Phishing on Mobile Devices

Adrienne Porter Felt & David Wagner

University of California, Berkeley

PHISHING

Ingredients for phishing

- 1. Users conditioned to enter passwords
- 2. A convincing spoof of the user interface

PHISHING RISK

- 1. When are users conditioned to enter their passwords or payment information?
- 2. Can those scenarios be convincingly spoofed?

THREAT MODEL

- Sender \Rightarrow Target
- Direct attack: false control transfer
- Man-in-the-middle attack: subverted control transfer

MOBILE PHISHING

- Phones lack trustworthy security indicators
- Interaction between web & mobile apps
- Mobile login screens are simple

OUR APPROACH

- 1. Survey how applications condition users
 - 50 most popular Android & iOS apps
 - 85 popular web sites on Android, iOS
- 2. Evaluate avenues for spoofing
 - Direct
 - Man-in-the-middle

CONTROL TRANSFERS

- Mobile sender ⇒ Mobile target
- Mobile sender ⇒ Web target
- Web sender \Rightarrow Mobile target
- Web sender ⇒ Web target

MOBILE ⇒ MOBILE

- Social sharing
- Upgrades via store
- Music purchases
- Game credits (iOS)

MOBILE ⇒ MOBILE

Target	Android	iOS
Mobile app	56%	72%
Password- protected	36%	60%
Payment	10%	34%

$M \Rightarrow M$: DIRECT ATTACK

Attack App

Real Page

$M \Rightarrow M: MITM ATTACK$

Scheme squatting

- Register for another app's URI scheme
- Weak: detectable by user, reviewers

Task interception

- Poll task list, pop up when target opens
- Unnoticeable by users

CONTROL TRANSFERS

- Mobile sender ⇒ Mobile target
- Mobile sender ⇒ Web target
- Web sender \Rightarrow Mobile target
- Web sender ⇒ Web target

$MOBILE \Rightarrow WEB$

Mechanisms

- Links to the browser
- Embedded web content
- Reasons
 - Social sharing
 - Not much payment

$MOBILE \Rightarrow WEB$

Browser target

Target	Android	iOS
Web site	30%	18%
Password- protected	3%	4%
Payment	2%	-

Embedded target

Target	Android	iOS
Web site	16%	42%
Password- protected	8%	38%
Payment	2%	

$M \Rightarrow W: DIRECT ATTACK$

- Link to web browser
 - Send the user to a fake browser
 - Open in real browser, hide/fake URL bar
- Embedded content
 - Eavesdrop on credentials given to embedded content

$M \Rightarrow W$: DIRECT ATTACK

Real Browser

Spoof Browser

₹ 1 2:04 AM
🚹 🔒 https://www.google.c
Sign in with your Google Account
Username:
Password:
Remember me
Sign in
<u>Create an account now</u>
Can't access your account?
©2011 Google

$M \Rightarrow W: MITM ATTACK$

- Attack: alter target of form on HTTP page
- Defense: forms only on HTTPS pages
- Attack: alter links to HTTPS pages

CONTROL TRANSFERS

- Mobile sender ⇒ Mobile target
- Mobile sender ⇒ Web target
- Web sender ⇒ Mobile target
- Web sender ⇒ Web target

WEB \Rightarrow MOBILE

- Mechanisms
 - tel://1800555555
 - market://details?id=123
- Reasons
 - mailto, Twitter
 - Install the app version

WEB \Rightarrow MOBILE

Core mobile apps

Target	Android	iOS
Core mobile application	38%	47%
Password- protected	22%	41%
Payment	6%	25%

Any mobile apps

Target	Android	iOS
Any mobile application	49%	48%
Password- protected	38%	42%
Payment	6%	25%

$W \Rightarrow M$: DIRECT ATTACK

- Hide the browser chrome and mimic app
 - In Android, only detectable if user hits the "Menu" button
 - Not possible in iOS unless user has "installed" the page

$W \Rightarrow M$: DIRECT ATTACK

Real App

Spoof App (In Browser)

$W \Rightarrow M: MITM ATTACK$

- Scheme squatting
- Task interception

CONTROL TRANSFERS

- Mobile sender ⇒ Mobile target
- Mobile sender ⇒ Web target
- Web sender ⇒ Mobile target
- Web sender ⇒ Web target

WEB \Rightarrow WEB: DIRECT

- Spoof or hide the URL bar [Niu et al.]
 - Eased how it scrolls
 - Reduced URL loading/rendering time

WEB \Rightarrow WEB: MITM

- Subvert all HTTP pages so that links to HTTPS are never trustworthy
- User won't be warned by the URL bar

PREVENTION

- Permanently application identity indicator
 - Embedded web content still a problem
- Trusted password entry mechanism
 - Usability?
 - Adoption?

Questions?

apf@cs.berkeley.edu