
Can Mobile learn from the Web?
Kapil Singh

IBM T.J. Watson Research Center
kapil@us.ibm.com

Abstract—The tremendous growth in popularity of smart-
phones has been closely matched by increased efforts to harness
their potential. This has lead to the development of powerful mo-
bile operating systems that provide novel programming platforms
for the creation of rich mobile applications. To support these
new paradigms, developers are now asked to spend considerable
effort in replicating functionality, usually already available in
web applications, for the native applications.

In this paper, we observe that web applications closely simulate
the design of native applications and the web origin can act as a
more reliable authentication identifier for third-party application
content. We consequently argue in favor of using web applications
as the default for mobile platforms and propose a practical
approach to extend web applications with native application-
like capabilities. Central to our approach is a browser-based
permission model that effectively manages permissions both at
install time and at runtime, and supports dynamic user policies.
We discuss security and non-security challenges of realizing this
approach.

I. I NTRODUCTION

The rapid growth of mobile computing and increasing
adoption of smartphones has resulted in the evolution of rich
mobile platforms, such as Android and iOS. While these
platforms derive much of the functionality from traditional
desktop operating systems, they also introduce security mech-
anisms to satisfy the new requirements imposed by the mobile
environment. One such novel mechanism is the application-
centric permission model developed for Android that controls
access to sensitive data (such as contact list) and resources
(such as camera) available on the device.

While the permission model provides users with an abil-
ity to control access to their data and resources, it also
introduces a new programming paradigm where applications
must follow a defined structure and are platform-specific. For
instance in Android the applications are typically writtenin
Java and use a component-based architecture to modularize
their functionality. This introduces an additional burdenon
application developers who need to learn and understand a
new programming paradigm.

With rich features, such as camera and GPS, readily avail-
able on mobile devices, there is an increasing motivation
for individuals and businesses to harness these resources to
provide enhanced functionality in their applications. Over the
years, a large majority of these individuals and businesseshave
provided their online services on the Web. However, instead
of just enhancing their current applications to use the mobile
features, they are asked to redevelop their applications inthe
new platform-specific programming paradigms. For example,

a bank has to individually develop its application for Android
and iOS, when it already has a potentially well-used, and hence
well tested, web application.

In this position paper, we show that there is a close corre-
spondence between the new mobile paradigms and the existing
web platform in the context of application development. We
use the Android platform as our representative example in
the paper; the basic concepts apply to other mobile platforms
as well. Consequently, we argue that the web platform can
be adapted to satisfy the requirements of the mobile platform,
effectively resulting in a natural adaptation of web applications
to have similar capabilities as the native mobile applications.

We argue that the web origin act as a natural identification
token for applications instead of a signature-based approach
used in native applications. While new programming plat-
forms, such as PhoneGap [1], enable the use of web tech-
nologies (HTML, JavaScript and CSS) in native applications,
all files are stored locally on the device with the loss of
origin information. A local origin is associated with all the
files irrespective of their source. As a result, it suffers from
the same developer-authentication issue as the signature-based
approach used by Android (Section II).

Based on our learnings, we propose that web applications
running in a browser be given access to the the data and
features exposed by the underlying platform APIs. To monitor
access, we propose a browser-based permission model similar
in concept to the Android model. From the perspective of
permission enforcement, a browser-based approach is inher-
ently advantageous over the current platform-based approach
as it enables a dynamic permission model where the users can
modify permissions at runtime (Section III).

To realize the concepts proposed in the paper, we also
discuss a candidate design of a prototype system that can be
readily deployed without any major modifications to the cur-
rent web setup. Our proposed design uses browser extensions
that proxy all API calls to the underlying operating system
(Section III).

This proposal makes the following contributions:

• It provides a correlation between the mobile world and
the web world from the perspective of application devel-
opment.

• It proposes that web origin should act as the identification
token for browser-based mobile applications.

• It proposes a browser-based permission model and pro-
vides a practical approach for its implementation.



II. M OBILE APPS– A SHADOW OF THEWEB APPS?

In this section, we draw parallels between the security
context of native mobile applications and web applications.
We consider three major building blocks as our comparison
vectors: application isolation, application origin and inter-
application communication.

A. Isolation

In Android, each application runs within its own security en-
vironment contained within the application sandbox. Android
is built on top of the Linux kernel and takes advantage of the
Linux user-based protection for sandboxing the applications.
It assigns a unique user ID (UID) to each Android application
and runs it as that user in a separate process. Applications also
get a dedicated part of the filesystem in which they can write
private data, including databases and raw files.

Browsers have also recently transitioned into using a multi-
process design that runs applications in different processes to
keep them isolated from each other and sandboxed for re-
stricting access to the underlying operating system [2] [3][4].
Mobile browsers have started to catch up on this trend [5]. This
multi-process design helps the browser to isolate crashes and
vulnerabilities to specific applications instead of the complete
browser. Irrespective of its design, the browser is responsible
for isolating the web applications that is governed by the same
origin policy (SOP) [6].

B. Origin for applications

The concept oforigin intuitively represents an authenti-
cation identity of a particular application. A compromise of
this identity can potentially lead to data leakage or system
compromise by malicious applications that can masquerade a
trusted application.

In the Android system, each application is signed by the
developer of the application and this signature is used by
the system to assign unique UIDs for isolation1. Effectively,
the developer’s signature uniquely identifies the origin ofthe
application.

Android allows self-signed developer signatures without any
need for a certification authority. While it is convenient and
economical for the application developers, it does not provide
reliable authentication of a developer’s identity. As a result,
the end user is ill-equipped to make an install-time decision
of adding an application without a verified developer.

On the other hand, web applications run within the context
of the web browser and have no direct access to the resources
available on the device. Resource access across applications
is determined by the SOP, that defines the web origin as the
triple of <protocol, domain, port> [6].

Considering their simpler representation and users’ day-to-
day familiarity of web URLs in comparison to signatures, we
believe that the web origins is more intuitive representation
from the users’ perspective. Moreover, the web infrastructure

1Applications signed with same developer key can optionally declare a
shared UID in their manifest to access each other’s resourcesusing a shared
sandbox

ensures that the origin is rightly associated with the content
of the web application2. The use of HTTPS further ensures
server authenticity and content integrity. The users can further
leverage free URL reputation services [7] [8] to filter out
malicious application domains. Therefore, we propose to use
the web origin as the authentication identifier for our proposed
browser-based hybrid applications discussed in Section III.

C. Inter-application communication

Android platform provides a collaborative application envi-
ronment where an application can leverage existing data and
services provided by other applications. This promotes devel-
opment of rich applications that enables functionality reuse
with reduced developer effort. Android supports this by means
of a message passing system that enables communication
within and across application boundaries. A central component
of this system are theIntent objects that are typed interprocess
messages used to link applications. Intents are directed to
particular applications or system services, or broadcast to
applications that are subscribed to a particular intent type.

On the web front, postMessage [9] provides a secure com-
munication medium between web pages of different origin.
There is a close correlation between Intents and postMessage
as both allow only serializable objects to be passed. However,
there are also some subtle differences. While postMessage is
directed to a specific target object using the object’s handle,
Intents provide a much richer medium to specify its target
by additionally supportingimplicit communication where the
target is determined by the Android platform based on the
operation that needs to be performed.

In addition to their logical similarities, they have also been
shown to suffer from similar issues due to insecure developer
practices. While postMessage requires explicit specification of
target by the sender and verification of sender by the receiver
to prevent potential attacks [10], Intents have been shown to
be vulnerable to similar spoofing and data leakage issues [11].

Recently the concept of Web Intents has been proposed as
a framework for inter-application communication [12]. While
it has currently not been implemented by the browsers and
is available as a JavaScript shim, it further bridges the gap
between the mobile and web platforms. However, Web Intents
uses HTML5 features and hence is not backward compatible
with older browsers.

III. B ROWSER-BASED PERMISSION MODEL

The previous section drew parallels between the mobile and
the web platforms from the perspective of their applications.
In this section, we leverage the similarities to propose a hy-
brid application paradigm that uses web applicationsrunning
in the browser with enhanced capabilities similar to native
applications. This is in contrast to the “hybrid” applications
that are developed using web technologies, but are hosted
by the operating system as native applications [1]. Note that
we would use the term hybrid to represent our proposed

2Attacks, such as DNS rebinding and man-in-the-middle attacks, can still
modify the web content, but are much harder to execute.



Android API calls

Permission
ManagerWebApp

User Approval / 
Policies

Permission
Spec

Access Control

Browser Extension

Operating System (Android)

Fig. 1. High-level architecture of our proposed design.

application design further in the text. By hosting the hybrid
applications within the web browser, we can leverage the web
origin as the authentication identifier for the applications. Our
position is to use this hybrid application design as the default
standard for mobile platforms.

We propose that web applications are assigned privileged
capabilities to access device data and resources. These ca-
pabilities would allow the applications to access advanced
hardware and software features, as well as local and served
data, exposed by the mobile platform. Taking mobile banking
as an example, the banking web application would be able to
access to the camera on the device for uploading the picture of
a deposit check to the banking site. This would enable billions
of existing web applications to readily include use of the
mobile features, with minimal modifications (potentially only
a few lines of API calls). In contrast, native applications that
provide the same functionality as the web applications would
need to be developed independently with explicit development
effort.

A desirable side-effect of using web applications is reduced
management and resource usage as compared to the installed
native applications. Web applications are accessed on need-to-
use basis in comparison to the persistent native applications.
As the number of installed applications continue to rise, keep-
ing track of all installed applications can become cumbersome
and a major inconvenience for the users.

We believe that similar to the current mobile platforms,
access to the device’s resources and data should still be con-
trolled using a application-specific permission model. How-
ever, the enforcement of such a model should be done by
the browser as the semantics and context of a hybrid ap-
plication are well exposed within the browser. A browser-
based permission enforcement would allow dynamic granting
and revocation of permissions at application runtime. This
is an advantage over traditional native application where
permissions cannot be altered after application installation and
can only be revoked by uninstalling the application.

In essence, any potential design of browser-centric hybrid
applications would require the browser to first expose the
underlying Android APIs to the applications and then grant
access to these privileged APIs based on the permissions
granted to the requesting application.

A. Proposed system design

Web browsers, by default, do not provide web applications
with any access to the underlying operating system’s resources
such as the file system. However, browser extensions are given
direct access to such resources. Our proposed implementation
would use extensions as a medium to invoke the platform APIs
for resource access3. An alternate design would be to include
this functionality into the browser core, however, it would
involve modifications to the browser code thereby limiting its
near-term large-scale deployment.

Figure 1 shows a high-level architecture of our proposed
design. The browser extension effectively acts as a proxy to
provide controlled access to the platform APIs. Similar to
Android’s native applications, the access given to a hybrid
application is governed by a set of permissions that are
approved for that particular application.

Realization of the permission model: In our design, permis-
sions are managed by thePermission Manager module that
is common for all applications. Instead of using a manifest
file to specify the request permissions (as done for native
applications in Android), hybrid applications include their
permission specification as content in the HTTP cookies or
as a part of the page’s content marked by a special tag.
The application can also optionally include an expiration time
for the permissions (for a cookie-defined specification, it can
effectively represent expiration of the cookie). The browser
extension extracts this information and presents it to the user
for approval. Once approved, these permissions can be cached
by the permission manager for use by subsequent invocations
of the hybrid applications.

The use of a single Permission Manager for all applica-
tions could potentially facilitate tracking of permissionmisuse
across applications (such as detection of confused deputy
attack [14]) as it has a single view of permissions for all
communicating applications. However, such detection would
also require monitoring of postMessage calls to track the flow
of information.

An application invokes the extension and specifies the

3While current mobile browsers have only started to support exten-
sions [13], we expect that the support would be added in most browsers
in near future.



platform API to be called along with the corresponding pa-
rameters. The extension verifies with the Permission Manager
if the requesting origin is allowed to make the API call and if
allowed, it makes the API call on the application’s behalf.

Our design is analogous to Mozilla’s WebAPI effort [15]
and Google’s Chrome Web Store [16], however, it uses a
simpler transformation by extracting the underlying platform’s
permission model and by mapping the requests directly to the
platform’s APIs. WebAPI is a more generic effort that targets
multiple platforms, while Chome Web Store is targeted for
the Chrome browser. Both these efforts use a strict developer
verification approach (as used by iOS), while we rely on the
web origins for server authentication.

Dynamic User Policies: Our system also has a provision
for user policies that can be used to blacklist or whitelist
certain origin-to-permission mappings. Specification of such
policies in advance is made possible due to the fact that users
already have trust relationships with certain web domains (for
example, a user can trust his bank’s site to have access to his
camera). The user policies can also be used to dynamically
modify permissions at runtime.

IV. D ISCUSSION

We envision that browser-based hybrid applications would
become the default on mobile platforms. However, there is
an constant debate on the use of native applications in com-
parison to web applications citing performance and usability
considerations [17]. At the same time, the popularity of web
applications has not diminished even with the presence of
native applications [18]. We also expect the performance of
web applications to improve with growing efforts [19] [20] to
address this issue.

There are privacy risks associated with allowing web ap-
plications to have access to a device’s private data as the
application is hosted remotely on a web server. However, such
risks even exist for native applications as most applications
are given a permission to access the Internet and allowed to
communicate with any external serverwithout any restrictions.
Traditionally SOP allowed a web application to communicate
only with its own server, however, such restrictions have
recently been removed allowing cross-domain server requests.
Further research is needed to address this privacy issue.

Allowing hybrid applications to dynamic request additional
permissions at runtime can potentially lead to user frustration.
This can eventual lead to a security trap as users can end
up accepting all such requests by default. Specific provisions
can be made in the Permission Manager to define policies for
ignoring such requests; such policies can be made domain-
specific and/or privilege-specific. The usability aspect ofdefin-
ing such policies comprehensively remains an open research
problem.

The hybrid applications rely on the security provided by
the web browser and any bug or vulnerability in the browser
could potentially circumvent the isolation provided by the
SOP. Exposing native APIs to the web origins raises the stakes
in case of a security breach, however, additional defences

developed for the web [4] [21] are also readily applicable to
hybrid applications. Native applications have been shown to
suffer from similar security issues [14] [22] and it is a matter
of debate whether mobile security solutions are more mature
than their web counterparts.

One major limitation for server-hosted applications is avail-
ability in case of poor or no network connectivity. The
application can improve offline support by caching content
in the browser. Depending on the application, this might limit
still functionality that is provided at the server side and not
rendered in the client-side component of the application.

REFERENCES

[1] “Adobe PhoneGap,” http://www.phonegap.com.
[2] “Whats New in Internet Explorer 8,” http://msdn.microsoft.com/en-us/

library/cc288472.aspx.
[3] C. Reis and S. D. Gribble, “Isolating Web Programs in Modern Browser

Architectures,” inProceedings of the 4th ACM European Conference on
Computer systems (EuroSys), Nuremberg, Germany, Mar. 2009.

[4] C. Grier, S. Tang, and S. T. King, “Secure Web Browsing with the
OP Web Browser,” inProceedings of the 29the IEEE Symposium on
Security and Privacy, Oakland, CA, May 2008.

[5] L. Parfeni, “Chrome for Android Under the Hood: Multi-
Process, V8 but No WebGL or Sandboxing,” http://news.
softpedia.com/news/Chrome-for-Android-Under-the-Hood-
Multi-Process-HTML5-V8-But-No-WebGL-or- Sandboxing-251491.
shtml.

[6] J. Ruderman, “Same Origin Policy for JavaScript,” http://www.mozilla.
org/projects/security/components/same-origin.html.

[7] “Google Safe Browsing API,” http://code.google.com/apis/
safebrowsing/.

[8] “Microsoft SmartScreen Filter,” http://windows.microsoft.com/en-US/
internet-explorer/products/ie-9/features/smartscreen-filter.

[9] A. Barth, C. Jackson, and J. C. Mitchell, “Securing Frame Communica-
tion in Browsers,” inUSENIX Security Symposium, San Jose, CA, Jul.
2008.

[10] “PostMessage,” https://developer.mozilla.org/en/DOM/window.
postMessage.

[11] E. Chin, A. P. Felt, K. Greenwood, and D. Wagner, “Analyzing Inter-
application Communication in Android,” inProceedings of the 9th

International Conference on Mobile Systems, Applications, and Services
(MobiSys), Bethesda, MD, Jun. 2011.

[12] “Web Intents,” http://webintents.org/.
[13] B. Hitching, “Social Browsing on your iPhone with

Safari Browser Extensions,” http://hitching.net/2010/06/28/
social-browsing-on-your-iphone-with- safari-browser-extensions/.

[14] A. P. Felt, E. Chin, S. Hanna, D. Song, and D. Wagner, “Android
Permissions Demystified,” inProceedings of the 18th ACM Conference
on Computer and Communications Security (CCS), Chicago, IL, Nov.
2011.

[15] “WebAPI,” https://wiki.mozilla.org/WebAPI.
[16] “Chrome Web Store,” http://chrome.google.com/webstore.
[17] T. Bray, ““Web” vs, “Native”,” http://www.tbray.org/ongoing/When/

201x/2011/06/14/Native-vs-Web.
[18] “Mobile-enabled Website: Mobile Web Apps

vs Native Apps,” http://k2bindia.com/blog/
mobile-enabled-website-mobile-web-apps-vs-native-apps/.

[19] “SPDY: An experimental protocol for a faster web,” http://dev.chromium.
org/spdy/spdy-whitepaper.

[20] “Let’s make the web faster,” http://code.google.com/speed/.
[21] M. V. Gundy and H. Chen, “Noncespaces: Using Randomization to

Enforce Information Flow Tracking and Thwart Cross-Site Scripting
Attacks,” in Proceedings of the 16th Network and Distributed System
Security Symposium (NDSS), San Diego, CA, Feb. 2009.

[22] M. Grace, Y. Zhou, Z. Wang, and X. Jiang, “Systematic Detection of
Capability Leaks in Stock Android Smartphones,” inProceedings of the
19th Network and Distributed System Security Symposium (NDSS), San
Diego, CA, Feb. 2012.


