
Bootstrapping Mobile PINs Using Passwords

Markus Jakobsson
Information Risk Management

PayPal
San Jose, CA

majakobsson@paypal.com

Debin Liu
Information Risk Management

PayPal
San Jose, CA

deliu@paypal.com

Abstract—We describe a method of deriving PINs from
passwords. The method is useful to obtain friction-free user
onboarding to mobile platforms. It has significant business
benefits to organizations that wish to introduce mobile apps
to existing users – but which are reluctant to make the
users authenticate with passwords. From the user’s perspective,
a PIN is easier to enter than a password, and a derived
PIN does not need to be remembered – assuming the user
can recall her password. The use of tiered authentication –
relying on both PINs and passwords – hardens systems against
compromise. This is because transactions relying on PINs can
have lower transaction limits and flagging thresholds than
transactions authenticated using passwords. Even though our
PINs are derived from passwords, they do not contain sufficient
information about the passwords to make the passwords easy
to infer from compromised PINs. We quantify exactly how
much information about the passwords and the derived PINs
contain, and how much information is lost – based on real-
life password distributions. We also assess the usability of the
proposed method using one 25-subject qualitative study and
one 100-subject quantitative study.

Keywords-bootstrapping, dropbox, entropy, malware, pass-
word, PIN.

I. INTRODUCTION

Consumers do not like passwords – especially if they have
to be entered on a handset [13]. In a recent study [11], it
was shown that the time to enter a typical strong password is
on the order of 2-3 times longer on a handset than a regular
keyboard.

Financial service providers also do not like passwords for
handsets, but for a different reason: Handsets are believed to
be more likely to be targeted by fraudsters than PCs are – at
least in the near future. This is based on a shift from phishing
to malware [2], [8], an explosive growth of the mobile
market [10], and structural vulnerabilities in the current
malware defense paradigm [12] for battery-constrained de-
vices. Trusted computing [15] may help address the problem,
but has so far not done so. Handsets are also vulnerable
to threats that PC are not currently exposed to – such as
malware propagation over Bluetooth [4]. Although the threat
is nascent, it is starting to be given attention [9].

Having both passwords and PINs allows for a tiered
authentication approach where certain types (and sizes) of
transactions can be performed on mobile devices, and rely

on PINs for authentication – while more secure devices
and stronger authentication could be required for other
transactions. In a way, PINs therefore improve1 security
relative to only using passwords: they can be used in contexts
where passwords should not be exposed, and such PIN-
authenticated transactions could be treated differently by
the backend risk model than password-authenticated transac-
tions would. This is contrary to the traditional wisdom that
PINs, being shorter than passwords, are simply less secure.

As a result of user preferences and provider concerns,
there is an industry trend towards using PINs instead of
passwords on handsets, gaming consoles, store checkouts,
and other appliances with similar constraints and security
profiles. Many phone apps ask for a PIN instead of a
password.

While PINs offer improved convenience to users and have
security benefits in comparison to passwords, using PINs
instead of passwords come with a multitude of drawbacks.
From a business point of view, any increase of the end-user
friction is worrisome. Having to force millions of existing
users to create PINs is not desirable at all. Moreover, PINs
are not as easy to remember as passwords, unless the number
represents something to the user. As a result, approximately
one user in five selects their birthday as a PIN [3]. This not
only means that database-scraping attackers have an edge,
but also leads to a restricted distribution of PINs: There
are only 365 days in a year. It is also well understood that
people commonly reuse PINs, just as they reuse passwords.
This means that if one PIN is compromised, then that may
put others at risk as well. For those who do not use any of
these tricks to remember PINs, it is relatively common to
forget them: Roughly one in ten report having forgotten their
PINs [3]. Forrester research [5] estimates the average costs
of help-desk assisted reset at $70 per reset, making forgotten

1There are other ways, of course, in which PINs offer lower security
than passwords do. This paper does not argue in favor of either, but simply
addresses the issue of how to create and manage PINs – if we are to use
them. However, it should be noted that PINs are often considered sufficiently
secure. This is since financial service providers – and many other service
providers – already use various backend security features to detect account
take-overs. As a result, PINs provide sufficient security for many common
types of transactions – such as paying a vendor who has previously been
paid by the user in question.

credentials a commercially very expensive security problem.
This paper describes a method that bootstraps the gen-

eration of PINs to create an automated onboarding of an
overwhelming majority of users. We achieve this by deriving
the PINs from already established passwords – without
explicit user involvement. The user would, in fact, not even
be aware of the PIN creation until she is told that she has
a PIN, and should use it to log in. The PIN is set as the
first four characters of the password, mapped to a numeric
keypad. This mapping is analogous to how alphanumeric
phone numbers are mapped to a 10-button keypad – like
1-800 CALL ATT becomes 1-800 225 5288. Similarly, the
password “Blu2thrules” becomes the PIN “2582”2.

We propose to use mapped password prefixes as PINs,
and describe how to derive these on the backend. We also
show that the resulting system is usable, and analyze how
much information a derived PIN reveals about the underlying
password. This is relevant to consider in order to understand
the consequences of a PIN being compromised. The analysis
is based on tens of thousands of actual passwords, and their
associated derived PINs. We show that derived PINs have
approximately the same entropy as traditional PINs do, and
hence, do not reduce security.

Outline: We begin with a review of related work (section II).
We then detail our proposed method, both from the user’s
perspective and in terms of the backend processing (sec-
tion III). In section IV we describe how we determined the
entropy of passwords and PINs derived from these, after
which we detail the security implications of our proposed
method (section V). In appendix A, we briefly report on a
study we performed aimed at determining how people select
PINs, assessing the approximate security of PINs based on
those results.

II. RELATED WORK

Florêncio and Herley [6] reported that typical users hardly
use uppercase and special characters. Our findings support
that claim. Florêncio and Herley [6], [7] also computed the
entropy of each password by treating passwords as strings
generated uniformly at random: They assumed that the
characters of one password are independent of each other,
and conclude, as a result, that typical 8-character passwords
containing numerical, upper case and lower case characters
would have around 42 bits of entropy. Unfortunately, and
as evidenced by our findings, this is not so: There is a lot
of correlations between characters of typical passwords. We
assess the amount of entropy in the first four characters of
passwords, and find that it is much lower than postulated

2While we think of PINs as four-digit elements, it is straightforward to
modify our techniques to derive six-digit PINs. However, while this leads
to a reduced risk of PINs being guessed, the amount of information in the
PIN about the associated passwords increases. This has negative effects in
situations where PINs are compromised.

by Florêncio and Herley, but a bit higher than estimated by
NIST [14].

As a result of potential independent interest, we also
compare the approximate entropies of the first four char-
acters of passwords for different domains – a large financial
service provider (we will refer to this as FSP for Financial
Service Provider), a large social networking provider (we
will refer to this as SNP for Social Network Provider), and
a collection of mixed domains. These entropies are not the
same, suggesting that password rules and differing security
mentalities effect the strength of passwords in a noticeable
manner.

Passwords are not stored in cleartext on the backend, as
this would be a great liability, should the backend database
be compromised. Instead, each password is concatenated
with a random value (the so-called salt), then hashed using
a function such as SHA-2 [1]. The output of the hash
function is stored, along with the associated salt value.
This approach drastically increases the cost for an attacker
of exhaustively searching the password space, determining
matches using a compromised password database. This is
because it is not possible to build a dictionary of hashed
password values given a dictionary of plaintext passwords,
and determine what the entries of a compromised password
database correspond to. This, of course, is because each
entry depends not only on the password, but on the salt
value as well. PINs can be stored in the same way.

III. PROPOSED METHOD

The User Perspective. Users would not need to know that
PINs are derived from their passwords. It will happen3

without their knowledge, as they authenticate to the system
using a password. When a user for whom a PIN has been
derived arrives to the mobile authentication interface (or
another PIN authentication interface), she would be told that
she has a PIN – and how to derive it from her password. As a
result, users do not have to remember the PIN – it is enough
to remember the password. A screenshot of a possible user
interface is shown in figure 1. Relying on user experiments,
we support that it is straightforward for individual users to
perform the required mapping.

Derivation Approach. Given how passwords are stored
on the backend, it is not possible to derive PINs from
stored passwords. However, it is possible to derive PINs
from passwords when these are temporarily available in
plaintext – as they are each time a user logs in using a
password. Therefore, we can compute the derived PIN from
the plaintext password once it has been verified to be correct
– and right before the plaintext password is erased on the

3The PIN derivation will not be performed for users who already have
PINs; it also will not be done for a small fraction of users who have
passwords that cannot be mapped in a manner that would be simple to
explain to the user. Correspondingly, the messaging to users of these two
types would be different from that to users with derived passwords.

Figure 1. The figure shows the user interface. To the left is an image
of what the user might see when arriving at the authentication stage; in
some contexts, the user name may be auto-filled or obtained from a drop-
down menu. The image to the right shows what she would see after tapping
on the PIN window. To log in, the consumer would simply enter the first
four characters of her password, using the numeric keypad. If a password
character is “2”, “A”, “a”, “B”, “b”, “C” or “c”, then the user presses the 2-
button – we are not case sensitive. A password starting with “Blu2” would
correspond top the PIN 2852.

backend. The derived PIN can then be salted, hashed, and
stored along with the salted and hashed password record.

Managing Special Cases. There are several special cases
that need to be addressed for our approach to be practi-
cally viable. We list these here, along with our suggested
approaches for dealing with them:

1) Unmappable characters. An unmappable character
is a character that is not present on a typical numeric
keypad. An example of an unmappable character is
$. In section IV, we determine that the frequency
of passwords containing unmappable characters is
marginal – 1.4% for FSP passwords, and lower for
the other password sources studied. This special case
can be addressed in at least two ways: (a) one can
map all special characters to one digit (e.g., to “0”), or
(b) one can simply “disqualify” passwords containing
unmappable characters among the first four characters.
The latter would force the owners of such passwords
to create a PIN manually – in the old-fashioned way
– or to update his/her passwords. One approach to
increase automatic enrollment is to augment password
strength checkers to reject unmappable characters in
the first four positions of passwords that are created.
Given the very low rates of unmappable characters in
the first four positions, this has no practical impact on
the security of the passwords.

2) Strong passwords, weak PINs. While all credentials
are equally good from a theoretical point of view, some

PINs are so commonly used that they are considered
weak – “1234” is one such PIN. A credential is consid-
ered strong if it is sufficiently uncommon – otherwise
weak. There are strong passwords that result in weak
PINs. Example password such as “1234GreyFrieS#”
and “1BeGood” both correspond to a derived PIN
“1234”.
Whereas many password strength checkers will reject
passwords with “weak” sequences – independently
of the strength of the remainder – not all will. For
example, many password strength checkers (like that
of FSP’s) will already reject the above example pass-
word. This is since it contains the sequence “1234”,
which is considered an indicator of a weak pass-
word – whether the password is actually weak or
not. Similarly, many password strength checkers reject
passwords that contain the name of the registered user,
his or her zip code, and similar elements.
To avoid weak derived PINs, one could reject the
associated password (as is commonly the policy);
accept the password but not derive a PIN; or derive a
PIN but demand that it is updated on its first use. The
approach taken is a matter of policy.

3) Password changes. If a PIN is derived from a pass-
word, then used for some time, then the user may
either think of the PIN in terms of the password it
is derived from or she may learn the PIN. In the
latter case, the PIN would become independent of the
password in the mind of the user. The backend cannot
know whether this has happened or not. Therefore, if
the user were to change her password, the backend
could create two “parallel universes” – with the old
derived PIN and the new derived PIN. Both are valid
until one of them is used, at which point the other one
is erased.

4) Hardware keyboards. Some handsets, like BlackBer-
ries, have hardware keyboards. If the user is asked
to enter the beginning of her password, this keyboard
should not be used, as it would not cause the characters
to be mapped as they are entered, and it is not
reasonable to ask the end user to perform this mapping
without the visual aid of the PIN pad. Instead, the
hardware keyboard would be momentarily turned off,
and the PIN entry would be done using the touch-
screen keyboard4.
Other handsets, such as the typical 4-5 year old phone,
have hardware keyboards with the proper mapping;
however, people are used to pressing each button
one or more times in a row to advance to the right
character. This can be detected and compensated for

4Old BlackBerries do not have touch screens. Since apps are platform
aware (if not platform specific), apps on non-compliant platforms would
simply not offer users to log in using a derived PIN, but would require
them to create a PIN out of band – as is currently required for all users.

on the backend, or the user can be instructed to only
press each button once for each character.

Messaging. The backend “knows” for what users a PIN has
been derived, and messages those users – but only those
– when they arrive to the mobile portal (or another portal
where PIN entry is preferred by the system.) The messages
must be clear and instructive, and yet, be short and concise
(to account for the limited screen size, and to avoid being
ignored). We have tested a variety of messages, and have
found that users understand the message “Your PIN is the
first four characters of your password. Please enter your
PIN.”

IV. ANALYSIS OF PASSWORDS AND DERIVED PINS

It is not possible to determine the strength of passwords
simply from their lengths or rules on what constitutes valid
passwords. The reason is that passwords are not uniformly
distributed within their associated ranges. To determine what
the true distributions are and what the resulting degrees of
security are, we analyzed a large number of real passwords
obtained from raided dropboxes. A dropbox is the type of
file used by fraudsters to temporarily store stolen credentials.
Many financial organizations and security vendors attempt
to raid dropboxes – i.e., locate them and copy their contents.
This is done to restrict access to compromised accounts. We
analyzed passwords from such dropboxes.

Some of the dropboxes were used by phishers, others by
malware authors. One difference is that sometimes – very
rarely – would-be victims of phishing attacks are aware of
being targeted, and instead of entering their real credentials
enter insults. This is not happening for malware dropboxes,
where victims are more “sincere”. Another difference is that
phishing dropboxes typically only have credentials for one
particular site (the spoofed site), whereas malware dropboxes
contain any credential that the malware agent could obtain.
(The latter also leads to a way of distinguishing between
phishing and malware dropboxes.)

We analyzed the contents of three dropboxes, correspond-
ing to FSP accounts (phishing, 8359 credentials); SNP
accounts (phishing, 2873 credentials); mixed credentials
(malware, 16192 credentials.) We refer to these as three
groups of passwords onwards – corresponding to a major
Financial Service Provider, a major Social Network Provider,
and to mixed domains with passwords harvested by malware.
We do not combine the contents of the groups further since
the distribution of each class is different – we determined
this using the Kolmogorov-Smirnov test and Wilcoxon Rand
Sum test. The difference in distribution may be attributed to
different rules of what a good password is on the various
domains, and to differing user security mentalities for the
three different types of domains. (The malware dropbox
appears to have a large percentage of gaming passwords.)

Methodology for Assessing Entropy. We wish to assess the
entropy of passwords of each group, corresponding to the
three groups described above. For all the credentials in the
dropboxes, we truncated them to the four first characters,
resulting in what we refer to as pwd4. We then counted –
within each group of passwords – the relative frequencies of
each value pwd4. For example, the password “Blu2thrules”
would be truncated to become pwd4 =“Blu2”, and a counter
for this very string would be increased. After that, given the
relative frequencies, we would estimate the entropies for the
different groups.

There are at least 264 ≈ 457000 possible four-character
combinations of the truncated passwords (not even taking
case, numerical values and special characters into consid-
eration). In contrast, we have between 2000 and 17000
samples for each group, which causes a rather low density
of occurrences. This, in turn, results in complete lack of
observation of some combinations that may occur in larger
password populations, and a slightly inaccurate estimate for
the frequencies in general. As a result, we this leads us to
underestimate the associated entropies.

We then perform what we refer to as the phone pad
mapping for all the truncated passwords pwd4. For example,
this would map the pwd4 string “Blu2” to “2582”, using
the mapping resulting from the common interface shown
in figure 1. As a result, there are exactly 10000 possible
mapped strings. For each of these, we determine the relative
frequency, given the mapped and truncated passwords of
the three groups. Like the entropy assessments from the un-
mapped passwords, the entropy assessments of the mapped
passwords will be slight underestimates (but closer to the
truth given that the mapping increased the density.)

Entropies. Figure 2 shows the entropies of the first four
characters of unmapped passwords and the derived PINs –
i.e., the mapped and truncated passwords. The figure also
shows the information loss during the mapping process.

These entropy estimates are 12, 10.5 and 9.7 for the three
groups, and for the derived PINs, they are 10.9, 10 and
9.2. The groups, again, correspond to FSP passwords, SNP
passwords and passwords from mixed domains.

We note that the sample sizes play a substantial role when
producing entropy estimates – especially for the unmapped
samples, where the density is sparser than for the mapped
samples. To determine the effects of this, we sampled down
the first group (FSP, 8359 samples) to the size of the second
group (SNP, 2873 samples). We did this ten times for
different randomized samples and averaged the associated
entropy measures. The result is 10.9 for the down-sampled
FSP, to be compared to the 10.5 of the SNP group, and 12
for the full FSP. (While – with similar sample sizes – FSP
and SNP appear to have a similar entropy, we recall that
we found that the samples are not drawn from the same
distribution.)

Figure 2. The figure shows the entropies of the first four digits of
the studied passwords; the entropies of the corresponding PINs; and the
information loss during the mapping process from passwords to PINs. The
numbers are different for our three sources of passwords; most probably
due to differing rules governing what passwords are accepted, and different
security mentalities among end users. The first two groups correspond to
phishing dropboxes for FSP and SNP, while the third group corresponds to
a malware dropbox containing credentials to any domain that was accessed
from the infected machines.

We sampled three data sources from 10% to 100% of their
original size. Figure 3 shows a strong dependency on the
sample size when estimating the entropy. This is due to the
fact that low densities of samples create an artificially low
estimate of the entropy, given how entropies are estimated.

We know that even larger sample sizes are likely to further
increase the estimates of entropy. Therefore, we note that our
estimates are lower estimates.

The differences between the entropies of the unmapped
and mapped password collections correspond to the amount
of information that is removed by the phone pad mappings.
These are 1.1, 0.5 and 0.5 for the three groups. (The reason
they are not the same are due to different sample sizes,
different requirements on passwords, and potentially, due to
different efforts among the users to select good passwords
for the associated domains.)

Improving on NIST’s Entropy Estimates. In addition to
performing a four-character truncation of passwords (which
we referred to as pwd4), we also perform three-character,
two-character and one-character truncations. We refer to
these as pwd3, pwd2 and pwd1. Using the same method-
ology as described above, we estimate the entropies. The
entropy contributed by the first character is the entropy of
pwd1, or E(pwd1). The entropy of the second character
is the difference E(pwd2) − E(pwd1); that of the third
character is E(pwd3)−E(pwd2), and that of the fourth, not

Figure 3. The figure shows a strong sample size dependency of entropy
estimation for all three data sources. We know that the true entropies of
the three sources are at least as big as the estimates for the 100% sample
measurements, but extrapolation of these curves tell us that still bigger
sample sizes would most likely have shown yet higher source entropies. It
is an interesting open problem how to extrapolate estimates of this kind to
assess the true entropy, given only samples of rather small sizes.

surprisingly, E(pwd4)−E(pwd3). These estimates take cor-
relation into consideration. They are specific to the various
groups, since these are governed by different distributions.

We find that the entropies contributed by the first four
characters are 5.1, 3.5, 2.4, 1 for FSP passwords; 5.1, 2.9,
1.9, 0.6 for SNP passwords, and 5.4, 2.6, 1.3, 0.4 for the
mixed “malware” passwords. Figure 4 shows the entropies
contributed by each of the first four characters. This is in
slight contrast to the estimates made by NIST [14]. NIST
suggests that the distribution of passwords corresponds to an
entropy of 4 bits for the first character, 2 bits for the next 7
characters, and 1.5 bits per character for the 9th to the 20th
characters, and 1 bit for the remaining of the password. 6
bits of entropy is added when the user is forced to use both
upper case and non-alphabetic characters, but that does not
apply to the FSP or SNP passwords.

Figure 5 compares two entropy estimates for each of first
four characters for FSP passwords. Unlike our estimates,
the “random” estimates do not take into consideration the
correlation between positions. It is computed based solely on
the relative frequencies of every character at each of the first
four positions. The difference between our estimates and the
random estimates illustrate that there are notable correlations
between two positions, and the first four characters are not
random strings. Passwords from SNP and Malware exhibit
similar patterns.

Figure 4. The figure shows the entropies contributed in each of the first
four positions for all three data sources. These are conditional entropies,
as they reflect the fact that the distributions of characters is conditional on
previous password characters. This follows from the fact that passwords
often are words, or parts of words, and words are not random strings.

Figure 5. The figure shows the conditional entropies contributed in each
of the first four positions, for the FSP password group. It also shows the
entropies in each of the positions, which is an estimate that does not take
correlation into consideration. The latter estimate is only meaningful when
we consider a given position in isolation. The differences between these
two estimates suggest that FSP password prefixes are not random strings.

Commonality of Special Characters. Among the pass-
words we reviewed, on average approximately 32% had both
upper and lower case among the first four characters; only
3.2% had at least one non-alphanumeric character.

Figure 6. The figure shows the percentages of the passwords which
contain upper case and special characters at any of the first four positions.
Passwords with special characters in the first four positions can either have
such symbols mapped to 0 or 1, or these passwords could be excluded from
the PIN derivation process.

Our principal approach only considers the mapping of
alphanumerical strings, and does not account for special
characters (such as “@”, “$”, “+”) among the characters to
be mapped to generate the derived PIN. However, we find
that the frequency with which one or more of the first four
characters is “unmappable” is rather marginal: It is 1.4%
(FSP), 1.9% (SNP) and 6.2% (mixed passwords). Figure 6
shows the percentages of passwords using upper case and
special characters.

Character Type. Florêncio and Herley [6] found that typical
users hardly use upper case and special characters. We
have the same observation for the first four characters of
the passwords we study. All three sources exhibit similar
character type distributions: lower case characters dominate
among all positions; numerical characters are consistent
around 10%; upper case characters are used more often as
the first digit around 7%, then reduced to 2 − 3% at other
positions. Figure 7 shows the character type distribution in
the first four positions of FSP passwords.

V. SECURITY ANALYSIS

Security Impact of Compromise. From the entropy es-
timates of section IV, we know that an adversary gains
on average 10 bits of information about a password if he
compromises the corresponding PIN – or 10.9 (FSP), 10
(SNP) and 9.2 (malware). The mapping itself destroyed 0.7

Figure 7. The figure shows the character type distribution at first four
positions of FSP passwords. It is interesting to note that upper-case is
much more common in the first position than elsewhere. The percentage
of numeric characters is fairly even for the different positions.

bits of information on average5, and the truncation the rest.
The exact amount of information lost by the truncation de-
pends on the length of the password. The average password
length among the FSP and SNP passwords we analyzed were
roughly 8 characters, which according to NISTs entropy
estimates [14] corresponds to an entropy of 18 bits.

Our findings suggest that the actual entropy is a bit higher
than what was estimated by NIST; however, these findings
only apply to the first four characters. If we extrapolate our
findings about the first four characters to the entire password
and simply argue that each character has 7% more entropy
than estimated by NIST (as supported by our findings for
the first four characters), then our estimate of the entropy of
the entire password is 1.07 × 18 = 19.3 bits instead of 18
bits.

We see that the attacker learns on average 10 bits out
of the on average 19.3 bits of information, resulting in a
conditional entropy of between 18 − 10 = 8 bits (using
NIST’s estimate) to 19.3 − 10 = 9.3 bits (using our
extrapolated estimate). This corresponds to the security of a
password for which the derived PIN has been compromised.
While this is not terrific, it ought to be compared to the
much starker situation in which the entire password is
compromised, should passwords be used on insecure devices
instead of derived PINs.

Comparing Derived PINs and Traditional PINs. In sec-
tion IV, we determined that the entropies of derived PINs

5The lost information due to the mapping for the three groups are 1.1
(FSP), 0.5 (SNP) and 0.5 (malware).

were 10.9, 10.0 and 9.2 for the FSP, SNP and mixed
domains. This should be compared to the general estimates
of the entropy of PINs that are not derived from passwords.
An upper bound of the traditional PIN entropy is provided
in Appendix A. According to those upper bounds, traditional
PINs have an entropy of no more than approximately 10.2
bits. Therefore, we see that our derived PINs do not reduce
security, but have approximately the same average security
as traditional PINs. (There is anecdotal evidence suggesting
that the lower quartile of derived PINs are notably more
secure than the lower quartile of traditional PINs, though.
This is due to the lack of very common combinations for
derived PINs, and the relatively common use of years and
dates as traditional PINs.)

Moreover, we note that if the (beginning of the) password
is not reused, then the derived PIN is independent of other
PINs created from other related passwords.

VI. USABILITY EXPERIMENTS

We wanted to determine whether users would understand
how to use derived PINs. We performed two studies: one
qualitative, using an iPhone app and 25 subjects; and one
quantitative using 100 subjects.

Qualitative Study. We performed a qualitative study using
an iPhone app (shown in figure 1), using 25 subjects in the
age group 30-50 years old. 16 were men, 13 were employed
in the technology sector.

16 of the subjects entered the expected PIN with no
hesitation. Four of these cited similar user experiences for
dialing phone numbers or for entering last names using the
number pad. The remainder offered no particular explanation
of why they knew what to do.

Another six subjects (all of them men in the technology
sector) took more than a minute to determine what to do,
but then, correctly entered the PIN. Several of them argued
that it would have been difficult to succeed if they had used
a special character in the first four of the password.

Three of the subjects failed initially. All of them under-
stood the process when given an explanation corresponding
to what was later added under the help button.

Quantitative Study. We ran a user experiment on Amazon
Mechanical Turk in which we recruited 100 subjects, all
from the U.S., and only subjects with at least 95% positive
feedback. They were paid $0.15 each for responding to the
question shown in figure 8.

Out of the 100 responses, 68 were correct (“2582”), 22
were wrong but corresponded to likely successful attempts
(“Blu2”). Those who responded “Blu2” were asked in a
follow-up interaction what the PIN would be if they could
only use digits, and all responded correctly. This amounts
a total of 90% of who would have successfully entered the
correct PIN. Of the remaining responses, one was a likely
typo (“2182”); two were “1322” (the numerical string in the

Figure 8. The figure shows what subjects on Amazon Mechanical Turk
are asked. Out of the 200 subjects who took the test, 68% responded with
the expected answer, “2582” and another 22% with an answer (“Blu2”)
that indicates that they misunderstood the question but would have passed
the authentication.

user name); two suggested that the subjects thought only
letters mattered (“Blut”). Three believed “JoeS” (parts of
the user name) was the correct response, and one cannot
be explained. It is not clear what portion of these 10% of
clearly unsuccessful logins would have occurred in a more
realistic setting in which the users were more motivated to
log in.

In a previous version of the experiment, the text on the
screen read “Your PIN is the first four letters of your
password” (emphasis added). In that version, 22 out of
33 respondents still responded with “2852”. Two users
answered “2882” and three “Blut” – which corresponds to
2882 but not mapped. Another two responded “Blu2”.

VII. CONCLUSIONS

In this paper, we described a method of deriving PINs
from passwords which is useful to obtain friction-free user
onboarding to mobile platforms. We quantified exactly how
much information about the passwords and the derived PINs
contain, and how much information is lost based on real-life
password distributions. We also assessed the usability of the
proposed method using human-subject studies.

ACKNOWLEDGMENTS

Many thanks to Lisa Kelly for helping us obtain access
to raided dropboxes. Thanks to Bill Leddy for developing
the iPhone app that was used in the qualitative experiments,
and for providing advice on the presentation and flow. Also,
many thanks to Jeff Hodges, Yang Liu, Alon Nir and Sid
Stamm for providing helpful feedback on an earlier draft of
the paper.

REFERENCES

[1] N. S. Agency. SHA-2, US Certification: FIPS PUB 180-2,
First published 2001.

[2] M. Barrett. Cybercrime – and what we will have to do if we
want to get it under control, July, 2008.

[3] S. Berry. One in five use birthday as PIN number, Daily
Telegraph, 27 Oct 2010.

[4] L. Carettoni, C. Merloni, and S. Zanero. Studying Bluetooth
malware propagation: The BlueBag project. IEEE Security
and Privacy, 5(2):17–25, 2007.

[5] A. Cser, J. Penn, P. Stamp, A. Herald, and A. Dill. Identity
Management Market Forecast: 2007 To 2014: Provisioning
Will Extend Its Dominance Of Market Revenues, February
6, 2008.

[6] D. A. F. Florêncio and C. Herley. A large-scale study of web
password habits. In WWW’07, pages 657–666, 2007.

[7] D. A. F. Florêncio and C. Herley. Where do security policies
come from? In SOUPS’10, pages –1–1, 2010.

[8] Georgia Tech Information Security Center. Emerging cyber
threats report for 2009, October, 2008.

[9] S. Hansell. How hackers snatch real-time security ID num-
bers, August 20, 2009.

[10] S. Havlin. Phone infections. Science, 324(5930):1023–1024,
2009.

[11] M. Jakobsson and R. Akavipat. Rethinking passwords to
adapt to constrained keyboards, www.fastword.me, Accessed
2010.

[12] M. Jakobsson and K.-A. Johansson. Retroactive Detection of
Malware With Applications to Mobile Platforms. In HotSec
2010, Washington, DC, August 2010. USENIX, USENIX.

[13] M. Jakobsson, E. Shi, P. Golle, and R. Chow. Implicit
authentication for mobile devices. In HotSec’09: Proceedings
of the 4th USENIX conference on Hot topics in security, pages
9–9, Berkeley, CA, USA, 2009. USENIX Association.

[14] NIST Special Publication 800-90. Recommendation for
Random Number Generation Using. Deterministic Random
Bit Generators.

[15] J. Wiens. A tipping point for the trusted platform module?,
June, 2008.

APPENDIX

We conducted an Internet survey on Amazon Mechanical
Turk to study how people choose PINs. In the survey we
wanted to estimate a first-order approximation of the entropy
of a 4-digit PIN number. We recruited 100 subjects, all
from the U.S., and only subjects with at least 95% positive
feedback. They were paid $0.26 each for answering one
simple question: “How do you choose PINs to make them
easy to remember?”

Some survey participants provide more than one answer.
We finally collected 124 valid responses. These responses
are further categorized into 4 groups: PINs generated using
years, PINs generated using dates, PINs generated by keypad
mapping, and PINs generated by other methods.

We list the definitions as well as the illustrative samples
of each PIN generation method below.

1) Using Years: People tend to choose their PINs using
the year during which something special happened.
It could be someone’s birth year or an anniversary.
For example, one participant said “I normally use the
years that my favorite movies come out. Say the movie
hackers, came out in 1995. Then my pin would be
1995.”

2) Using Dates: People tend to choose their PINs
using the date when some special events occurred. It
could be somebody’s birthday or graduation date. For
example, there is one participant who chose her PINs
“by using loved ones birthdates (2 digit month, 2 digit
day).”

3) Using Keypad Mapping: Many people choose PINs
that spell out the first four letters of their hometown
or someone’s name. For example, one participant said
“I choose my PIN as my son’s name, Matt, and chose
the corresponding number on a keypad.”

4) Others: We consider all other PIN generation meth-
ods as one group of “other strategies”. An example of
a PIN in this group would be “I choose my PIN as
the last four digits of an old phone number I used to
have when I was a little kid.”

We counted the number of responses and the percentages
for each PIN generation method. We then compute estimates
of the entropies of a 4-digit PIN using the different PIN
generation methods. These are upper bounds since we do
not know the distributions within each type, and therefore
assume uniform distribution, which gives a higher entropy
estimate than will actually occur.

For simplicity, we assume people can randomly choose a
year between 1900 and 2010 as their PINs. This would give
us an entropy value of E1 = log2(110) = 6.6 for any PIN
chosen as a year. We also assume there are 365 days a year.
People can randomly choose a month and a date to create a
4-digit PIN whose entropy value would be E2 = log2(12×
30) = 8.5. According to the previous section, a 4-digit PIN
mapped from a password has an entropy value of E3 = 10.
We use this value for any PIN created by keypad mapping.
This is based on the approximation that the mnemonics that
are mapped will have a similar distribution as passwords. We
treat all the other PINs which are not generated by years,
dates, or keypad mapping as uniformly random PINs, which
again, of course gives us an upper bound on the entropy.
Those PINs have an entropy value of E4 = 4× log2(10) =
13.3.

The percentages and entropy estimates are presented in
table I.

Table I
HOW TO CHOOSE PINS?

Method Percentage Entropy
Using Years 21% 6.6
Using Dates 27.4% 8.5

Keypad Mapping 12.9% 10
Others 38.7% 13.3

Therefore, a not-very-precise estimate of the average
entropy for a 4-digit PIN is 10.15.

