containing a list of URLs and a JavaScript snippet to launch
each one in succession. The URLs are launched in a separate
tab from the driver, but the same tab is used for each one.
A new URL is visited once every 30 seconds.

One benefit of this approach is that it is browser- and
platform-agnostic, making comparisons easier. A disadvan-
tage is that it doesn’t allow a “deep crawl,” say a two-level
crawl. The list of websites to visit must be pre-specified.

A second disadvantage is that we cannot isolate visits
to different websites within the same crawl. A possible
way to fix this is to write an add-on to expose the private
browsing API to JavaScript. But once again there were
practical difficulties: Firefox’s private browsing feature is
transitioning from browser-wide to per-window, making the
API currently unusable.

On the other hand, non-isolation of websites is also an
advantage: we can observe how third parties interact with a
user over repeated visits. Indeed, this allowed us to identify

4https://wiki.mozilla.org/QA/Goals/Q4



and study “growing cookies” (Section IV).

C. FourthParty SQLite Database Schema

Figure 2 shows the database schema generated on every
crawl. The cookies table is self-contained and describes
all the cookie-related creation, modification and deletion
events, along with the host responsible for each event, the
value written to the cookie and other interesting metadata.
JavaScript execution details are divided into the javascript
and javascript calls tables, where the former lists the func-
tions triggered by the scripts and the latter stores the
arguments given to those functions. On the HTTP side, the
http requests table lists each HTTP Request’s basic infor-
mation and is complemented by the http request headers
table, which contains all of the corresponding HTTP headers
and their values. A similar arrangement exists for HTTP
Responses. Lastly, the pages and content policy tables are
concerned with the location of the content being sent to the
user’s browser and the pages responsible for it.

D. Porting

We ported the FourthParty code base to support Android-
based mobile devices, such as smartphones and tablets. Our
system is implemented in Java and JavaScript, leveraging
both the Android SDK and the Mozilla Add-On SDK.
Persistent storage is fully compliant with FourthParty’s
SQLite database schema. Thus, we provide a standardized
representation for traditional and mobile crawls, which facil-
itates data analysis. Our crawling backend is written in Java
with a SQLite JDBC library that supports Mac OS, Linux
and Windows, so it should be fully multi-platform. It also
supports concurrency, so multiple crawls can be recorded
simultaneously.

Our code was the end result of four development phases:

1) Code Refactoring: The original FourthParty source
code had to be refactored to comply with Mozilla Add-
On SDK 1.5+ and JavaScript 1.8+. This was done by
repeatedly pushing the code to an Android device and
analyzing its Exception traces.

2) Architectural Changes: The refactored source code
was changed to remove its dependencies on local
secondary storage and all persistence operations were
redirected to a TCP connection.

3) Support Infrastructure: The support server and other
necessary tools (e.g. crawl scripts generator) were
developed.

4) Testing: The system was deployed in different devices
and various test crawls were conducted to identify and
eliminate all remaining bugs.

We are currently working with FourthParty author
Jonathan Mayer to contribute support for Android back to
the codebase.

E. Web Crawls

For a comprehensive survey of mobile web tracking
practices, we conducted six 500-site web crawls through
the Alexa - Top Sites in United States5. Five crawls were
conducted on the Android devices described below using
the Firefox extension that we developed. We also conducted
a crawl using the original FourthParty Firefox extension on
a PC; the data collected from the desktop crawl serves as the
control for the mobile web tracking practices. We obtained
six databases, each offering a rich dataset for later analysis.

All six crawls were conducted between January 21, 2013
and February 10, 2013 on the same set of 500 URLs obtained
from the Alexa - Top Sites.

F. Devices

We ran our crawls using one PC, one smartphone and two
tablets, as well as an emulated smartphone and an emulated
tablet:

• Desktop (Ubuntu 12.04, Firefox 11.0)
• Asus Transformer Pad TF300T (10.1-inch Tablet)
• Samsung Galaxy Tab 2 (7.0-inch Tablet)
• HTC Evo 4G (4.8-inch Smartphone)
• Emulated Nexus 7 (7.0-inch Tablet)
• Emulated Nexus S (4.0-inch Smartphone)

The two emulated devices were created with the Android
Virtual Device (AVD) tool that comes with the Android
SDK. We modified the emulator’s settings in order to create
an Android smartphone and tablet that were as close as
possible to their physical equivalents. Four non-generic
system images are packed with the Android 4.2 API SDK
tools: Nexus 7 (tablet), Galaxy Nexus (phone), Nexus S
(phone) and Nexus One (phone). Therefore, we believe that
they provide the most accurate runtime environments when
trying to impersonate physical devices. Out of all the phone
images, the Nexus S shared the most similarities with the
HTC Evo 4G in terms of their technical specifications, so it
was deemed more accurate than the other two options.

Why use emulated devices rather than simply spoofing the
User-Agent on a physical device? While websites do often
customize the interface simply based on the User-Agent, it
is considered better practice to utilize specific properties
such as screen resolution instead. Using emulated devices
is therefore more authentic than User-Agent spoofing. That
said, it would be interesting to measure how different the
two actually are; we did not do it since it is outside the
scope of our privacy study.

As we have covered a broad range of popular Android
devices currently in the field, we believe our collected data
is a good representation of web tracking practices today.

5Our decision to focus on the Top US Sites instead of the Top Global
Sites came after a series of crashes were caused by websites containing
non-western character sets



Figure 2: FourthParty SQLite database schema

III. DATA ANALYSIS: DESKTOP VS. MOBILE

A. Overview

To gain a general perspective of our collected data and
characterize it based on the presence of first-party versus
third-party domains, we computed various ratios involving
first- and third-party domains, cookies and JavaScript func-
tion calls.

Complexity of functionality. We first calculated the
average number of unique cookies added per first-party
domain and per third-party domain. We also separately
compute the latter average over only the top 500 third-
party domains (there are about 1,000 third-party domains
overall in our dataset). We performed the analogous calcu-
lations for the unique JavaScript function calls. We consider
a unique cookie to be a unique (cookieName, domain)
pair, while a unique JavaScript function call is a unique
(functionName, domain) pair.

First and third parties add more cookies on average on
the desktop than on the mobile devices, which is probably
due to the limited local storage on mobile devices. To our
surprise, first-party domains on average store significantly
more cookies and make significantly more JavaScript calls
than third-party domains (in each case, by about an order
of magnitude) on every device studied (Tables I and II).
This reveals that the functionality of third parties is rather
simple, especially on mobile platforms — each third party
adds about one unique cookie. With respect to unique
JavaScript calls, third-party functionality on the desktop is
more complex, but the complexity decreases dramatically on

the mobile devices we studied.
The average top 500 third-party domain make more

JavaScript calls and adds more cookies than the average
third-party domain overall, which suggests that more popular
third-party domains host more complex functionality

Device
Avg Unique Cookies

1P All 3P Top 500 3P
Desktop 10.5 1.4 2.4
Tab. (Asus) 6.8 1.1 1.4
Tab. (Galaxy) 8.6 1.4 1.9
Phone 7.5 1.1 1.2
Em. Tab. 6.3 0.9 1.0
Em. Phone 7.2 1.0 1.1

Table I: Average number of unique cookies added per
domain.

Device
Avg Unique JS Calls

1P All 3P Top 500 3P
Desktop 24.4 5.8 9.3
Tab. (Asus) 4.5 1.3 1.9
Tab. (Galaxy) 10.2 2.4 4.0
Phone 4.7 1.3 1.8
Em. Tab. 4.0 1.1 1.5
Em. Phone 4.5 1.3 1.7

Table II: Average number of unique JavaScript function calls
made per domain.

Type of functionality. Another way to get a general
overview of trackers is to categorize their functionality. This
is hard to automate; Roesner et al. provide a methodology



for doing so [12] but it is not clear if this can be computed
from FourthParty logs.

However, we can get an intuition for tracker types by
looking at the fractions of third-party domains which add
cookies or make JavaScript calls (see Table III). Note that the
majority of domains (51.0% for desktop, 56.4% on average
for mobile) do neither, suggesting that they merely serve
content.

An interesting implication is that the majority of third-
party domains are not thought of as trackers in the
usual sense (since they don’t employ tracking cookies or
JavaScript), but they nevertheless have access to protocol
logs (IP, HTTP, etc.) which frequently uniquely identify the
user. Should policies or regulations on web tracking only
focus on explicit trackers, or all third parties? We offer no
opinion, but merely note that there is a perhaps surprisingly
large fraction of domains to which this question is relevant.

Another surprise is that the numbers are roughly the same
between desktop and mobile, even though the number of
JavaScript calls per domain is much higher than on desktop
than on mobile, as we saw earlier.

Device
Third-Party Domains (in %)
Cookie JS Either Both

Desktop 33.2 21.8 49.0 6.0
Tab. (Asus) 29.2 16.9 44.3 1.8
Tab. (Galaxy) 32.6 15.7 45.5 2.8
Phone 30.7 17.3 45.0 3.0
Em. Tab. 25.9 17.2 40.5 2.7
Em. Phone 29.5 15.8 42.6 2.7

Table III: Proportion of third-party domains which add
cookies, make JS function calls, do either or do both.

B. Top Third-Party Domains

We identified the top third-party domains for all devices,
and then compared their rankings. For this purpose, we chose
to do a comparison among the top 20 third-party domains
for all devices as we expected to see a few clear contenders
for all devices and some interesting variations at the same
time.

We found that google-analytics.com is the num-
ber one third-party domain for all six studied de-
vices. The other two highest-ranking third-party do-
mains for all six devices are doubleclick.net and
scorecardresearch.com.

There are a total of 25 distinct third-party domains in the
top 20 across all six devices. Using the desktop third-party
domains as the control set, we found that all six devices have
15 of the desktop top 20 third-party domains in common (see
Table IV). In terms of domains unique to one device class
or another, we found that invitemedia.com is unique
to the desktop top 20 third-party domains with a ranking
of 17, while googletagservices.com is unique to the

mobile top 20 third-party domains with an average ranking
of 13.8.

In summary, the top trackers on mobile and desktop
devices were much more similar than we expected.

Domain Average Ranking
google-analytics.com 1
scorecardresearch.com 2.2

doubleclick.net 3.7
googleapis.com 4.2

g.doubleclick.net 4.3
quantserve.com 6
facebook.net 6.7

ak.facebook.com 8.5
2mdn.net 9.8

cloudfront.net 9.8
imrworldwide.com 12.8

googlesyndication.com 13.2
yieldmanager.com 14

atdmt.com 15.2
revsci.net 18.2

Table IV: Top-20 third-party domains common to all six
studied devices

C. Mobile-Only Third Parties

As noted above, desktop and mobile devices share most
of their top third-party trackers. However, given the ubiquity
and variety of mobile devices, intuition suggests that a new
set of tracking companies/domains would emerge, exclusive
to the mobile advertising and analytics space. To test this
hypothesis, we sought to identify third parties that are only
present on mobile devices through a simple metric. We call
a third party mobile-only if it appears in the list of top 100
third party sites for any of the mobile devices but not in the
top 500 for desktop. The rationale is that if a tracker is (say)
the 100th by rank on a mobile device and 200th on desktop,
the difference could be explained away by statistical noise
leading to differences in ranking.

Contrary to our intuition, we found that each physical
and emulated mobile device contained only a handful of
top 100 third party sites that did not also appear in the
desktop top 500. These sites were typically the mobile
versions of third party sites present on the desktop. The
two exceptions were admarvel.com and mocean.mobi,
advertising networks centered around mobile devices.

The dearth of third parties that exclusively focus on
mobile devices is surprising. Perhaps already-established
third parties have transitioned to mobile tracking or new
third parties have simply not yet entered this relatively new
market. Regardless of the reason, our metric for detecting
mobile-only third parties can be utilized for keeping track
of the growth of this market in the future.



D. Similarity Measures

As part of a more fined-grained examination of the
differences between desktop and mobile tracking, we com-
pare specific behaviors between devices. Although we have
already found that very few third parties have an exclusively
mobile presence, individual third parties may still be behav-
ing differently across platforms in terms of their placement
of individual cookies or JavaScript calls they make. We
measure this using the following two similarity measures,
applied to the observations of the same site on two different
devices.

1) Cookie similarity: The cosine similarity between the
set of (first or third party) cookie names for a given
domain on two devices.6 For example, doubleclick.net
sets the cookies _drt_, id, nmfirstparty,
rsi_segs, and test_cookie on desktop, but only
three of these mobile, making the cosine similarity
0.77.

2) JavaScript similarity: The cosine similarity be-
tween the set of JavaScript function calls (names)
invoked by the domain on the two devices.
We only count window.LocalStorage.* and
window.SessionStorage.* calls because these
are more indicative of tracking.

For each pair of devices, after computing a sequence
of per-site similarity values, we average them together to
compute a single similarity score for a pair of devices. The
results for cookie similarity are shown in Table V. The
results for JavaScript similarity are omitted because they
were essentially identical.

Device Desktop Asus Galaxy Phone E. Tab. E. Phone
Desktop 1.00 0.77 0.82 0.76 0.75 0.75

Asus 1.00 0.87 0.83 0.84 0.83
Galaxy 1.00 0.88 0.88 0.87
Phone 1.00 0.86 0.95
E. Tab. 1.00 0.86

E. Phone 1.00

Table V: Third party cookie similarity across devices

On the whole, the devices are roughly equally similar to
each other with one exception: the physical and emulated
phones are much more similar to each other than the other
devices. Observe that this trend does not hold for the
tablets. In particular, the Galaxy tablet has essentially equal
similarity measures with the Asus tablet, phone and two
emulated devices.

E. Cookie Longevity

While the content stored in cookies is obviously relevant
for gauging third party tracking habits, the expiry length for
cookies could also reveal third party intent. For instance,

6The cosine similarity between two sets X and Y is |X∩Y |√
|X||Y |

.

Device
Party

First Party Third Party
Desktop 0.96 0.87
Tablet (Asus) 0.59 0.73
Tablet (Galaxy) 0.93 0.89
Phone 0.93 0.89
Emulated Tablet 0.88 0.65
Emulated Phone 0.91 0.88

Table VI: Proportion of sites that placed long-lived cookies

third parties have an incentive to create cookies that have
more time to gather information about a given user. We
discuss this notion further in a section about cookies that
grow over time.

We call a cookie long-lived if it is a persistent cookie
(not a session cookie) and its expiry time is over a month
from creation time. The proportions of sites that placed
at least one long-lived cookie is contained in Table VI.
Although the raw number of cookies added during the crawls
varied across devices, four of the six devices were such that
the proportion of sites that added long-lived cookies were
essentially identical.

At first glance, the fact that a greater proportion of first
party sites placed long-lived cookies when compared to third
parties appears surprising. However, this can be explained
by first parties adding long-term cookies to save a user’s
state on the website (e.g. credentials).

As a more fine-grained metric of cookie longevity, we
calculated the mean of logarithms expiry times averaged
across sites for each device.7 For the purposes of analysis,
we assigned an expiry length of 30 minutes for all session
cookies and an expiry length of one month for all cookies
with an expiry length above this threshold. These results are
contained in Table VII.

In accordance with intuition, cookies placed by third party
sites have longer expiry lengths than those placed by first
party sites. As previously mentioned, while first party sites
might be more likely to place at least one long-lived cookie,
this log mean analysis demonstrates that, on the whole, third
parties place cookies have a greater degree of longevity.

Next, note that the emulated and physical phones had
greater expiry lengths when compared to the desktop. The
results for the two physical and emulated tablets are a
bit more dispersed. A plausible reason for the increased
longevity of first-party cookies on phones is that it is
annoying to login on phones when a login expires. The
reason for increased longevity of third-party cookies on
phones is not clear.

IV. GROWING COOKIES

In the vast majority of cases, a cookie’s value field
consists of a string or integer that remained largely static

7It is not meaingful to average the expiry times directly since this can
be thrown off by outliers.



Device
Party

First Party Third Party
Desktop 5.19 5.53
Tablet (Asus) 4.55 5.35
Tablet (Galaxy) 5.37 5.71
Phone 5.31 5.75
Emulated Tablet 5.29 4.99
Emulated Phone 5.27 5.73

Table VII: Means of base-10 logs of cookie expiry times.
For example, a mean of 5.5 corresponds to a time of 105.5

seconds, or 3.7 days. Also note that an additive difference of
0.5 corresponds in this table to a roughly threefold difference
in expiry time.

throughout the duration of a particular crawl. However in
certain cases, we observed that the values for third party
cookies consistently increased in size across successive
changes. While some of these growing values are Base64
encoded strings whose decoded binary values do not present
an obvious pattern over time, other values grow in a very
specific manner.

In particular, these values appear to be lists related to
user’s browsing history. Figure 3 presents a brief analysis of
a representative example. Each node of the list is delineated
by separator tokens and is comprised of two values separated
by another type of token. It appears that the first value
contained in each node is either an ID corresponding to each
visited site, or an ID for a category of the site (essentially,
an interest segment in advertising terminology).

We hypothesize that the second value in each node is
a site-specific ID for the individual user. While the latter
value does not have enough entropy to be a unique user
ID (i.e., unique among all the users that the third party has
encountered), it has enough bits to be unique when combined
with the approximate creation time of the cookie.

We base our claims on two key observations. First, the
growth of these cookies is characterized by the addition of
new nodes somewhere in the string each time a site is visited.
Second, after repeatedly running new crawls through sites
known to place one type of the aforementioned cookies, the
nodes corresponding to a particular site were added in the
order in which we visited them.

The first node value, which is almost certainly a site or
segment ID, remained constant across the different crawls.
For some growing cookies these IDs had a few duplicates
(different first-parties with the same ID), which rules out
site-specific IDs and suggests segment IDs. For other grow-
ing cookies we did not observe duplicates, although this does
not rule out the possibility of duplicates if we observed more
first parties beyond the top 500. The second value in each
node, which we believe to be the user ID, changed across
crawls in accordance with our hypothesis.

Nevertheless, new nodes were not added to history lists
in a particular order, and sometimes the entire list could

be shuffled between changes. The most likely explanation is
that the histories are stored in a JavaScript (associative) array
before being serialized into a cookie. Associative arrays do
not preserve the order of insertion.

Observe that these history-storing cookies expose a pri-
vacy vulnerability. Suppose an attacker uses cross-site script-
ing to read the contents of one of these growing cookies.
Then, he could a lookup table for the cookie’s site ID’s to
recover (an approximation to) the victim’s browsing history.
An even weaker adversary could simply listen in on the
communication between the user and website to intercept
the contents of these cookies.

Having established the existence of growing cookies, for
each device we then examined the proportion of top 500
third party sites that place growing cookies during the
crawls. The results are contained in Table VIII.

Formally, we consider a cookie to be a growing cookie
if it had been changed at least five times and if it satisfies
a certain growth metric. We consider the standard growth
metric, which we denote X3, to be an indicator of whether
over the course of the crawl, the cookie’s value tripled
in length and had a final length of at least 25 characters.
We imposed the limit of 25 characters so as to not count
the common case of cookies that are added with either
no value or a single-character value that is immediately
changed to a short but static string. Clearly these types of
cookies more than triple in size but do not grow beyond this
initialization. As a stricter requirement for growth, which we
denote Strict, we consider the subset of cookies that pass
the X3 requirements but have at least 75% of their changes
increasing their value’s lengths and no more than 10% of
changes decreasing these lengths.

Device Growing Metric
X3 X3 w/ Strict

Desktop 8.0% 3.6%
Tablet (Asus) 3.2% 0.8%
Tablet (Galaxy) 4.4% 2.6%
Phone 1.0% 0.4%
Emulated Tablet 0.4% 0.2%
Emulated Phone 0.8% 0.6%

Table VIII: Percentage of top 500 third parties using growing
cookies

We find that regardless of the metric, a much larger
proportion of top third party sites place growing cookies
on the desktop when compared to the mobile devices, with
perhaps the slight exception of the Galaxy tablet. Both the
emulated phone and physical phone have extremely low
proportions for growing cookies.

Overall, the desktop has a greater proportion of growing
cookies among top third party sites for two possible reasons.
First, the relative immaturity of mobile tracking when com-
pared to desktop tracking might mean that trackers have not
yet fully ported their growing cookie infrastructure to mobile



Cookie Value String Domain 
EXAMPLE 1 
"b!!!!#!!2-]!!!!#>+YEL" Netflix 
"b!!!!$!!2-]!!!!#>+YEL!%HWu!!!!#>+YE]" Cracked 
"b!!!!%!!2-]!!!!#>+YEL!%HWu!!!!#>+YE]!%ODP!!!!#>+YF$" Salon 
EXAMPLE 2 

"b!!!!#!!2-]!!!!#>+YB5" Netflix 
"b!!!!$!!2-]!!!!#>+YB5!%HWu!!!!#>+YBo" Cracked 
"b!!!!%!!2-]!!!!#>+YB5!%HWu!!!!#>+YBo!%ODP!!!!#>+YC," Salon 
EXAMPLE 3 

"b!!!!#!%HWu!!!!#>+YG<" Cracked 
"b!!!!$!%HWu!!!!#>+YG<!%ODP!!!!#>+YGC" Salon 
"b!!!!%!!2-]!!!!#>+YGP!%HWu!!!!#>+YG<!%ODP!!!!#>+YGC" Netflix 
EXAMPLE 4 

"b!!!!#!%ODP!!!!#>+YLs" Salon 
"b!!!!$!!2-]!!!!#>+YM$!%ODP!!!!#>+YLs" Netflix 
"b!!!!%!!2-]!!!!#>+YM$!%HWu!!!!#>+YM,!%ODP!!!!#>+YLs" Cracked 
Bold text indicates site ID; Underlined text indicates user ID 
Hwu = cracked.com; 2-] = netflix.com; ODP = salon.com 

Figure 3: This figure contains the cookie value growths
for yieldmanager.com’s history-storing bh cookies as
recorded after visiting three sites known to place these
cookies in different orders across four different crawls.
Individual website nodes appear to be separated by the token
%! while the site/segment ID and user ID are separated by
!!!!#>+. Observe that the nodes containing site/segment
IDs are added in the order in which the corresponding
sites are visited. The associated strings that we believe to
represent user IDs for each site remain constant within each
crawl but vary across crawls. This is especially apparent
when comparing Examples 1 and 2. Note that the nodes for
each website appear in the same relative ordering (specif-
ically netflix.com precedes cracked.com precedes
salon.com). This particular ordering suggests that the
third party represents the history nodes in a JavaScript
associative array, accounting for the fact that the nodes con-
sistently appear in a specific sorted order that is independent
of the order in which they were visited.

devices. Second, with certain sites placing multiple growing
cookies on a single device and with each of these cookies
reaching sizes of potentially over 4 KB, third party sites may
instead be leveraging history recording methods that are less
memory-intensive for mobile clients.

Automated reverse engineering? Our manual analysis
above hints at several underlying principles that we utilized:

1) Differencing: observing changes in client-side state.
This could be between different websites as the same
user, the same website as a different user, or simply a
different order of visits.

2) Reverse engineering of data structures. This involves
identifying encodings, seprators, etc. There is a rich
literature on reverse engineering of file formats; our
example is rather simple in comparison.

3) Studying JavaScript–cookie interaction. We used
our knowledge of how arrays are implemented in
JavaScript to arrive at a hypothesis just by looking
at cookies, but a more sophisticated approach would
be to build an analysis engine that would execute
JavaScript code and examine how cookie data gets
represented in memory.

4) Entropy analysis. Determining whether a given cookie
has enough entropy (based on maximum length as well
as how it actually changes) to store a certain type of
information (site ID, segment ID, user ID, etc.)

We can imagine these principles being the foundation of
an automated cookie reverse-engineering mechanism (and
beyond cookies, all other client-side functionality). Clearly
it would have important implications for web privacy by
shining the light on how personal data is collected and
used with only minimal human analysis, but more generally
it would bring transparency to the web and inform major
policy debates ranging from price discrimination to the filter
bubble.

V. FUTURE WORK

More platforms and other enhancements. Our data
collection framework currently exists only as an add-on
for Firefox Mobile on Android devices. To gain a better
perspective of mobile web tracking on other popular devices,
it needs be modified to operate with other platforms such as
iOS, BlackBerry, and Windows Mobile.

Other limitations of the current architecture that could
be addressed in future versions are: a direct comparison
between emulated and corresponding physical devices (we
were not able to obtain virtual images corresponding to any
of the physical devices we had access to); repeating our
measurements with state cleared between visits of different
websites; fixing the crashes on non-Western character set-
sand including those websites in the crawls.

Further data analysis. The main focus of our work was
to conduct a preliminary survey of the mobile web tracking
realm. There is much more than can be analyzed with respect
to the actual values of cookies, JavaScript calls and HTTP
request- and response-headers. It may be helpful for future
researchers to categorize the top 500 third-party domains
to obtain a fine-grained classification of the top trackers
into advertising domains, content distribution networks and
analytics companies, etc.

Related projects. As discussed in Section IV, one promis-
ing avenue for future work is automated reverse engineering
of cookie data and client-side functionality in general. An-
other direction is the use of machine learning for automatic
tracking defenses. Bau et al. have communicated early



results along these lines (in fact, also submitted to this
workshop) [4].

VI. CONCLUSION

At a time of unprecendented technical, press and policy
attention to web privacy, the mobile web is quickly ma-
turing. Given the success of web privacy measurement in
general, the importance mobile web privacy measurement is
unquestionable.

In this work we’ve taken the first step in making large-
scale mobile web privacy measurement a reality. Our work
involved porting browser instrumentation tools to Firefox
on Android, data collection from various devices, various
analyses comparing desktop vs. mobile tracking, and a study
of growing cookies. We’ve also laid out several directions
for future work.

This study is part of a much larger, nascent effort at
Princeton on bringing transparency to the web by detecting,
quantifying and reverse engineering algorithmic practices
involving personal data online. Our goal is to study and
influence both privacy and fairness (e.g., price discrimina-
tion, political targeting, “filter bubble,” and many other such
practices). The interested reader is welcome to contact the
authors.
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