Security and Privacy Implications of URL Shortening Services

Alexander Neumann, Johannes Barnickel, Ulrike Meyer
IT Security Group
RWTH Aachen University

Abstract

URL shortening services replace long URLSs with shorter
ones and subsequently redirect all requests for the short-
ened URL to the original long URL.

In this paper we discuss and empirically analyze security
and privacy risks caused by the use of URL shortening ser-
vices. We empirically determine the most popular URL
shortening services currently used on Twitter and analyze
these with respect to malicious behavior, user tracking,
ease of enumeration, and leakage of URLSs to search en-
gines. Also, we introduce a new attack scenario to en-
able SSL-only circumvention using SSLStrip and short-
ened URLs. Finally, we empirically analyze the use of
URL shortening services in more than 7 million spam e-
mails collected over the past seven years and determine
the spam detection performance for the most popular ser-
vices found.

1 Introduction

With the advent of social networks and Twitter, on which
messages are required to fit into 140 characters, compres-
sion of URLs becomes more and more crucial. In or-
der to turn long URLs into shorter ones, so-called URL
shortening services (USS) are offered by various entities.
When users want to shorten a long URL, they submit the
long URL to a shortening service that returns a short URL
which typically does not exceed 30 characters. The users
then include the short URL instead of the long URL e.g. in
a tweet, short message or e-mail. When others request
the short URL, the shortening service automatically redi-
rects them to the original, longer URL. An example for
a short URL generated by the shortening service bit.ly
is http://bit.ly/dLbCeC, which consists of just 20
characters.

While the use of URL shortening service is very conve-
nient, it imposes a number of risks for users submitting
long URLSs, users and machines requesting short URLs as
well as the target servers hosting the resource to which a
short URL points. Malicious or compromised USSes may
redirect users of vulnerable browsers to websites contain-
ing malware. Innocent users may submit a meant-to-be
secret URL to a shortening service, but the service may
leak this short URL to search engines. Also, an attacker
may enumerate the short URLs generated by a USS in
order to find secret URLs. Users requesting short URLs
from a USS may be tracked by this USS with the help of
cookies. Also, they may unwittingly provide sensitive in-
formation to the USS by the information from the HTTP

referrer included in their request for a short URL. Vulner-
able servers may be attacked with the help of a USS by
attackers submitting attack URLs to a USS that requests
and checks the submitted URL before shortening it. URL
shorting services may simply fail and thereby render the
short URLs unusable. Finally, USSes may be used to en-
able SSL-only circumvention with SSLStrip.

In this paper we discuss these potential risks in more de-
tail and empirically analyze popular USSes with respect
to these risks. In particular, we empirically determine the
currently most popular USSes used on Twitter with sam-
ples of messages containing up to 10% of all public Twit-
ter messages sent during two periods of 24 hours each.
We evaluate these USSes with respect to malicious be-
havior, user tracking, ease of enumeration of the gener-
ated short URLs, and leakage of secret URLs to search
engines. In addition, we empirically determine the most
popular USSes used in over 7 million spam messages col-
lected in the past seven years. We analyze the spam de-
tection performance for the most popular services found.
Finally, we analyze how spammers obfuscate shortened
URLSs to hide their use.

2 Related Work

Shortly after the public release of the USS tinyurl.com
in 2002, Thurman proposed the idea of enumerating short-
ened URLs [1] (“tinyurl whacking”). In this paper we pick
up the idea and present the results of enumerating the ten
most popular USSes used on Twitter in Section 4.2.1.

In 2008, McGrath and Gupta [2] found evidence that
URL shortening services were being used in a set of
69,624 phishing e-mails, but the proportion of shortened
URLSs was very small. In this paper (Section 7) we present
a similar analysis for 7,898,130 spam e-mails collected
since October 2003. On top of this we analyze methods
used by spammers to obfuscate shortened URL included
in these email messages. In addition, we determine the
most widely used USSes in these email messages and
analyze the countermeasures the ten most most popular
USSes use against spam.

In [3] Weiss discusses security implications of URL
shortening services used on Twitter, mentioning several
risks: The real destination is hidden, shortened URLSs
could be used to hide the real URL in spam e-mails, and
shortening services can be compromised. While mention-
ing these risks, the author does not conduct any empirical
analysis. Similarly, Schachter [4] analyzes the risks of
shortening services, and mentions unreliability regarding

latency and long time availability, possibly hacked ser-
vices, use of short URLs in spam, lower search engine
rankings for shortened URLs, loss of information about
traffic source for the target, and user tracking. We analyze
these and new threats later in this paper.

In a study by Fetterly et al. in 2003 [5], the authors re-
peatedly access a set of 151 million URLs eleven times
over a time of ten weeks. After one week, about 0.5 % of
the URLs are not accessible any more. After ten weeks,
this percentage rose to 3 % of the original set of URLSs.

Grier et al. [6] analyze over 400 million public tweets on
Twitter in 2010 to identify 2 million spam and phishing
URLs. They use the click statistics generated by bit.
1y for shortened URLs to measure a spam click rate of
0.31%. They conclude that spam on Twitter is far more
successful than e-mail spam. However, they also find that
more than 97 % of the shortened URLSs they had collected
from spam messages received no clicks at all, while the
remaining 3 % are clicked very often.

In an article published in January 2010, Vilas [7] de-
scribes various additional methods for abusing USS’s
in the context of data storage, creating short links of
JavaScript code, infinite redirection loops, and defeating
a lookup service for shortened URLSs ! by building chains
of shortened URLs. We do not consider these additional
methods in this paper.

3 List of URL Shortening Services

To empirically analyze the risks identified in the next sec-
tion, a list of URL shortening service is required. We start
by collecting a list of public, general purpose USSes from
different sources. As this list is too large to investigate all
USSes found, we proceed with determining the most pop-
ular USSes used on Twitter. These USSes are then used
for all further experiments described in this paper.
Several lists of shortening services have been found, e.g.
in the Firefox add-on ShortenURL?, the USSes supported
by longurl.org [8], and several lists on blogs [9, 10,
11, 12]. More USSes were found by examination of host
names of URLs found in spam e-mails (see Section 7.1).
The data from these sources combined contains 610
unique host names of USSes. However, this list Sy also
includes several special purpose shortening services (e.g.
amzn.to, fb.me), which cannot be used to shorten ar-
bitrary URLs. As we examine security implications of
USSes available to the public, we deleted the special pur-
pose shortening services from the overall list, leaving us
with a list Syss of 527 public, general purpose USSes.
Twitter provides an HTTP based streaming API [13]
which delivers new messages matching search criteria or a
small percentage of all newly posted messages. The func-
tion for the latter is called statuses/sample. Each

'http://longurl.org
’http://j.mp/g3pWGp

API call requires authentication with a valid Twitter ac-
count. The percentage of all public messages delivered
by this API function depends on the account’s access role.
We used an account with the access role “Gardenhose”
that receives up to 10 % of all public messages. We col-
lected public messages from Twitter during two periods of
24 hours each. We chose these two periods to cover dif-
ferent usage patterns during regular weekdays as well as
on weekends. In the first period between Thu, 28 October
2010, 00:23 CET and Fri, 29 October 2010, 00:23 CET
we sampled 7,547,787 messages. In the second period
between Sat, 8 January 2011, 13:19 CET and Sun, 9 Jan-
uary 2011, 13:19 CET we sampled 8,691,168 messages.
We extracted 1,208,862 unique URLs from the first sam-
ple and 1,143,838 unique ones from the second sample.
We parsed these URLs for host parts included in the list
Suss defined above to discover the most popular USSes.

Table 1 shows the number of short URLs found in the
first and second sample for the top 20 host parts. Note
that as 5 .mp is an alias for bit . ly, these are also the top
19 USSes. The service bit.1ly (including j.mp) clearly
dominates the list of USS in both samples followed by the
services t .co, tinyurl.com, goo.gl, and ow. ly. The
top ten shortening services cover 97 % of all shortened
URLs in the first, and 96 % in the second sample.

URLs URLs
Host (first) | Percentage || (second) | Percentage
bit.ly 347,565 62.70 255,413 59.17
t.co 40,801 7.36 42,727 9.90
tinyurl.com 34,962 6.31 31,387 7.27
goo.gl 31,259 5.64 25,044 5.80
ow.ly 30,002 541 14,711 3.41
dlvr.it 18,368 3.31 16,917 3.92
is.gd 10,704 1.93 9,056 2.10
j.mp 8,988 1.62 9,117 2.11
migre.me 5,464 0.99 3,179 0.74
dld.bz 4,252 0.77 3,899 0.90
Ink.ms 3,346 0.60 2,822 0.65
wp.me 2,926 0.53 2,107 0.49
tiny.ly 1,728 0.31 2,790 0.65
twurl.nl 2,200 0.40 1,683 0.39
su.pr 1,828 0.33 1,397 0.32
3ly 369 0.07 2,825 0.65
post.ly 1,703 0.31 1,089 0.25
tiny.cc 1,515 0.27 647 0.15
durl.me 485 0.09 426 0.10
adf.ly 329 0.06 558 0.13

Table 1: Top 20 USSes found in Twitter samples

4 Risks for Users

The use of shortening services imposes risks on users
submitting URLS as well as users requesting shortened
URLSs. These threats are discussed in the following.

4.1 Sensitive Information: HTTP Referrers

When sending an HTTP request for a shortened URL to
the shortening service, the user’s browser transmits the

HTTP referrer as one of the HTTP header fields to the
shortening service. The user’s browser typically sets the
HTTP referrer to the URL of the web page on which
the link to the short URL was clicked. This enables the
shortening service to conclude which web page contains
links to the requested short URL. Some shortening ser-
vices (e.g. nvg8.it) provide this information to the cre-
ator of the shortened URL. While it is already possible
to use web search engines to find hyperlinks from pub-
lic websites, this referral transmission to USSes may ex-
pose otherwise hidden web pages, e.g. private collections
of bookmarked links, which are publicly accessible but
neither linked from anywhere nor indexed by search en-
gines. One may argue that the HTTP referrer is always
transmitted to the target web server anyway. However,
when accessed via the shortened URL, one or two addi-
tional parties gain access to this information: The USS
and (for some services) the creator of the short URL.

4.2 Sensitive Information: Submitting Secret URLSs

Often, users who submit URLs to a USS are not aware
of the fact that once the URLs are submitted to the USS,
these URLs are not secret any more. At least the admin-
istrators of the service always have access to the URLs.
Furthermore, many USSes provide a list of popular or re-
cently shortened URLSs to the public, where they can be
found by search engine crawlers, e.g. ke—we .net. USSes
might even submit URLSs to search engines directly. The
experiment outlined in Section 4.2.2 determines who ac-
cesses URLs submitted to shortening services and which
services leak these URLS to search engines.

Some shortening services do not even have a clear pri-
vacy statement on what the service does with submitted
URLs and collected data (e.g. tinyurl.com). In addi-
tion, many services do not describe any process or at least
provide a contact e-mail address for removing a shortened
URL such that users cannot withdraw secret URLs once
they become aware of the leakage.

Another way how secret URLs can become known to
unauthorized entities is enumeration. An attacker can
try to enumerate every possible shortened URL of a ser-
vice, request them, and thus gain knowledge of the tar-
get URLs. In the following, we describe an experiment
in which we enumerate short URLs and search for secret
URLSs users have shortened.

4.2.1 Enumerating Shortened URLSs

All shortened URLs from the top 10 shortening services
on Twitter found in Section 3 have the following structure:

http://<host>/<path>

The <host> part is the USS’s host name and <path> is
the string uniquely identifying the short URL, called tag
in the following.

Character Frequency Analysis: Attackers who are
searching for secret URLs are primarily interested in
URLs which have just recently been shortened, because
the destination URL of older shortened URLs might not
exist any more. For the attackers it is therefore interest-
ing to know the structure of a target service’s shortened
URLs. If all the shortened URLs a service hands out in
the last 24 hours start with the same letter, it might be a
good idea to start enumerating URLSs with this prefix.

We reuse the 16,238,955 twitter messages collected as
described in Section 3. As most Twitter clients automati-
cally shorten URLSs contained in a message before post-
ing it, one can assume that many of these short URLSs
were recently generated. We study the structure of new
unique tags for the ten most popular services by extract-
ing all short URLs of a particular service from the twitter
messages and analyze the frequency of characters in the
unique tags. By comparing tags found in the URL lists
for the two sampling periods, the structure of newly gen-
erated unique tags can be researched.

The unique tags of shortened URLs from bit.1ly are
composed of six upper- and lower-case letters and num-
bers. The service seems to choose the first character in-
crementally, because the characters 9 and a to d each have
a much higher frequency of 13 to 20 % than the surround-
ing characters, which only have a frequency of 1 % or
below. All characters at positions two to six are uniformly
distributed across the complete range which leads to a rel-
ative frequency of 1.6 %. This leads to the conjecture
that bit .1y chooses the first letter of a shortened URL’s
unique tag sequentially.

The unique tags from service t.co have a structure
which is similar to the tags of bit.1ly: Seven characters
upper- and lower-case letters and numbers. Each charac-
ter has a relative frequency of 1.6 % regardless of the po-
sition in the unique tag. This is the expected value if each
character of the unique tag is chosen independent from the
uniformly distributed set of all characters and numbers.

Unique tags for the USS tinyurl.com-URLs have an
interesting structure. The service does not distinguish be-
tween upper- and lower-case tags. The tag is composed
of seven lower-case letters and numbers. In both samples,
most tags begin with 2 (78 %) or 3 (20 %). The only other
character which has a relative frequency worth mention-
ing is y with 1.7 %. The second character is very likely
to be 3 to 9 or a with a relative frequency of 7 % each.
The characters at positions three to seven all have a rela-
tive frequency of 3 %, which is expected for a uniformly
distributed set of 33 characters (25 letters plus 8 numbers).

It is interesting that the letter 1 and the numbers 0 and 1
are found only very rarely, regardless of the position. One
can speculate that this might be because an upper-case i
can easily be misread as 1.

No obvious structure can be observed for goo.gl, the
characters seem to be chosen randomly and independently
from a uniformly distributed set of upper- and lower-case
letters and numbers.

The services ow.ly, is.gd and migre.me seem to
choose the characters for the unique tags sequentially.
The same holds for the services dlvr.it, d1d.bz and
1nk.ms, with the exception that each of these services
omits some characters.

Enumeration Process: Based on the preceding charac-
ter frequency analysis, the services and shortened URL-
ranges have been selected for enumeration. This leads to
a number of 233,000-238,000 URLs per service, which
we requested. As the service goo.gl enforced a request
limit and stopped delivering redirects when many short-
ened URLs are requested too fast, we introduced a de-
lay of 100ms after each request. With these limits in
place, enumerating the shortened URLs for goo. gl took
27 hours.

Results: All shortened URLs selected in the previ-
ous section are requested. In all requests we use a
User-Agent string simulating the Firefox web browser
running under Linux.

We evaluated the target URLs manually and found a
lot of sensitive information. This includes 153 web-
based administrative interfaces. These are URLs that
contain the string “/admin/” and return the HTTP
status 200. Filtering the target URLs for the host
name docs.google.com searching for the string
“authkey=" and HTTP response code 200, we found
71 publicly accessibly documents hosted by Google Doc-
uments. These documents are allowed to be accessed
by every person knowing the URL (with the included
authkey) and are usually not indexed by search en-
gines. Manual inspection leads to several archives of pri-
vate photos, a seminar paper, a treasurer’s report for a
company, two curriculum vitae and the list of names, ad-
dresses, and telephone numbers of a kindergarten.

In summary, we have shown that enumerating USSes is
feasible and that sensitive or private information can be
found this way. Obviously users are not aware of the fact
that the URLSs can be revealed by USSes to others.

4.2.2 Submitting Secret URLs

This section describes an experiment for testing whether
URLs submitted to shortening services are leaked by
them, e.g. to search engines.

Preparations: In this experiment, the domain £d0 .me
has been used for all generated URLs. A web server is
configured which logs all requests to URLs where the host
is either £d0 .me or www. £d0 . me. The server responds
to all URLs for the root page (“/”) with a generic infor-
mation page that links to the description of this research
project. Furthermore, the page contains a contact e-mail

address. When a URL is requested and the path compo-
nent contains at least three forward slash characters (“/”)
a special web page is returned. This page is titled “Se-
cret Webpage” and contains data from the request such as
the requested path, protocol, the request method and the
User—-Agent string. Furthermore a string called “Se-
cret Tag”, general information on the experiment, and a
contact e-mail address are listed. The secret tag is con-
stant, the string knycsUpjaj8 is returned for each re-
quest regardless of the URL’s path component. This string
is unique and had no hits when searched for in a search
engine like Google before the start of the experiment.

Submitting URLSs: For each USS, two URLSs are gener-
ated using the following templates:

® http://fd0.me/secret/SERVICE/TIMESTAMP
e http://www.fd0.me/blog/archive/2011/01/14/
index.php?article=SERVICE#TIMESTAMP

The string SERVICE is replaced by a unique eight char-
acter string for each service and TIMESTAMP by another
eight character string uniquely identifying the time and
date when this URL was submitted to the service. The first
URL template should catch every person’s eye and evoke
curiosity so that the person clicks on the URL. URLs gen-
erated using this template are termed secret URLs in the
following. All URLs generated after the second template
should appear harmless and not very interesting, they are
called blog URLs. Examples for both types of URLs are:

® http://£fd0.me/secret/aldf2%ac/bb42ce8b
e http://www.fd0.me/blog/archive/2011/01/14/
index.php?article=69e325eb#ababcblc

The secret URLs have been manually submitted to as
many shortening services as possible. All services from
Suss have been tried, but only those which were func-
tional and allowed anonymous shortening without prior
registration were used. URLs are submitted only once to
services which operate several different host names (e.g.
bit.ly and j.mp belong to the same service). For this
experiment, 326 secret and 208 blog URLs have been sub-
mitted to 225 services.

Results: The web server’s log file has been analyzed 4
weeks later. It contained 687 requests for 112 secret and
68 blog URLs. All requests which had occurred within
60 seconds after submission are assumed to be automatic
requests from the shortening service. This leaves 497 re-
quests for 49 secret and 31 blog URLSs which had occurred
afterwards. URLSs generated for 42 different services were
accessed after 60 seconds, i.e. 19 % of all tested services.

The resulting log file entries are examined manually re-
garding an HTTP referrer. Through this analysis, nine
URLSs of non-public web-based administrative interfaces
for the services are discovered, so at least for nine services
an administrator checked newly submitted links manually.
Furthermore, at the time of writing, the administrators of

four other shortening services, who had seen the secret
URLs and the contact information supplied, contacted one
of the authors of this paper via e-mail and asked for de-
tails. They all stated that their respective shortening ser-
vice is small and regularly used by spammers to shorten
malicious URLs, therefore they check “suspicious” URLs
manually. All in all, thirteen administrators of shortening
services had a look at the submitted URLs.

When analyzing the User-Agent strings sent in the
requests, we found the three search engines Google, Ya-
hoo, and Baidu. We queried the search engines about the
unique string knycsUpjaj8 embedded in the response
page for each generated URL. Only Google delivered the
right number of hits, Baidu and Yahoo (international) did
not return any results. The German Yahoo search returns
one result.

In summary, the results of this experiment demonstrate
that URLs submitted to shortening services do not remain
private. Several services leaked the URLs to search en-
gines, or the administrators checked the URLs manually.

4.3 Nonworking Shortening Service

URL shortening services have a history of failure. Ser-
vices silently stop working, like the service on the
Tonga top level domain to, or announce discontinu-
ance of business. One of the first shortening services,
makeashorterlink.com, announced the termination of
the service, but could be acquired by tinyurl.com
which continued the service.

Users relying on shortening services may leave their
readers with nonworking URLs, for example when au-
thors publish shortened URLs in books and other printed
publications. This phenomenon (“link rot”) is well known
in the web and academic communities [14]. For citations
in academic literature, a workaround has been proposed
in [15].

The use of URL shortening services increases the risk
that URLs stop working at some point in the future.
This can be tolerated for short-living communication (e.g.
Twitter), but is unacceptable for long-term use in books or
academic references.

4.4 Hacked Shortening Service

When a shortening service is hacked, two different threats
emerge to users of that service: Shortened links may
stop working and requests can be redirected to advertising
websites and/or websites containing malware. This also
poses a risk to their web browser and operating system.
Shortening service hacks have been observed in the wild
already. For example, in June 2009, the service cli.gs
got hacked. According to the service’s blog, 2.2 million
URLs got redirected [16] to a different destination and 7%
could not even be restored from the backup and are per-
manently lost [17].

4.5 Tracking Users

A shortening service can extract much data from the re-
quest for shortened URLs. This data includes the re-
quested URL, time of request, requesting browser version,
HTTP referrer, and the IP address of the user’s machine.
The latter allows for discovering different Internet con-
nections of a user and often also the user’s physical loca-
tion using a Geo IP database.

In addition, like other web servers, many shortening
services set a unique cookie in the user’s browser. The
browser then transmit the cookie to the service every time
a short URL is requested. While identifying users is not
necessary for the shortening service to function, setting a
unique cookie enables the service to track the user with-
out much effort. When the validity period of the unique
cookie is long enough, the service can over time build a
history of accessed URLs and mine interesting data.

4.5.1 Cookie Analysis

Cookies are normally used to recognize an HTTP client
over multiple HTTP requests. In the case of URL short-
ening services, this is not necessary, as every request for
a shortened URL should be independent of all other re-
quests executed before. Being able to recognize a user
over a larger time span enables the service to aggregate
interesting data on the user’s behavior and interests.

The set of shortening services found in both Twitter sam-
ples as described in Section 3 is used for this experiment.
Where available, we randomly selected two distinct URLs
for each service from the Twitter samples. This gives us a
list of 319 unique URLSs for 187 different shortening ser-
vices.

Each URL from this list is requested 83 times, each
time by simulating a different web browser. From the
web server’s response, the values of the Location and
Set-Cookie headers are stored in a database. The
Locat ion header values will be analyzed in Section 5.1.
The Set-Cookie header instructs browsers to store
HTTP cookies. 36 of the 84 cookies found are session
cookies, the remaining 48 are persistent. The USS can
therefore identify and track users, even when their IP ad-
dresses change.

For the cookies of each service, the quotient () is cal-
culated by dividing the number of unique values by the
number of HTTP responses which try to set a cookie with
this name. This value visualizes how “unique” the val-
ues for a cookie are. If @) is close to 1, many different
values have been received, therefore the cookie’s value
is more specific to a request. On the other hand if () is
small, only very few different cookie values have been re-
ceived. This can suggest a generic configuration cookie,
e.g. a cookie which stores a boolean value, but this is not
always the case. For example consider a hypothetical ser-
vice which stores the IP address of the user in a persistent

1,000,000

~ 100,000 |- g ten years -
] / dlvr.it

£510,000 | one year 4
a3 half a year
22 1,000 - one month
Eé 100 F one week

<

= one day

10

1.0
Q 05

0.0

cookie on the first visit. In this case the service is able to
track the user over the validity period of the cookie, but
the (Q value for this cookie would be close to 0, because
just one unique value is observed.

For example the cookie “u” from the USS b23.ru is
set to the static value 1 in each HTTP response received.
This cookie cannot be used to track a user and the () value
for this cookie is 0.059. On the other hand, the cookie
“fwsid” of the same service is always set to a different
value, a string of 32 characters, and has a) value of 1. It
is therefore very well suited to identify a user.

4.5.2 Results

It is found that 65 out of 187 tested shortening services
use cookies, which is 35 %. Persistent cookies are set by
38 services. Figure 1 visualizes the validity periods and
@ values of all persistent cookies. It shows that 28 ser-
vices (or 15 %) set cookies with a validity period of half
a year or more. Two services, k1.am and tiny.cc, tried
to set two cookies with different names, but same validity
periods and () values. These cookies have been merged
in Figure 1, so that for each service only one entry is in-
cluded in the figure.

The services bit .1y and dlvr.it, that are found to set
a persistent cookie in this section, also appear in the top
ten list of popular shortening services on Twitter (see Sec-
tion 3). The services are marked with arrows in Figure 1.
The median of the validity periods is 180 days, which is
nearly half a year.

Of all tested shortening services, more than one third use
cookies and 15 % employ persistent cookies which allow
tracking users over a period of 6 months or more. This is
not acceptable, because cookies are not necessary for the
operation of a shortening service. Using unique cookies
which are valid over such a long time is at least question-
able.

(] f=] f=] =] (5]
EEEES S e RS B BB E L8888 HEREEIEERNELRRSE G GE
S i ns e fisadd 22 T2 R0 g8 S35 48E23H 888288 dnanisl
2REF = EEE S TH FEHEETEAEE 8020580 cEREQERS S =
oL 3L g E) d = O g = g} 0 T B o = [SRNlE [Shb=]
T 8T E7 OE) S& R - R £z ©° 2
< S = .5 =
I _:Q’ &0 EE &
=}
s

Figure 1: Validity periods and () values of persistent cookies

5 Risks for the User’s Machine

This section outlines risks for the operating system of
users’ machines. We first describe the potential behavior
of a malicious service. Then we describe an attack that
allows for the circumvention of enforced SSL encryption
of websites with the help of a URL shortening service.

5.1 Browser Attacks

In the preceding section we already mentioned that with
the request for a URL, additional data is sent to the short-
ening service, including the version of the requesting
browser. Attackers could set up an attractive USS which
initially performs well and honestly. After establishing
the service, the malicious USS could handle requests by
browsers without any known security vulnerabilities nor-
mally while redirecting browsers with known vulnerabil-
ities to malicious websites that exploit the version of the
requesting browser. The attackers could sell visits from
vulnerable browsers to botnet operators seeking new sys-
tems for their malware. Advanced users would not notice
the malicious behavior, as they rarely use old and vulner-
able browsers.

In the following we describe an experiment which tests
how current services react when users access them with
different web browsers.

5.1.1 Simulating Browser Versions

This section analysis the values received in the
Locat ion headers collected in the experiment described
in Section 4.5.1.

When a URL is requested, the browser transmits its own
name and version in the HTTP header User—Agent.
We use this header to simulate different browsers
and operating systems. We use the recent con-
figuration file http://techpatterns.com/forums/
about304.html?. This is a list of 83 different browsers
and browser versions. The descriptions of all browsers

3Downloaded from http://3j.mp/cFh7xd

included in this list can be found on our website.

For each User-Agent string we sequentially re-
quested all 319 URLs once between January 26th 19:00
CET and January 27th 03:00 CET in 2011 and stored the
responses in a database. For each response, we stored:
HTTP response code, Locat ion response header value,
and Set-Cookie response header value. If no valid
HTTP response could be read after 10 seconds or the ser-
vice was not reachable, the query was ignored in the anal-
ysis. We then analyzed if the HTTP response code and the
value of the Location header differ when queried with
different User—Agent strings.

5.1.2 Results

First the number of different combinations of the HTTP
status code and the value of the Location header in
all HTTP responses was calculated for each service. We
found that of the 319 unique URLs, 292 always return the
same HTTP status code and Location header regard-
less of the User—Agent header value. For these ser-
vices, no malicious behavior could be observed. For 11
URLs, there are two different combinations of status code
and Location header value. The remaining 16 URLs
were not reachable.

The USS sn.im can also be reached under the host
names snipr.com, snipurl.com, and snurl.com.
The service normally returns HTTP status code 301, but
between 01:31 and 01:37 o’clock CET on 27 January
2011 it returned the status code 410 for all URLs. As this
could not be reproduced later for the browser strings used
in requests at that time, it is assumed that this behavior
originated in a technical defect at the shortening service.
Therefore, no malicious behavior could be observed.

The short URLs of USS su. pr usually redirect directly
to the target URL, but sometimes requests are redirect to
another host name of the service (stumbleupon.com),
which delivers the target URL in an HTML frameset.
We do not known what criterion selects which behavior,
but this clearly is not malicious.

to. ly usually redirects to the destination URL with the
HTTP status code 301. However, at 00:09:41 CET on Jan-
uary 27th 2011, it returned an HTTP status code 503 for
two requests, which could not be reproduced. We assume
that it is due to a technical failure. No other malicious
behavior could be observed for this service.

The most interesting result from this experiment are the
responses for the only URL http://ri.ms/5wgvé of
the service ri.ms, where we observed 83 different com-
binations of HTTP status code and Location header.
This host name belongs to the service t inyarro.ws. For
82 requests, the service returned HTTP status 302 and a
Location header that points back to a preview page at
tinyarro.ws. Included in this URL is the original tar-
get URL of the shortened URL and a counter which in-

crements on each request. The different values for the
counter are the cause for the huge number of different
Location values. One example URL (wrapped to in-
crease readability) is:
http://tinyarro.ws/preview.php?page=http

$3A%2F%2Fwww.cin.hdmais.com.br%2Fcomponent
$2Fcontent%2Farticle%$2F&count=248

When accessed, a preview page for the target URL is
shown together with a countdown timer implemented in
JavaScript, which redirects to the target URL after ten sec-
onds. The other 3 requests result in a response with HTTP
status 301 and a Locat ion header which directly points
to the target URL http://www.cin.hdmais.com.br/
component/content/article/.

On investigating this behavior it is found that HTTP sta-
tus 301 is only returned when the User-Agent HTTP
header is set to the browser version string of the browser
Dillo (http://www.dillo.org/) in version 2.0, and
for the empty string. Due to an error, each URL has also
been requested with an empty User—Agent header and
these requests also return HTTP status 301. This behav-
ior could be reproduced, for each request with obscure,
invalid or empty User—-Agent HTTP header, the sta-
tus 301 is returned and the Location header contains
the target URL. It is assumed that this behavior had been
implemented to only redirect browsers that are known to
parse and execute JavaScript to the preview page with the
countdown timer and redirect all other HTTP clients di-
rectly to the target URL. This behavior is not considered
malicious, but it clearly shows that shortening services ex-
ist, which handle different HTTP clients in different ways.

In summary, the experiment did not reveal any services
which show malicious behavior, but evidence could be
found that at least one service returns different responses
when requested with different browsers.

5.2 SSL-Only Circumvention

In the following we describe how URL shortening ser-
vices which operate over plain HTTP* can be used by an
attacker to trick users into submitting their passwords in
plain text over the network without using HTTPS. The at-
tacker achieves this with the help of SSLStrip’.

SSLStrip is a program by M. Marlinspike which can act
as a proxy between users and the real website. The proxy
intercepts all HTTP requests and rewrites all HTTPS
URLSs to HTTP within the responses from the server be-
fore forwarding the response to the users’ browsers. This
way, the users do not encrypt their traffic to the proxy, but
the proxy itself can use an encrypted connection to the
real website.

For the attack we assume a man-in-the-middle attacker

4Note that while a few services like bit . 1y offer HTTPS, most
USSes such as t inyurl . com and Twitter’s £ . co do not.
Shttp://3j.mp/5FZiM, http://7j.mp/e6g9NG

that is able to read and intercept any packet victim user
sends to a service. In particular, the attacker can read, in-
tercept, and manipulate HTTP requests, but is not able to
decrypt and read HTTPS connections. We further more
assume that the user (Alice) uses a public messaging
service LoudSpeaker, a social network Badaboom and a
shortening service sho. rt. LoudSpeaker and Badaboom
are only accessible via HTTPS and the HTTP cookies set
by the services all have the “Secure” attribute so that the
cookies are not sent in an unencrypted HTTP request. The
shortening service sho.rt does only support HTTP. In
this situation, the attacker’s goal is to gain knowledge of
the user’s password on Badaboom.

The attacker can reach this goal with the following steps

1. Alice reads her LoudSpeaker message feed

2. She receives a message: “Hey, check out this group
over at Badaboom: http://sho.rt/xafAb!”

3. Alice clicks on the link, her web browser sends
an HTTP request for the URL http://sho.rt/
xafab. This short URL points to the HTTPS URL
https://badaboom.rt/groups/23

4. Using SSLStrip the attacker intercepts the HTTP re-
quest, executes the request on behalf of the user,
replaces “https://” by “http://” in the re-
sponse and serves the modified response to Alice’s
web browser.

5. Alice’s browser follows the redirect and requests
http://badaboom.rt/groups/23. All cookies
set by Badaboom are marked “Secure”, so none is
included in this unencrypted HTTP request.

6. Using SSLStrip, the attacker intercepts the HTTP
request, carries out an HTTPS request in the back-
ground, and serves the result to Alice’s web browser.

7. Alice sees the regular Login page for Badaboom as
no cookie has been sent in the request. She enters
her username and password and clicks on the submit
button.

8. Using SSLStrip, the attacker intercepts the HTTP re-
quest, stores the username and password for later use
and carries out a HTTPS request in the background.
In the response, the “Secure” attribute is removed
from the cookies and all HTTPS URLs are again re-
placed by HTTP URLs, afterwards the modified re-
sponse is served to Alice’s web browser.

Experienced users are able to detect this attack by in-
specting the URL or by wondering why they are requested
to log in again, but inexperienced users are not. No
HTTPS certificate is used, but also no error message is
shown and the service functions. This is sufficient to fool
most users.

This attack could be mitigated or even completely pre-
vented when the web server offers HTTP headers accord-
ing to the “HTTP Strict Transport Security” (HSTS or

STS) standard and the user’s browser has interpreted the
header. At the time of writing, HSTS is an RFC draft.

6 Risks for Servers

In this section, risks for the operating system and other
software running on servers are evaluated. This does not
include the web servers running the shortening service,
because these are exposed to the same threats as any other
web application server.

6.1 Secret URLs

In addition to the risks for users introduced in Section 4.2,
secret URLs submitted to shortening services might also
pose a risk for the target server if they e.g. point to an ad-
ministrative web-based interface. When this URL is sub-
mitted to a shortening service and that particular service
publishes the list of the last twenty shortened URLs, at-
tackers might just stumble upon the shortened URL. Fur-
thermore, search engines can crawl the USS pages and
add the secret URL to their index. Attackers might search
for administrative interfaces or just for vulnerable ver-
sions of “phpMyAdmin” by using search engines. This
technique is also known as Google Hacking.

6.2 One-Click Exploits and Denial-of-Service

Several URL shortening services test submitted URLs be-
fore returning a shortened URL. This procedure is usually
employed to enforce the terms of service, in which many
shortening services forbid submitting URLs pointing to
other shortening services. The target URL is requested
once and the HTTP response code is inspected.

This can be used to attack other servers. When a web
server is vulnerable and the vulnerability can be exploited
with just one HTTP GET request, it is sufficient for an
attacker to submit a URL that exploits the vulnerability
to a shortening service. This service will then request the
URL from the server and trigger the exploit. Especially
when one URL takes down the server, this approach can
be very effective.

7 Shortened URLSs in Spam

We use data obtained from a spam honeypot® running con-
tinuously since October 2003 to analyze the use of USS in
spam. The honeypot consists of a website generating and
displaying a new e-mail address each time it is requested,
and a database to store the messages received. At the time
of writing, the project was running for seven years and
had collected 7,898,130 spam e-mails addressed to 5,594
different e-mail addresses (each corresponding to one e-
mail address crawler visit). As no address has ever been
used for real e-mail communication, all received e-mails
are spam.

®http://koeln.ccc.de/schnucki

7.1 Parsing Spam

A Ruby script is used to parse the e-mail messages. The
results are stored in a database. For each e-mail, the re-
cipient e-mail addresses, date and time the e-mail has been
received, and all URLs found in all attachments of content
types text/plain and text/html are stored in the
database. Attachments are decoded if a content-transfer-
encoding (e.g. quoted-printable or base64) has
been used and searched for strings which start with
“http://” or “https://” or which contain “www”. Before in-
serting the strings into the database as URLSs, the script
tries to parse each URL using the Ruby URI: :HTTP
class. Afterwards, valid URLs are requested and the re-
sults are stored in the database.

The complete process of parsing all 7,898,130 e-mails
and searching for URLSs took 52 days on a machine with a
quad-core CPU (Intel Xeon, 2.33GHz) and 4GB of RAM
running Linux. An amount of 12,831,780 URLs were
found within the e-mails, of which 21,843 URLs have
been marked as invalid (i.e. could not correctly be parsed
as a URL), leaving 12,809,937 valid URLs.

We search the set of URLs for new USSes by first select-
ing all URLs whose response HTTP status code is in the
range of 200 to 399, and afterwards matching the URLs
using a regular expression. In this regular expression the
length of the host name is in the range of 2 to 15 characters
and the length of the path is in the range of 1 to 10 char-
acters. Afterwards all host parts from the resulting list of
URLSs are checked by hand for shortening services. This
way, 58 additional services are discovered which are not
included in any of the other lists mentioned in Section 3.
Searching for shortening services in all URLs found in the
spam e-mails by matching the URLs against the set Sy
leads to a list of 35,647 shortened URLSs, which is 0.3 %
of all 12,809,937 valid URLSs. The top twenty services are
listed in Table 2.

7.2 USS Spam Detection Performance

In this section, we analyze the 16 services for which at
least 100 shortened URLs have been found in spam re-
garding their spam detection rate. These are:
bit.ly, tiny.cc, hurl.me, urlpass.com, snipurl.

xs.to,

com, migre.me, su.pr, snipr.com, snurl.com, is.
gd, redir.ec, tinyurl.com, 9mp.com, dwarfurl.
com, and moourl.com. The results are summarized in
Table 3.

All requests for URLs of xs.to returned HTTP status
code 404: no URL was redirecting properly at the time of
writing. It is therefore not possible to estimate the spam
detection rate for xs. to.

The service bit.1ly returns HTTP status code 301 for
working and status 302 for disabled shortened URLs,
where users are redirected to a warning page. It can there-
fore be concluded that bit .1y has a spam detection rate

Host Unique URLs | # Messages
Xs.to 22,711 27,382
bit.ly 6,372 9,068
tiny.cc 1,133 1,308
hurl.me 1,109 1,969
urlpass.com 683 1,012
snipurl.com 338 534
migre.me 251 568
su.pr 231 1,415
snipr.com 230 344
snurl.com 211 174
is.gd 197 283
redir.ec 169 333
tinyurl.com 163 430
dwarfurl.com 105 77
moourl.com 100 95
uforgot.me 93 93
good.ly 83 88
9mp.com 82 91
urlme.in 68 97
qurl.com 60 80

Table 2: Top 20 USS found in spam e-mails

Service Spam Detection Rate
is.gd 100.00 %
tinyurl.com 97.01 %
snipurl.com 63.67 %
bit.ly 57.00 %
moourl.com 57.00 %
su.pr 33.04 %
migre.me 4.38 %
tiny.cc 5.32%
redir.ec 0.00 %
urlpass.com 0.00 %

Table 3: Detection rates of popular shortening services found in
spam e-mails

of 3,632 out of 6,366, or 57 %.

Most shortened URLSs of the service t iny . cc are work-
ing. Only a single URL http://tiny.cc/lsc3z could
be found that has been marked by the service as abuse.
This is done by redirecting users to an abuse page. There
are 60 other URLs which redirect to a “not found” page.
Assuming that “not found” means the shortened URL has
been deleted because of spam, this leads to a spam detec-
tion rate of 60 out of 1,128 URLs, or about 5.32 %.

The services urlpass.com and redir.ec did not rec-
ognize any URLs found in our honeypot as spam.

The service snipurl.com had two alias names in the
list: snipr.com and snurl.com. The service returns
the HTTP status code 301 for working redirections and
HTTP status code 410 (“Gone”) for disabled or deleted
URLSs, where a web page is shown which states that the
shortened URL has been deleted. The spam detection rate
1s 496 out of 779, or 64 %.

11 of the 251 URLs found for migre.me redirected
back to the server migre .me and the resulting web page
showed a message that the requested shortened URL was

blocked. This makes a spam detection rate of 4.38 %.

The service su.pr returned HTTP status code 404 77
out of 233 times. Assuming that these URLs were deleted
because of spam, this leads to a detection rate of 33.04 %.

All URLSs of the service is.gd return HTTP status code
200. Users trying to access the shortened URLs are dis-
played a message which states that the URL is disabled
due to a violation of the service’s terms and conditions.
Therefore the spam detection rate is 100 %.

The service tinyurl.com returns HTTP status code
301 for working shortened URLs. All 29 URLs which
return status code 404 are probably invalid URLs because
the format differs significantly from the usual one. The
other 130 URLs which return HTTP status code 302 redi-
rect to an abuse error web page. The spam detection rate
of tinyurl.comis 130 out of 134 URLs, or 97 %.

The USS hurl.me was not operating properly, at least
for all URLs found in spam e-mails. dwarfurl.com and
9mp . com were also inoperative. Therefore we could not
determine their spam detection rates.

Within the set of 100 URLSs of the service moourl.com
42 redirected to a page stating that the URL was disabled,
and for 15 more a message was shown that the shortened
URL could not be found. As these 15 URLs look valid,
it is assumed that the deletion happened on purpose. This
gives a detection rate of 57 %.

In summary, we show that URL shortening services are
used in spam and the spam detection rates for most of the
services are not optimal.

8 Conclusion

We have identified and examined how URL shortening
services may introduce security and privacy risks. Ac-
cording to our analysis, none of the currently most pop-
ular URL shortening service exhibits malicious behavior.
We show, however, that many of these shortening services
are well-prepared for user tracking. Also, we show that
by enumerating shortening services a lot of sensitive or
private information can be found and several shortening
services do leak submitted URLSs to search engines. Fu-
ture Work may include similar analysis of one click image
hosting services or one click hosting in general. A mon-
itoring service for USSes could be established, to verify
the continuous performance of USSes regarding availabil-
ity and spam detection. An extended version of this paper
will be made available that contains all lists generated in
our experiments.

10

References

(1]

(2]

(3]
(4]

(5]

(6]

(7]
(8]
(9]
(10]
(11]
[12]
[13]

[14]

[15]

(16]

(17]

Thomas Thurman. Tinyurl whacking. http://
thomasthurman.org/tinyurl-whacking, 2002.

K. McGrath and M. Gupta. Behind phishing: an examina-
tion of phisher modi operandi. In Proceedings of the Ist
Usenix Workshop on Large-Scale Exploits and Emergent
Threats, 2008. USENIX Association.

David Weiss. The Security Implications of URL Shorten-
ing Services. http://7j.mp/b4b730, April 2009.
Joshua Schachter. on URL shorteners. http://j.mp/
BJOm1, April 2009.

D. Fetterly, M. Manasse, M. Najork, and J. Wiener. A
large-scale study of the evolution of web pages. Proceed-
ings of the 12th international conference on World Wide
Web, page 97f, May 2003.

C. Grier, T. Kurt, V. Paxson, and M. Zhang. @spam: the
underground on 140 characters or less. In Proceedings of
the 17th ACM conference on Computer and communica-
tions security 2010, pages 27-37.

Mario Vilas. Having fun with URL shorteners. http:
//3.mp/i2jexh, January 2010.

URL Shortening Services - A List of URL Shorteners.
http://longurl.org/services.

Long list of URL shorteners. http://j.mp/y0ENQ,
June 2008.

Mike Koss. Bit.ly Dominates TinyURL and 213 other Link
Shorteners. http://j.mp/1UFvr4, August 2009.
Mike Koss. Exhaustive List of URL Shorteners. http:
//7j.mp/axq60a, April 2009.

Palin Ningthoujam. URL Toolbox: 90+ URL Shortening
Services. http://3j.mp/91Dg97.

Twitter Inc. Twitter Streaming API: Concepts. http:
//7j.mp/dkaT3d.

R. Dellavalle, E. Hester, L. Heilig, A. Drake, J. Kuntzman,
M. Graber, and L. Schilling. Going, Going, Gone: Lost
Internet References. Science, 302(5646):787-788, 2003.
Gunther Eysenbach and Mathieu Trudel. Going, go-
ing, still there: Using the webcite service to permanently
archive cited web pages. Journal of Medical Internet Re-
search, 7(5):e60, December 2005.

Updated: Cligs Got Hacked - Restoration from Backup
Started. http://j.mp/zg4Ft, June 2009.

Hack update: Backup saves 93% of hacked urls. http:
//blog.cli.gs/news/hack-update, June 2009.

