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Abstract—While security of cross-domain single sign-on is a
thoroughly researched subject, the closely related web identity
federation has not been recognized as a distinct problem
requiring analysis in its own right. In this paper, we describe
a generic approach for analyzing security of web protocols
through a framework for reasoning about user actions. We
then use this framework to analyze security of important web
identity federation protocols. We show that a secure single
sign-on protocol does not necessarily ensure safety of linking
identities across domains. Our analysis discovers limitations
in current web identity management standards that can allow
an attacker to create fraudulent identity associations across
domains. We propose changes to the workflow and suggest
measures for ensuring integrity of cross-domain associations
in standard based implementations.
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ated Identity; Web Security.

I. INTRODUCTION

User management services were one of the first to be
offloaded to third party cloud vendors. Today, a large number
of service providers rely on trusted identity providers for
managing users and their resources. At the core of these
interactions involving multiple providers are a set of web-
based workflows that have emerged as de-facto standards.

The most commonly deployed web identity management
workflow is that of providing single sign-on (SSO) across
domains. Web-browser cookies that are primarily used for
managing authentication state in web applications, are never
transmitted across DNS domains, thus requiring other mech-
anisms for managing sessions across providers. To avoid
usage of proprietary schemes for cross-domain SSO which
would adversely impact interoperability in heterogeneous
collaboration environments, there was a need for standard-
ization in this space. Identity management standards such as
Security Assertion Markup Language (SAML 2.0) [13] and
OpenID [23] represent industry efforts in this direction.

While identities have been consolidated to a large extent
using SSO, most users hold accounts with more than one
major identity providers such as Google, Yahoo and Face-
book. To improve user experience while interacting with
multiple domains, another identity management use case -
referred to as identity federation - which allows users to link
their accounts across domains, is now assuming importance.
Among the prominent identity standards, only SAML 2.0
explicitly deals with the problem of linking user accounts

across domain. More recent standards like OpenID seem
to consider it as a minor extension of SSO and do not
standardize the workflow.

Interestingly, while SAML SSO has been one of the
more analyzed protocols in literature, the account linking
facility it provides does not seem to have been the subject
of a previous protocol analysis work. For this reason, the
workflow described in [13] is widely presumed to be cor-
rect. Moreover, since later standards like OpenID do not
explicitly address account linking, the SAML workflow for
establishing federated identity is often used as a benchmark
by application developers.

In this paper, we consider the problem of analyzing se-
curity of the identity federation workflow. For concreteness,
our analysis is based on the account linking flow as described
in the SAML 2.0 specifications. However, given that this is
the only industry standard, results of our analysis potentially
apply to large number of existing implementations of cross-
domain identity linking.

Our approach for analyzing security of web protocols is
based on a framework for reasoning about user actions.
In the absence of identifying keys and global identities,
it is often more important to know whether a user re-
cently performed an action rather than knowing its identity.
Our approach combines two contrasting styles of inference
construction and attack construction. Inference construction
approaches, first popularized by the Burrows, Abadi and
Needham (BAN) [12] logic attempt to use inference in
specialized logics to establish required beliefs at protocol
participants. Attack construction approaches, on the other
hand, reason about intruder knowledge and perform state-
space exploration to construct attacks.

The intuition behind the hybrid approach described in
section 4, is based on the observation that evaluating security
of web protocols, involves two key elements: (i) establishing
agreement between service providers about the context of
the transaction, (ii) ensuring that tokens identifying users
cannot be stolen or misused. The former requires establish-
ing belief about protocol parameters at honest participants
(service providers), while the latter requires reasoning about
intruder knowledge. While task (i) is suited for the inference
construction style of analysis, (ii) is more appropriate for
model checking based approaches that perform state-space
exploration.



For the first stage of analysis, we use an extension
of BAN in which some common web mechanisms have
been formalized as primitives. For the second stage of our
hybrid approach, we use a generic model for web protocols
developed using Alloy [19] - a SAT based model analysis
tool - to analyze secrecy properties. An important aspect
of our approach is that conclusions from belief analysis are
used to further constrain the protocol model. This results
in simplifications that drastically reduce the search-space
needed to be explored by the model-checker.

Our analysis of identity federation (section 5) provides
tremendous insight into design and analysis of web identity
management protocols. Of particular interest is a vulnera-
bility that allows an attacker to manipulate cross-domain
identity associations established through the standard iden-
tity federation protocol flow. We propose a simple resolution
for the issue and discuss how to incorporate it in SAML and
contemporary identity management solutions.

II. BACKGROUND AND RELATED WORK

In their seminal work [16], Dolev and Yao proposed, the
widely accepted adversary model where intruder has the
ability to read, alter, encrypt, decrypt, compose and decon-
struct messages. The model is not ideally suited for the web.
On one hand, web protocol analysis can be greatly simplified
using a much more restrictive model designed for secure
(SSL/TLS) communication. On the other hand, despite its
flexibility, Dolev-Yao model cannot capture certain types
of browser-based attacks e.g. inducing an honest principal
into unintentionally sending messages (including secrets) to
a server chosen by the attacker, manipulating redirection
URLs etc. The adversary model we use in this work can be
considered a modulation of Dolev-Yao model in which the
intruder does not have access to all messages, but at the same
time has the ability to exploit browser-based communication
to forge requests, manipulate redirection endpoints etc.

The authors of [14] attempt to formalize a standard
representation of the Dolev-Yao model where states are rep-
resented as multi-set of facts and transition rules are defined
to describe protocol behavior as well as intruder capabilities.
Using this formalism, the authors establish undecidability of
the secrecy property for unbounded number of sessions, even
with bounded message sizes, and encryption depth [17].

ProVerif [11], [7], [8], [9] is a cryptographic protocol
verifier, developed by Bruno Blanchet, based on the applied-
pi calculus formalism [3]. The input can be specified directly
as a sequence of Horn clauses or as a process in a variant
of the applied pi-calculus. It is capable of evaluating reach-
ability properties [1], [2], correspondence properties [8] and
observational equivalence [10].

An alternative to the state space analysis is based on the
notion of strand-spaces [18], a graph-theoretic interpretation
of the Dolev-Yao model. Several efforts have been made to
automate analysis using this formalism, most notable being

the Athena tool [24]. The more recent Scyther tool [15] is
also based on an extension of strand space concept.

Inference construction approaches attempt to use infer-
ence in specialized logics to establish required beliefs at
protocol participants. The logic of authentication described
in [12], commonly known as BAN, was one of the first
successful attempts at representing and reasoning about
security properties of protocols. [4] provides semantics of
the logic and discusses its soundness. A brief discussion on
belief logics and their automation can be found in [22].

We observe that the formalisms discussed above can
benefit significantly by providing native support for web
protocols. E.g., authors of [5], use the SATMC tool [6],
without significant changes, to analyze the SAML Single
Sign-on (SSO) protocol. The multiset rewriting based formu-
lation is quite complex for a protocol of this size. Moreover,
use of the standard Dolev-Yao attacker without support
for session-fixation attacks, results in a vulnerability not
surfacing in their analysis. The attack we discover on the
identity federation protocol (described in detail in section V)
is a direct consequence of this weakness.

Our work is partially based on the belief logic for web
first proposed in [20] and developed further in [21]. In [22],
we first proposed use of belief logic in conjunction with
a model checking stage. The interaction between the two
stages is based on assumptions being made during inference
construction stage and validated in the model checking
stage. In this work, we significantly advance the approach in
[22] by not relying on knowledge of such domain-specific
assumptions. Instead, we represent output of belief logic
analysis directly as constraints that relate protocol sessions
at honest participants (service providers) during the model
checking stage. Further, the property being checked corre-
sponds exactly to the protocol goal, rather than a generic
property such as secrecy or secure redirection. Finally, in
this paper, we analyze the account linking workflow while
in [22], security of a web authorization delegation protocol
(OAuth 1.0) was examined.

III. WEB SSO AND ID FEDERATION

In this section, we provide an overview of the premier
web SSO standards and discuss how they can be used to
establish federated identity.

A. The SSO Workflow

The workflow involves a web user interacting through
a browser with two web based service providers, one of
which acts as the identity provider. A user requesting service
S at service provider (SP) site is redirected to identity
provider (IdP) with an authentication request. The request
also includes a callback URL to be used by IdP to redirect
the user back to SP. After authenticating the user as Q,
IdP redirects user back to SP site with an authentication
response containing a signed token asserting the identity



Figure 1: The browser SSO workflow.

Q. SP validates the token and identifies the user as Q. In
the figure, C1-C3 identify secure SSL/TLS channels with
unilateral (server) authentication. The generic workflow of
Figure 1 can be used to describe both the OpenID 2.0 SSO
protocol as well the “SP-initiated SSO” of SAML 2.0.

OpenID specifications refer to the identity provider as
the OpenID provider (OP) and service provider as the
relying party (RP). In this paper, to avoid confusion, we
follow the SAML terminology for these protocol roles. Apart
from terminology, important differences between the two
protocols are noted below:

1) The authentication request is signed by SP in case of
SAML while it is unsigned in case of OpenID. Also,
while the SAML request contains a nonce which is
used to identify the session, there is no such identifier
in the OpenID request.

2) OpenID optionally allows the user to claim an iden-
tity in step 1. The URL of the identifier such as
http://openid.example.org/alice is used to
discover the IdP endpoint URL.

3) The authentication response for both protocols con-
tains a token signed by the identity provider asserting
the authenticated identity (Q) of the user. In case
of OpenID, the signed information also includes the
callback URL from the authentication request.

In addition to the SP initiated SSO workflow, SAML
also provides an alternative flow that starts at the identity
provider. This “IdP-initiated SSO” is similar except the first
three steps in Figure 1 are omitted.

B. The Identity Federation Workflow

The SAML 2.0 specifications include a variation of the
SSO workflow that can be used to establish and manage
federated identity. The workflow can be used by a user to
link her identity at the service provider with her identity
at the identity provider. The workflow is simply an IDP or
SP initiated SSO workflow followed by another user sign-
in action at the SP. After this sign-in, the SP creates an
association between user accounts at SP and IdP. In future,
it can automatically map the remote IdP identity to a local
identity without needing to perform authentication.

Table I: Operators in Extended Logic

P |≡ X: P believes X P
K←→ Q: Shared key K

P / X: P sees X
7−→
K

Q: Public key K belongs to
Q

P | ∼ X: P said X P
Y−⇀↽− Q: Shared secret Y

P |⇒ X: P controls X ]X: Fresh X

{X}K : X encrypted by K 〈X〉Y : X combined with Y

P
∆←→ Uc: Secure channel C JXKC : X over secure channel C

X  Aname(vσ1 , . . . , vσn ): X
associated with action Uc 3 X : User Uc possesses X

Uc . Aname(vσ1 , . . . , vσn ) :
User Uc performs action

Pname = val: Parameter
Pname has value val

The OpenID 2.0 specifications do not explicitly pro-
vide a workflow for linking identities. However, typical
account linking implementations use a workflow analogous
to SAML, i.e. the OpenID SSO protocol followed by a sign-
in action at the service provider.

IV. GENERIC APPROACH FOR ANALYZING WEB
PROTOCOLS

In this section, we introduce our hybrid analysis approach
which is a combination of the two contrasting style of
inference construction (section IV-A) and attack construction
(section IV-B). In section IV-C, we show how the two styles
can be combined to significantly reduce overall complexity
of the approach.

A. Belief Logic for the Web

1) Extended Syntax: Protocol messages are ‘idealized’
into expressions representing formula in the specialized
logic. A formula in BAN logic [12] is constructed using
operators from Table I. P and Q range over principals. The
three statements about keys and secrets represent atomic
statements. X represents a BAN formula constructed using
one or more BAN operators. The expression ]X means that
the message X is fresh and has not been used before the
current run of the protocol. This is especially true for a
nonce, a sequence number or timestamp generated with this
specific purpose. Nonces are used in protocols to defeat
replay attacks from previous executions of the protocol. The
said and freshness operators can be combined into a single
has recently said or says operator.

We introduce two new types of objects (sorts) to the logic:
user and action. A user is defined as the client side of a
secure channel which models a unilateral SSL/TLS session
with server authentication. We use the channel identifier
as a subscript in our notation for user. We assume Aname
to range over function symbols representing types of user
actions. A user action type has a signature of the form
σ1 × . . . × σn −→ action, where σ1, . . . σn are other sorts
of the logic. Actions could either be generic or specific to a



particular application. For example, signing in as principal
Q, represented as SignIn(Q), is a generic action.

We also introduce statements asserting values of variables
in the protocol. Pname ranges over variable names. Variables
can be used to state beliefs about protocol roles and other
protocol specific parameters which are useful in establishing
correspondence properties. Using variable names in ideal-
ized expressions has the effect of binding each occurrence
of the name with the same value in a given protocol run. We
also allow use of action and parameter names in jurisdiction
(P controls X) expressions. The new operators are described
in the last three rows of Table I.

2) Inference Rules: BAN defines a set of inference rules
for deriving new beliefs from old ones. We describe only
those rules of BAN that are relevant for the analysis of
section V. The message-origin inference rule R1 states that
if P knows that K is the public key belonging to Q and it
sees a message X encrypted by the corresponding private
key K−1, then P is entitled to believe that Q said X.

P |≡7−→
K

Q,P / {X}K−1

P |≡ Q| ∼ X
(R1)

A nonce-verification rule R2 states that, in addition if the
message is known to be fresh, then P believes that Q must
still believe X. Further, the jurisdiction rule R3 states that,
if in addition, P also believes that Q is an authority on the
subject of X (i.e. Q controls X), then P is entitled to believe
X itself.

P |≡ Q |∼ X,P |≡ ]X
P |≡ Q |≡ X

(R2)

P |≡ Q |≡ X,P |≡ Q |⇒ X

P |≡ X
(R3)

New inference rules. We extend BAN through inference
rules that apply to communication over one-sided (server
authentication only) SSL/TLS secure channel. R4.1 says that
if a principal P (usually server) believes that a user UC is
communicating over a secure channel C, then any actions it
sees over the secure channel C can be attributed to user UC .
According to R4.2, any tokens seen over a secure channel
are assumed to be possessed by the user. R4.3 states that
when the client side receives a statement X over a secure
channel, it is entitled to believe that the server principal has
recently said (says) X.

P |≡ (P
∆←→ Uc), P / JactionKC

P |≡ (Uc . action)
(R4.1)

P |≡ (P
∆←→ Uc), P / JXKC

P |≡ (Uc 3 X)
(R4.2)

Uc |≡ (P
∆←→ Uc), Uc / JXKC

Uc |≡ (P saysX)
(R4.3)

B. Generic Model for Web Protocols

In the following sections, we describe our generic model
for web protocols implemented using Alloy [19] - a declar-
ative language for describing structures and a tool for
exploring them. An alloy model specifies a set of constraints
that apply to objects in the domain being modeled. Alloy
Analyzer is a solver that takes constraints of a model and
finds structures satisfying them using a SAT solver. Thus
technically, it is a model-finder rather than a model-checker.
A signature and a constraint on the signature are declared
below:

sig S extends E {
F: one T }

fact {
all s:S | s.F in X }

It is often useful to think of Alloy as an object-oriented
language, but underneath the covers S is a subset of E and
F is a relation that maps each of S to a single T.

Fact statements represent constraints that must always
hold. Quantified expressions of the form quantifier s: S

| F mean that constraint F holds for all, no, lone (zero
or one), some (at least one) or one element(s) of S. Fact
expressions that apply to a particular signature (as is the
case above) can be directly appended to the signature
within curly brackets. Assertions (assert . . . ) are properties
against which the specification needs to be checked. A
check command causes the analyzer to search for a counter-
example to show that the assertion does not hold. Alloy
checks models of finite sizes using a specified scope which
limits the maximum size of top level signatures.

1) Modeling Principals: The signature Process declares
a set of all principals. It is extended by signatures Server

and User which are (disjoint) subsets representing web
service providers and end users respectively. Also declared
are set of all keys (Key), private keys (PvtKey), instants
(Time), cookies (Cookie) and values, (Value, CkValue,
TkValue). A private key is associated with a public key
through the relation pubkey. A principal knows a set of
keys (knownkeys) and a server principal owns a private
key (ownedkey). Most web protocols requiring security
analysis involve two collaborating service providers. The
peer relation maps a server to its collaborating partner.
The relations uniquecookie and uniqueval associate a
Server with a unique cookie and a secret/nonce value,
respectively. Minor changes in the declarations are required
to represent protocols needing more than cookie, secret per
server role. Constraint on uniquecookie relation ensures
that cookie points to the correct server.

Listing 1: Modeling service providers and users
abstract sig Process {

knownkeys: set Key
}



sig Time { }
sig Key { }
sig Value { }
sig TkValue extends Value { }
sig CkValue extends Value { }
sig SessionID extends Value { }

sig Cookie {
value: one CkValue,
server: one Server }

sig PvtKey extends Key {
pubkey: one Key

} { pubkey != this }

sig Server extends Process {
ownedkey: one PvtKey,
peer: one Server,
uniqueval: one TkValue,
uniquecookie: one Cookie
sessions: set Session

} { peer != this, uniquecookie.server =
this }

sig User extends Process {
seentokens: set TkValue->Time,
knowncookies: set Cookie->Time

} { ... }

sig HUser extends User { }

fact {
all k1,k2: PvtKey|k1 != k2 =>
k1.pubkey != k2.pubkey

}

fact {
all s1,s2: Server|s1 != s2 =>
(s1.uniqueval != s2.uniqueval)
&& (s1.ownedkey != s2.ownedkey)
&& (s1.uniquecookie)!= (s2.

uniquecookie)
}

A User participates in two relations. seentokens asso-
ciates the user to a set of (value, time) pairs each indicating
that a value was known to the user at time. The relation
knowncookies provides a similar association for cookies
known to the user. Finally, the facts represent constraints on
keys, nonces and cookies.

2) Protocol Session: We allow a server process to be
involved in multiple protocol sessions, so that our approach
can support attacks based on multiple sessions. Signature
session defines a generic protocol session having an iden-
tifier and principals in the assertion consumer and provider
roles.

sig Session{
id: one SessionID,
consumer: one Server,
provider: one Server

}

3) Protocol Messages: The signature Sent is used to
declare a set of possible protocol HTTP messages. Each
message has a sender and receiver principal and is
associated with a time when it is transmitted. The other
relations on message are a set of values (content) and a set
of cookies (cookies) contained in the message. A message
may also contain a redirection URL (redirectURL), if it
represents an HTTP redirect.

The message content is a set of tokens, each value can be
a simple value or an encrypted formula containing a set of
values (simple or encrypted) represented by ComplexVal

encrypted by key enckey. Further, a token can also be
associated with an action (ActionTkn). In this case, the
context associated with the token such as provider, con-
sumer, session identifier etc. is also included in the structure.
Protocol specific action tokens can be defined by extending
ActionTkn.

sig ComplexVal extends TkValue {
vals: set TkValue,
enckey: lone Key }

sig ActionTkn extends TkValue {
consumer: set Server,
provider: lone Server,
session: lone SessionID }

sig URL { target: one Process }

sig Sent {
cookies: set Cookie,
sender: one Process,
receiver: one Process,
time: one Time,
content: set TkValue,
session: lone SessionID,
redirectURL: lone URL,
enckey: lone Key

}{ sender in HUser =>
(all c: Cookie | c in cookies <=>
c->time in sender.knowncookies
&& c.server = receiver)

sender in User =>
(all v: TkValue | v in content =>
v->time in sender.seentokens)

enckey in sender.knownkeys
+sender.ownedkey

sender != receiver }

The first constraint requires that a message sent by an
honest user (HUser) shall only contain cookies that were
known to the sender at the time of sending the message and
were received earlier from the target of that message. The
bi-implication requires that all such cookies must necessarily
be included in the message. Next is a similar constraint



requiring any values contained in a message to be known to
the user. The third constraint requires the encryption key to
be known to the sender. The last constraint says that sender
and receiver of a message have to be distinct.

4) Learning Rules: The rules for a user learning new se-
cret values or cookies are expressed as constraints appended
to the User signature. The utility ordering is use to order
elements of Time. The first constraint implies that a pair
(cookie, t) appears in knowncookies if and only if the
user has seen a message containing cookie at a time ≤ t.
A similar constraint for other tokens is also specified.

open util/ordering[Time] as ord
sig User extends Process { ...} {

all c: Cookie | all t: Time |
(c->t in knowncookies <=>
some s: Sent | c in s.cookies
&& s.receiver = this
&& t.ord/gte[s.time])

all v: TkValue | all t: Time |
(v->t in seentokens <=>
some s: Sent | v in s.content
&& s.receiver = this
&& s.enckey in s.reciver.knownkeys
&& t.ord/gte[s.time])

}

5) Protocol Flow: The signature ProtoSeq represents all
possible sequences of messages under generic and protocol
specific constraints. If p and q are possible sent messages,
then p->q appearing in the sequence implies that receiver
of p is the sender of q. Also the timestamp on q must be
the next time instant following the timestamp of p.

sig ProtoSeq {
sequence: set Sent->Sent

}{ all p,q: Sent | (p->q in sequence)
=>
(q.sender = p.receiver)
all p,q: Sent | (p->q in sequence)

=>
(q.time = ord/next[p.time])
all p: Sent | (p.receiver in HUser)
&& p.redirectURL =>
(some q: Sent | (p->q in sequence)
&& (q.receiver = p.redirectURL.

target)
&& (q.content = p.content)) }

The last generic constraint describes handling of an HTTP
redirect for an honest user (HUser). It specifies that if an
honest user receives a redirect message, the next message in
the sequence must be a message sent by this user to the target
of the redirection URL. The message should include any
values/tokens received in the redirect. The other constraints
on protocol sequence are specific to the protocol being
modeled.

6) Adversary Model: The intruder is simply a User. The
redirection constraint for honest user does not apply to it.

The intruder learns new values based on learning rules for
tokens and can only send seen tokens (as per constraint on
Sent discussed earlier). Communication from a dishonest to
honest user (e.g. through a malicious hyperlink) is modeled
as a redirect message generated by the dishonest user.

In addition, we include the possibility of dishonest servers
colluding with the intruder. This is done by allowing dis-
honest principals to share any tokens they obtain with the
attacker. This is modeled as a message from a process
belonging to a signature representing a corrupted principal
role to User.

C. Hybrid Analysis Approach

The two techniques described in sections IV-A and IV-B
are employed in the first and second stages of our analysis,
respectively. The stages represent different views of the
protocol:

- In the first stage (belief logic analysis), the protocol is
viewed from the perspective of honest participants. The
aim is to establish agreement between service providers
about the session parameters and the information con-
veyed by tokens across domains.

- In the second stage, the protocol is viewed from the
perspective of the intruder and a knowledge flow anal-
ysis is performed for reasoning about actions based on
secrets.

The two stages are combined in the following manner.
Beliefs established in the first stage are used to constrain the
protocol flow in the knowledge analysis stage. In particular,
beliefs about end-points, callback URLs etc. are used to
direct the protocol messages to intended recipients. Belief
about session parameters are used to initialize the context
of tokens representing cross-domain assertions and in eval-
uating token validation constraints. These constraints signif-
icantly simplify the second stage of analysis by considerably
reducing the state-space to be searched.

Based on the beliefs established at participants and based
on what knowledge can become available to the intruder, the
security analysis problem then becomes to find whether a
protocol execution is possible that violates the assertion that
token must be possessed by the user who performed the
corresponding action. We illustrate working of the hybrid
approach in section V through the analysis of identity
federation workflow.

V. ANALYSIS OF IDENTITY FEDERATION

The workflow we discuss here corresponds to “Federa-
tion via persistent pseudonym identifiers” described in the
SAML 2.0 protocol specifications [13]. The objective of this
workflow is to allow a web user to link identities across
security domains. Despite being a widely deployed identity
federation protocol, it does not appear to be the subject of
scrutiny in a prior security analysis work.



Let us assume a customer is already registered as user Rc

at a service provider (SP) site and user Qp at the identity
provider (IdP) site. While at the SP site, the user chooses
to authenticate using his identity at IdP. The single sign-on
workflow is invoked. When the user returns to the SP site
with a signed token from IdP asserting the identity Qp, SP
requests the user to sign-in with the local identity Rc. On
successful authentication, SP links local principal name Rc

with remote principal name Qp. In future, when SP sees a
user carrying a SAML token from IdP asserting identity Qp,
it automatically signs in the user as Rc. All communication
is assumed to take place on secure (SSL/TLS) channels
identified by C1-C3. The message exchange is illustrated in
Figure 2. We note that SAML allows linking the SP identity
with a persistent pseudonym rather than the actual account
name at IdP. We ignore this feature in our analysis, as it
does not impact security of the linking operation.

Figure 2: Identity Federation using SAML.

A. Stage 1: Belief Logic Analysis

Messages 3, 5, 7, 9 are the only messages received by
either C (playing the SP role) and P (playing the IdP
role) and are idealized in (1). The SAML authentication
request (message 3) signed by C comprises of statements
about protocol roles using parameters sp, idp and callback
URL (cb) to be used for redirection in step 6. The nonce,
Ncp represents combination of a request identifier and a
timestamp. For brevity, we omit the argument identifying the
session in our analysis and write parameters such sp(Ncp)
and idp(Ncp) simply as sp, idp. The message is signed using
the private key of service provider. In the idealization, we
also include the term auth req(Ncp, P ). This allows us to
additionally represent the fact that message 3 is a SAML
request for P with identifier Ncp.

Messages 5, 9 represent sign-in actions at P, C, respec-
tively. Message 7 represents the SAML response returned
by the identity provider. The message signed by P contains
a token associated with the sign-in action and statements
about protocol roles as per P’s belief.

[Msg3]UC2 −→ P : J{auth req(Ncp, P ), Ncp,

idp = P, sp = C, cb = urlC}K−1
c

K
C2

[Msg5]UC2 −→ P : JSignIn(Qp)KC2

[Msg7]UC3 −→ C : JT, {Ncp, T  SignIn(Qp),

idp = P, sp = C}Kp−1
K
C3

[Msg9]UC3 −→ C : JSignIn(Rc)KC3 (1)

We make the following assumptions at C and P about
secure channels, nonces, public keys, protocol roles and
jurisdiction over parameters and actions.

C |≡ C ∆←→ UC1 P |≡ P ∆←→ UC2

C |≡ C ∆←→ UC3

C |≡ ]Ncp P |≡ ]Ncp

C |≡ 7−−→
Kp

P P |≡ 7−−→
Kc

C

C |≡ P | ⇒ SignIn P |≡ sp(n) | ⇒ cb(n)

C |≡ sp = C, idp = P, cb = urlC (A1)

In addition, we also use the following protocol specific
rule. The rule says that when a principal playing the IdP role
in the protocol receives a SAML request, it makes originator
of the request as the service provider (relying party) for the
session.

P |≡ X |∼ auth req(n, P ) ∧ P |≡ ]n→
P |≡ (sp(n) = X, idp(n) = P ) (S1)

A BAN type forward chaining analysis of these messages
results in the following final conclusions being established
at service provider and identity provider:

P |≡ C |∼ (auth req(Ncp, P ), Ncp,

idp = P, sp = C, cb = urlC)

P |≡ (sp = C, idp = P )

P |≡ C |≡ (sp = C, idp = P, cb = urlc)

P |≡ cb = urlc

P |≡ cb = urlcSignIn(Qp)

C |≡ UC3 3 T
P |≡ (idp = P, sp = C, T  SignIn(Qp))

C |≡ UC3 . SignIn(Rc) (C1)

B. Stage 2: Model Finding using Alloy

We now demonstrate the second stage of analysis which
is used to associate users with actions based on possession
of tokens. We show how the generic protocol model of
section IV-B can be extended for SAML SSO. We also show
how results from the belief logic stage in section V-A can
be used to simplify analysis in the second stage.

A SAML protocol session extends the generic Session

signature described in section IV-B2 by including a field



to represent the callback URL. The fields consumer and
provider in Session are used to identify the service
provider and identity provider, respectively. A SAML token
extends ActionTkn by including a subject field identify-
ing the authenticated user.

sig Provider extends Server { }
sig Consumer extends Server { }
sig SAMLSession extends Session {

callback: lone URL
}
sig SAMLRequest extends TkValue {

session: one SessionID
}
sig SAMLToken extends ActionTkn {

subject: one User
}

Simplification of SAML request. A key simplification
that uses the agreement established by belief analysis, is
achieved by associating SP and IdP with a single session
object. We simplify a SAML request by retaining a reference
to the SAML session that created the request at the service
provider. When the request is received at IdP, it can infer
request parameters from the reference.

We associate two constraints with sessions held at a
service provider. Firstly, the consumer and callback fields
must point to itself while provider must be set as one of
the identity providers. Secondly, for each such session, a
SAML request consistent with the session parameters must
exist.

sig Consumer {...} {
all s:Session | s in sessions =>
s.consumer = this
&& s.provider in Provider
&& s.callback.target = this

all s:Session | s in sessions =>
some p: Sent | p.content in

SAMLRequest
&& p.content.session = s.id
&& p.sender = s.consumer
&& p.redirectURL.target = s.provider
&& p.receiver in User

}

SAML token generation and validation. Instead of
modeling the token as an encrypted message, we use con-
clusions belief analysis to associate the token with a session
identifier, service provider and identity provider. The session
used to initialize the token is the one identified in the
received SAML request. The token generation can thus be
formalized using the following constraint:

all p: Sent | all s: Session |
p.receiver in Provider
&& p.content in SAMLRequest
&& s.id = p.content.session =>

some q: Sent | (p->q in sequence)
&& (q.receiver = p.sender)
&& (q.content in SAMLToken)
&& (q.content.sessionid = s.id)
&& (q.content.subject = p.sender)
&& (q.content.consumer = s.consumer)
&& (q.redirectURL.target = s.consumer)
&& (q.content.provider = p.receiver)

A SAML token is considered valid by the recipient service
provider if it has a session corresponding to the identifier in
the token and the values for consumer and provider fields
in the token match with those for the session.

all p: Sent | p.receiver in Consumer
&& p.content in SAMLToken =>

some s in p.receiver.sessions
| p.content.session = s.id
&& p.content.consumer = s.consumer &&
p.content.provider = s.provider

Goal Assertion of ID Federation. The goal of ID
federation is to ensure that the two sign-in actions are
performed by the same user. The goal assertion is thus to
ensure that the subject field in the SAML token must point
to the user who sent the message containing the token.

assert isSignedIn {
all p: Sent | p.receiver in Consumer
&& p.content in SAMLToken =>
p.content.subject = p.sender

}

Since the second stage performs reasoning based on se-
crets, only messages 2, 3, 6, 7 which contain secrets, nonces
are retained in the model. These messages are simplified
as described above. The goal assertion is checked for all
possible structures within a scope in the presence of the
adversary described in section IV-B6.

C. Result of Alloy Analysis

We executed the model with constraints and goal assertion
as described above. Alloy generates the counter-example
shown in Figure 3 in less than 3 seconds on an Intel
Core i5 2.4 GHz, 4 GB system for a scope up to 10
messages in a protocol sequence. A correct execution of the
protocol should have exactly four messages, corresponding
to messages 2, 3, 6, 7 in Figure 2. However, the counter-
example shows five messages where the first three messages
(corresponding to messages 2, 3, 6) with timestamps Time0,
Time1 and Time2 are exchanged with User. This is fol-
lowed by a message from User to the victim (modeling
following of a malicious link by HUser) and a message from
HUSer to Consumer containing the SAML token actually
issued to User. This translates to the following attack on
the SAML ID federation protocol.

Attack on SAML ID linking An attacker having a valid
account A at IdP authenticates itself and chooses to be



Figure 3: Counter example generated by Alloy for SAML account linking.

redirected to SP. However, instead of following the redirect
request from IdP, it extracts the request parameters and
induces the victim into clicking a link or submitting a form
(depending on whether HTTP redirect binding or POST
binding is used for the exchange). Following the link takes
the victim to the SP site, unwittingly carrying the SAML
token issued to the attacker. The victim has an account (say
V) at the SP site and is requested to sign-in. On signing in,
SP links local identity V with attacker’s identity A at IdP. In
future, attacker can sign-in at IdP, get redirected to SP and
automatically get access to the victim’s account at SP.

D. Fixing the Identity Federation Workflow

A simple fix to the SAML identity federation protocol,
is to reverse the order in which the two sign-in actions are
performed, thus steps 8, 9 of the protocol becoming steps 2,
3 of the protocol. The only change in our model is a cookie
returned along with SAML request to the user and the same
included when the user is redirected back to the SP with
the token. When we execute the analyzer with this change,
we do not obtain a counter-example for a scope allowing
execution traces up to 20 messages.

While the fix works, the workflow might not be desirable
in all situations. Firstly, the fix does not apply to the IdP
initiated variation of the SAML protocol. Secondly, service
providers often invoke identity linking when a user tries to
sign-in using his account at the IdP for the first time. In this
situation having a workflow in which the user authenticates
first at the SP is not desirable.

Thus a better resolution is to succeed the identity linking
flow in Figure 2 with another authentication (SSO) request
from the service provider by redirecting the user to the IdP.
Since the user is already signed in at the identity provider, no
additional interaction is involved and user is automatically
redirected back to the SP.

The modified workflow can be implemented in SAML
by simply invoking the standard identity linking workflow
and a single sign-on flow in succession. However, the same

workflow is still not completely secure with OpenID. This
is due to the absence of a nonce value in the OpenID
authentication request as noted in section III. The unique
request identifier in SAML acts as a safeguard against
request forgery attacks on the callback URL. The only means
of including a nonce in an OpenID authentication request is
in the callback URL (the return_to parameter). The same
value can then be included in the response by IdP instead of
generating a new nonce value. We recommend definition of
a new ID linking profile for OpenID documenting this flow.

VI. CONCLUSIONS

We studied a variation of the web browser SSO workflow
which is used to establish and manage federated identity.
While the SSO transaction itself has been thoroughly re-
viewed, security of account linking problem has not received
due attention. In this work, we performed a detailed analysis
of the transaction using a technique that has been tailored
for reasoning about web protocols. Our approach uses an
extension of BAN logic for establishing agreement between
service providers. Beliefs established at participants are then
used to simplify the second stage that uses a protocol model
developed in Alloy to find execution traces that do not
conform to a specification. We discovered a vulnerability in
the account linking workflow and proposed means of fixing
it for standard ID management frameworks. The analysis
technique is generic and has the potential of developing into
a much needed security analysis tool for web developers.
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