
Phishing on Mobile Devices

Adrienne Porter Felt
∗

University of California, Berkeley
apf@cs.berkeley.edu

David Wagner
University of California, Berkeley

daw@cs.berkeley.edu

ABSTRACT
We assess the risk of phishing on mobile platforms. Mobile
operating systems and browsers lack secure application iden-
tity indicators, so the user cannot always identify whether a
link has taken her to the expected application. We conduct
a systematic analysis of ways in which mobile applications
and web sites link to each other. To evaluate the risk, we
study 85 web sites and 100 mobile applications and discover
that web sites and applications regularly ask users to type
their passwords into contexts that are vulnerable to spoof-
ing. Our implementation of sample phishing attacks on the
Android and iOS platforms demonstrates that attackers can
spoof legitimate applications with high accuracy, suggest-
ing that the risk of phishing attacks on mobile platforms is
greater than has previously been appreciated.

1. INTRODUCTION
User interfaces for mobile devices are constrained by the

devices’ small screens. In particular, mobile operating sys-
tems and browsers lack secure application identity indica-
tors. A user cannot definitively tell what mobile application
or web site she is interacting with. This exposes users to the
risk of mistaking a malicious application for a trusted one.

Mobile applications and web sites often link to each other
to share data or refer the user to a related service. For
example, a music-themed web site might link the user to
the iTunes application to buy a song. In a normal inter-
application link, the sender application links to a second
target application. After following the link, the user might
provide the target application with authentication creden-
tials or payment information.

In this paper, we discuss phishing attacks that imitate
normal inter-application links. The lack of secure identity
indicators means that an inter-application link could be sub-
verted, and the user would be unable to tell that she had
been sent to the wrong target. In a direct phishing attack,
the sender is a malicious application that links the user to
its own spoof screen instead of the real target application.
In a man-in-the-middle attack, the sender is benign, but
another party intercepts the link and loads a spoofed target
application in place of the intended target application.

∗This material is based upon work supported under a Na-
tional Science Foundation Graduate Research Fellowship.
Any opinions, findings, conclusions or recommendations ex-
pressed in this publication are those of the author(s) and
do not necessarily reflect the views of the National Science
Foundation.

Phishing attacks exist because users become accustomed
to entering their passwords in familiar, repeated settings.
If users frequently encounter legitimate links whose targets
prompt them for private data, then users will become con-
ditioned to reflexively supply the requested data [9]. 40%
of smartphone users enter passwords into their phones at
least once a day [8]. We study 50 Android applications, 50
iOS applications, and 85 web sites to evaluate how often
they link users to password-protected or payment-related
applications. We find that web sites and mobile applica-
tions commonly link the user to password-protected social
network and payment applications, thus conditioning users
to reflexively enter their credentials after following links.

Based on this analysis of common behavior, we identify a
number of new phishing attacks against mobile platforms.
We demonstrate that, on Android and iOS, it is possible to
build phishing attacks that convincingly mimic the types of
inter-application links that our study found to be common.
We categorize the attacks according to whether the sender
and target are mobile applications or web sites: mobile-to-
mobile, mobile-to-web, web-to-mobile, and web-to-web. For
each of the four categories, we present both direct and man-
in-the-middle attacks.

The contributions of this paper are:

• We believe we are the first to discuss phishing attacks
between mobile applications and web sites.

• We present data on how mobile applications and web
sites interact. This provides insight into the applica-
tion behaviors that users are familiar with.

• We present and evaluate 15 types of phishing attacks.
13 of the attacks are novel, and 1 improves a known
mobile browser spoofing technique.

2. BACKGROUND
We focus on Android and iOS, the two most popular mod-

ern smartphone operating systems [3]. Our phishing con-
cerns also apply to other smartphone platforms with user in-
terface space constraints and inter-application control trans-
fers, such as Windows Phone 7.

2.1 User Interfaces on Mobile Devices
Smartphone operating systems and browsers have mini-

malist user interfaces to accommodate the small size of mo-
bile devices. In particular, their user interfaces lack ap-
plication identity indicators that are available in desktop
operating systems and browsers.



Mobile Application Identity. Only one mobile applica-
tion can control the screen at a time, even in platforms that
support multi-tasking. The foreground application fills the
screen and receives all user input, with the exceptions of
input-method applications (e.g., alternate keyboards) and
the Apple App Store (which uses pop-up dialogs for in-
application purchases). No major smartphone operating
system displays the identity of the foreground application.
Users can find a list of running processes, but no part of the
screen identifies the current foreground application.

Web Site Identity. Mobile browsers display only one
browser window at a time. The Android and iOS browsers
display the URL of the current window at the top of the
screen, similar to desktop browsers. However, web sites can
hide the URL bar once the page has loaded; this commonly
used feature allows the web site to fill the available screen.
(For example, Figure 2a shows weather.com in mobile Sa-
fari without the URL bar.) If a user wants to see the URL
bar, she can tap the top of the screen.

2.2 Platform Security
Mobile applications are less trusted than their desktop

counterparts. In Android and iOS, applications are isolated
from each other by default; for example, applications cannot
read each other’s databases or network traffic. Additionally,
Google and Apple attempt to prevent users from installing
malware by controlling how users install applications.

Android applications are restricted with an application
permission system. Permissions control access to privacy-
and security-relevant parts of the system API, such as the
ability to read a user’s contacts or send a text message.
When a user installs an application, the application’s de-
sired permissions are displayed to the user. The user can
then decide whether to grant all of the permissions and con-
tinue with the installation. This informs users of the risks
of installing an application.

Users of iOS devices can only install applications from
the App Store. In order to be listed in the App Store, ap-
plications must undergo a formal review process. Although
specific details of the App Store review process are secret,
the process likely includes a security review.

Web sites in mobile browsers are also treated as poten-
tially untrustworthy. They must obey the standard Same
Origin Policy [15], meaning that web sites on different do-
mains are isolated from each other. Neither Android nor
Apple review or restrict access to mobile web sites.

2.3 Control Transfers
A control transfer occurs when the foreground application

or web site changes. As a result of a control transfer, the
user stops interacting with one application and begins inter-
acting with another. Although mobile applications and web
sites are isolated, inter-application communication via ex-
plicit channels can lead to control transfers. Control trans-
fers can happen in four ways, classified according to whether
the sender and target are mobile applications or web sites:

• Mobile Sender ⇒ Mobile Target. Android and iOS ap-
plications can optionally choose to accept communica-
tion from other applications by registering a receiver
with the operating system. In response to a message,
the OS transfers control to the target application.

• Mobile Sender ⇒ Web Target. A mobile application
can send the user to a web site by invoking the phone’s
native browser with the target URL. The browser will
come to the foreground with the target web site.

Alternately, a mobile application can embed web con-
tent. As a result, the web content is rendered as
part of the mobile application’s screen. For example,
Figure 1b shows Groupon embedding a Twitter login
page. Embedding can be done by communicating di-
rectly with a web site’s data API or by asking the
OS to load a web site in a WebView. A WebView is
similar to an iframe: the embedding application can
control the size and placement of it within the screen,
and browser chrome is not displayed (including the ad-
dress bar). Mobile applications can additionally insert
arbitrary JavaScript into a WebView. The two types of
embedded web content are difficult to visually differen-
tiate. For both, the mobile application retains control
of user input and the screen while the user interacts
with the embedded web content.

• Web Sender⇒ Mobile Target. A web site can send the
user to a mobile application if the mobile application
registers a data scheme with the OS. A data scheme
is a non-standard URL protocol. For example, the
mobile Skype application registers the skype scheme.
Thereafter, clicking on a skype:// link in any web
site will send the user into the Skype application if it
is installed. While this example involves explicit user
action, user involvement is not necessary for such a
transfer; a web site can automatically launch an appli-
cation by embedding an iframe with the appropriate
scheme. (The target application will take full control
of the UI, despite the use of an iframe.)

Applications can also register for HTTP(S) domains.
For example, the mobile Google Maps application reg-
isters maps.google.com. When a web site links to an
application-registered domain in Android, the user is
asked to choose between the browser and the alternate
application. After choosing the first time for a domain,
the user can set a default application. In iOS, only a
small number of Apple-approved applications (like the
App Store and YouTube) can register themselves for
HTTP(S) domains, and the registered applications al-
ways override the browser and receive control.

• Web Sender⇒Web Target. Web-to-web control trans-
fers are standard links. As on the desktop, web sites
can link to each other, automatically redirect, and em-
bed each other in iframes. The primary difference in
a mobile setting is that either the target or sender can
hide the URL bar.

A developer may not be responsible for a link, e.g., a link
in an e-mail. We focus on control transfers that developers
have intentionally inserted into their applications.

Mobile applications (with the exception of financial ap-
plications) commonly store their users’ passwords so that
users won’t need to re-enter them. However, users must
enter their passwords into the web versions of these appli-
cations, either in the browser or as embedded web content.
Thus, users are still conditioned to enter passwords when
they see an appropriate login screen for a mobile target.



(a) Pandora’s song description
screen includes this menu.
One button opens iTunes to
the song, and another opens
the Mail application with a
pre-composed e-mail. If the
user decides to purchase the
song, she will be asked for
her iTunes password.

(b) Groupon invites users to
share daily deals with
friends. The Twitter but-
ton takes the user to this
screen, which is still part of
Groupon. Groupon created
the top “Twitter Connect”
bar, and the Twitter login
is embedded below.

Figure 1: Screenshots of Pandora and Groupon on iOS.

3. COMMON CONTROL TRANSFERS
As users interact with legitimate applications, they be-

come conditioned to enter their passwords and payment in-
formation in certain types of settings [9]. Phishing attacks
prey on user expectations by mimicking and then subverting
legitimate application behavior. We study popular Android,
iOS, and web applications to identify how often and when
control transfers lead to password or payment entry. Ask-
ing a user to enter a password after a control transfer raises
phishing concerns because the user may not know the cor-
rect identity of the post-transfer application.

3.1 Mobile Sender
We studied the control transfer patterns of the 50 most

popular free Android 2.21 and iOS 4.32 applications. We
manually exercised each application and recorded whether
it sends the user to other mobile applications, opens web
sites in the browser, or embeds web content. Manual testing
provides a lower bound on the number of control transfers.
We also observed whether each control transfer involves the
entry of information pertaining to:

• Passwords. Is the target application’s content only
visible to logged-in users? (For example, a user must
log in to Facebook to post to her Facebook “wall”.) If
so, this indicates that the user will not be surprised if
the target application requests a password.

• Payment. Does the sender link to the target for the
explicit purpose of payment? (For example, Amazon
sells books and music.) If so, the user is prepared to
enter payment information into the target application.

We found that 89 of the 100 mobile applications contain
links that send the user to another application or web site.

1The Android applications were collected in October 2010.
2The iOS applications were collected in March 2011. We
tested iPhone/iPod Touch applications.

Mobile Sender, Mobile Target

Mobile Target Android iOS
Another mobile application 56% 72%
A password-protected application 36% 60%
An application for payment 10% 34%

Table 1: The rate at which 50 Android and 50 iOS applications
link the user to another mobile application. Targets may be both
password-protected and payment-related. We do not include the
browser as a target mobile application; the browser is considered
separately in Table 2.

3.1.1 Mobile Sender ⇒ Mobile Target
Table 1 summarizes the results of our mobile-to-mobile

study. A majority of the studied mobile applications con-
tain functionality that will send the user to other mobile
applications. Figure 1a provides an example of a mobile-to-
mobile control transfer. We observed four common types of
control transfers that involve passwords or payment: social
sharing and the purchase of upgrades, music, and credits.

Sharing. Some applications encourage users to share con-
tent (e.g., high scores) with their Facebook, Twitter, or e-
mail contacts. This involves transferring the user to a Face-
book, Twitter, or e-mail application. These target applica-
tions are password-protected.

Upgrades. Developers sometimes publish two versions of
an application: a free version with limited functionality or
banner advertisements, and a paid version with full func-
tionality or no advertisements. The free versions of these
applications link to the Android Market or Apple App Store
to “Upgrade” or “Remove ads.” In order to complete the
upgrade, the user may need to enter password or payment in-
formation into the store. The Android Market asks the user
for payment information for paid upgrades, and the Apple
App Store prompts the user for a password for both free
and paid downloads. The Apple App Store also frequently
asks the user to verify stored payment information. Con-
sequently, users will likely be accustomed to entering their
password after control transfers to an application store.

All of the applications in our sample set were free at the
time of download; users of paid applications will see fewer
payment links than our results suggest. However, the most
popular free applications are downloaded orders of magni-
tude more often than the most popular paid applications.

Music. Music-centric applications typically contain links
to purchase songs. In iOS, these links point to the Apple
iTunes Store. For Android, some devices come with a pre-
installed Amazon MP3 application for this purpose. Both
target applications may require passwords or payment.

Credits. Our sample of popular iOS applications includes
34 games, many of which sell game credits through the Ap-
ple Game Center or App Store. Game credits are required
to progress through the games. The Game Center and App
Store both immediately request a password to complete the
sale. Periodically, they will also ask the user to verify her
payment information. We did not observe the sale of game
credits in our sample of Android applications. However,
our sample includes only 1 game, so our analysis may un-
dercount the rate at which game applications can transfer
control to a payment application.



Mobile Sender, Web Target

Embedded Web Target Android iOS
Another company’s website 16% 46%
A password-protected web site 8% 38%
A web site for payment 2% 0%

Web Browser Target Android iOS
A web site 30% 18%
A password-protected web site 3% 4%
A web site for payment 2% 0%

Table 2: The rates at which 50 Android and 50 iOS applications
embed web sites or open web sites in the browser. Targets may be
both password-protected and payment-related. We suspect that
Android web payment rates are low because of biases introduced
by sampling only the most popular applications.

Our study demonstrates that users of mobile applications
are accustomed to seeing links to other mobile applications
for social sharing, upgrades, music, and credits. Links to e-
mail, Facebook, Twitter, and the platform stores are partic-
ularly prevalent. Users are conditioned to enter their pass-
words for these operations. Phishing attacks could therefore
mimic these control transfers and prompt for a password
without deviating from user expectations.

3.1.2 Mobile Sender ⇒ Web Target
Mobile applications can display web content by sending

the user to the browser or embedding the content. Table 2
summarizes how often the sampled applications use either
approach, and Figure 1b displays an example from our sam-
ple set. For embedded web content, we only report the in-
clusion of web content from other companies; many mobile
applications seamlessly embed their own web content, but
that practice is not relevant to phishing.

Passwords. Social sharing accounts for nearly all of the
links from mobile applications to password-protected web
sites. For iOS applications, social sharing is primarily im-
plemented with embedded web content. Within our Android
sample set, applications do not commonly link to password-
protected web sites. Instead, they prefer to implement social
sharing with links to mobile applications. This is because
many Android devices come with pre-installed Facebook and
Twitter mobile application clients.

Payment. Within our sample set, web sites are not com-
monly used for payment. The iOS applications rely on
Apple-provided applications (e.g., iTunes and the App Store)
to handle financial transactions; this obviates the need for
web-based payments. Two Android applications refer users
to web sites for purchases, but most of the Android appli-
cations that we studied either process their own payments
within the application or rely on the Android Market. We
suspect that this is an artifact of popularity; many of the
very most popular Android applications are developed by
large companies with their own payment processing services.
We have independently observed other, less popular Android
applications using PayPal for donations and non-Market up-
grades. For example, PayPal’s web site showcases several
PayPal-enabled applications with a few hundred to a few
hundred thousand users [11]. If our sample had included less
popular applications, we expect we would have observed a
higher rate of web payments among Android applications.

(a) The Weather Channel links
the user to the App Store.

(b) Craigslist links the user to
YouTube for Craigslist TV.

Figure 2: Web sites with links to mobile applications, in iOS.

Our analysis indicates that users who participate in so-
cial sharing are at a high risk for falling for a phishing at-
tack. 38% of the sample iOS applications embed password-
protected web content, and all of them do so for social shar-
ing. Furthermore, a user must log in to a web site every
time she encounters it in a new application because there is
no cross-application cookie store for embedded web content.
This means that social users may enter their social network-
ing site passwords into more than a third of the applications
they install, thereby acclimating them to this workflow.

On the other hand, we find that popular mobile applica-
tions do not commonly link users to web sites for payment.
This reduces the likelihood that people are conditioned to
enter their passwords or payment information into a phish-
ing application that subverts the web-to-mobile scenario.

3.2 Web Sender
We studied 85 of the 100 most popular Alexa-ranked do-

mains3 to evaluate web site link behavior. For each domain,
we collected the links on the home page and one representa-
tive page of content, as linked off the home page. We used
iPhone and Nexus One browser user-agent strings to receive
the appropriate mobile versions of the web sites.

In order to collect the links, we built a Firefox extension
to crawl each loaded page and find link target values. Some
web sites use JavaScript to create links in a non-standard
way; as a heuristic for finding these cases, the extension also
collected onclick values for div, span, and img elements.
We then reviewed the onclick JavaScript to find links, but
we did not follow method calls referenced in the onclick

event handler. We may have missed complex onclick links
or links that are dynamically generated after load.

3.2.1 Web Sender ⇒ Mobile Target
A link to a mobile application could fail, if the appli-

cation is not installed. However, certain applications are
guaranteed to be present on every platform. iOS and An-
droid phones have common applications like Google Maps,
YouTube, and an e-mail client. Each operating system also
has its own applications (for example, iOS includes the iTunes

3We omitted adult and advertising web sites from the list of
100. Advertising home pages do not reflect the content that
users typically see from that domain.



Web Sender, Mobile Target

Core Application Target Android iOS
A core mobile application 38% 47%
A password-protected application 22% 41%
An application for payment 6% 25%

Total Application Target Android iOS
A mobile application 49% 48%
A password-protected application 38% 42%
An application for payment 6% 25%

Table 3: The rates at which 85 web sites include links to mo-
bile applications. The top counts only links to core applications
(which are present on every phone). The bottom counts all links
to any application, core or not. Targets may be categorized as
both password-protected and payment-related.

store). We refer to these applications as core applications.
Links to core applications are guaranteed to succeed.

Table 3 presents the rates at which web sites link to the
core applications. The Android and iOS rates differ partly
because of differences in their sets of core applications. Ta-
ble 3 also provides the total link rate, which includes links to
both core and non-core applications. The total link rate in-
cludes application-defined schemes (like hulu). For Android
we also count links to http(s) domains that have been reg-
istered by the 100 most popular Android applications.

Passwords. Web sites link to mobile applications for the
same reasons as mobile applications link to other mobile ap-
plications. Many web sites contain mailto or twitter.com

links to share content with friends; mailto links open the
mobile e-mail client (a core application), and the twitter.com
domain is registered by a popular and often pre-installed An-
droid application. mailto links are also sometimes used to
contact the web site staff.

Payment. Some web sites link to the Apple App Store or
Android Market to let the user download their application or
buy related items. (In fact, some web sites such as Hulu are
not fully functional on mobile browsers, so the user must
install the application to use the service.) The user may
need to enter his or her account password or verify payment
information to install the given application.

Our web analysis shows that web sites commonly link to
mobile e-mail and Twitter applications. Twitter, in partic-
ular, is an attractive phishing target. We also found that
web sites often link users to the Apple App Store or An-
droid Market to install the company’s mobile application,
which indicates that the web-to-mobile installation process
could become a target for phishing attacks.

3.2.2 Web Sender ⇒ Web Target
Web-to-web links are a standard part of the Internet. All

but one of the web sites we crawled contain multiple links to
external domains. Although we did not measure their use
in our data set, external payment services like PayPal and
Google Checkout are widely incorporated into web sites.

4. PHISHING ATTACKS
We discuss how phishing attacks can be mounted against

each of the four control transfer scenarios enumerated in
Section 2.3. For each scenario, we present two types of at-
tacks: direct attacks and man-in-the-middle attacks. In a
direct attack, the sender application is malicious and loads

a fraudulent target application. In a man-in-the-middle at-
tack, the sender and target applications are both benign,
but a malicious party intercepts the control transfer and
responds in place of the legitimate target.

The goal of our attacker is to mimic the legitimate appli-
cation behavior that we identified in the application survey
(Section 3). An accurate attack should not deviate from
the user’s expected workflow, and the fake user interface
should be indistinguishable from the target user interface.
The user should have few or no opportunities to differentiate
the phishing attack from legitimate behavior. We evaluate
how well each attack meets these accuracy goals.

4.1 Mobile Sender ⇒ Mobile Target
In this scenario, the user believes that one mobile appli-

cation links to another, trusted application. In addition to
mimicking a normal workflow and user interface, malicious
mobile applications must face the Android permission model
and Apple review process.

4.1.1 Direct Attack
As presented in Section 3.1.1, mobile applications com-

monly include social sharing and payment buttons. A ma-
licious application could similarly include “Share on Face-
book” or “Upgrade this application” buttons. Clicking on
one of the buttons would send the user to a screen that
spoofs the target application. The phishing screen could re-
quest the user’s password or payment credentials, enabling
the malicious application to steal the data. The phishing
application would then load the real application. If the user
does not have an existing session with the real application,
then the real application will ask the user to enter her pass-
word. This resembles normal application behavior after a
failed login attempt, so the user might naturally assume
that she had mistyped her password.

Evaluation. Mobile login screens are often very simple, which
makes them easy to copy. Figure 3 shows a fake Facebook
login screen, which we constructed in several hours using im-
ages and layout values copied from a disassembled version
of the legitimate Android Facebook application. It is highly
unlikely that any user could differentiate between the real
Facebook login screen and our fake Facebook login screen.

Android’s permission system would do little to warn users
of this attack; the attack requires no permissions, which
might give users a false sense of security. At most, the mali-
cious application might request the INTERNET permission to
send the stolen data to the attacker. The permission request
would not be anomalous: 87% of free applications request
Internet access [6]. However, the INTERNET permission is not
required because the Android API provides several ways to
submit web requests and exfiltrate captured data without
the INTERNET permission. For example, a MediaPlayer ob-
ject can be created to load an arbitrary HTTP URL [2].

The Apple application review process might prevent this
attack from appearing in the App Store if reviewers detect
the fraudulent screen. However, the review process is not
perfect [14] and there is no guarantee that reviewers would
detect such an attack. More dangerously, the attacker could
use web content to evade detection during review. The
fraudulent screen would be constructed with an embedded
web site that is the full size of the screen, served by the at-
tacker. (Recall that embedded web sites do not have browser
chrome.) During the application review, the web site could



(a) Real Facebook login. (b) Fake Facebook login.

Figure 3: Our Facebook phishing application for Android. When
a user enters her password, the credentials are captured before
invoking the real Facebook application. The other buttons (e.g.,
“Sign up”) lead directly to the Facebook’s corresponding page.

immediately redirect the user to the legitimate application
with no signs of any malice. Once the application has been
added to the store, or at any subsequent date of the at-
tacker’s choice, the attacker could change the web site to a
fraudulent copy of the target. As discussed further in Sec-
tion 4.3.1, web content can be styled to mimic the look and
feel of an application. Alternately, the attacker could try
to evade detection by targeting only a subset of the user
population or not serving the attack to users in a certain
geographic region (e.g., Apple’s headquarters in Cupertino).

4.1.2 Man-In-The-Middle
Man-in-the-middle attacks can be launched on mobile ap-

plications in two ways. The first attack, scheme squatting,
is weak because it changes the user’s workflow and cannot
be hidden from application reviewers. Task interception is a
strong attack, but it can only be implemented on Android.

Scheme Squatting. Some applications register to handle
schemes. If the the real application for a scheme is not in-
stalled, a malicious application could register for the scheme
instead. Messages intended for the target would instead be
delivered to the attacker, and the attacker could present the
user with a phishing screen upon launching. Scheme squat-
ting is a form of an attack named “Activity hijacking” [4].

Evaluation. One strength of this attack is that it does not
require any Android permissions. However, it suffers from
three weaknesses. First, to evade detection, the applica-
tion would need to emulate the intended target after the
login screen completes. Otherwise, the user’s expected op-
eration would abruptly halt, raising suspicion. Emulation
may be implausible, and this problem is intrinsic to the at-
tack. Second, the real application might be installed. If so,
iOS and Android would give the user a choice between the
real application or the phishing application. Consequently,
the phishing application would need to convince the user
to prefer it to the real application, which would likely fail.
Third, it would not be possible to hide this behavior from

reviewers because applications must declare their schemes
upfront in a file that is bundled with the application.

Task Interception. If an OS lets applications view the
list of running processes, then a malicious application could
poll the task list and wait for a target application to be-
come active. The attacker could then launch itself and dis-
play a phishing screen when it is brought to the foreground.
When the user enters credentials into the phishing screen,
the fraudulent application can exit, leaving the original tar-
get application visible. We implemented this attack for An-
droid and found that the application needs to poll the run-
ning task list every 5ms to prevent the user from noticing
that a new screen replaces the original target. At 5ms or
below, the transition is not detectable to the naked eye.

Evaluation. Task interception is a very effective attack for
Android. The attack requires two permissions: one to start
the application in the background after the phone has booted,
and another to request the task list. However, both permis-
sions are considered non-dangerous, and neither is displayed
to the user during installation. We are not aware of a way
to launch this attack on iOS because applications are not
allowed to view the task list.

4.2 Mobile Sender ⇒ Web Target
In this scenario, the user believes that a mobile application

is displaying or linking to a trusted web site.

4.2.1 Direct Attack
A malicious application could present the user with but-

tons to share content or purchase an item. The attacker can
then eavesdrop on the user’s interaction with an embedded
web site or present the user with a site in a fake browser.

Embedded Web Content. Many iOS applications embed
pages from password-protected sites, such as Facebook and
Twitter, into their screens. This trains users to type their
password wherever they see a password prompt, despite the
lack of security indicators. The risk is obvious: a malicious
application can embed a web site and then eavesdrop on
any exchanged credentials. Both Android and iOS allow
applications to insert JavaScript into embedded WebViews,
and there is no mechanism for web sites to prevent this.

Evaluation. This attack is close to indistinguishable from
legitimate behavior. The inserted JavaScript could be ob-
fuscated to thwart application analysis. The Android ver-
sion of this attack would require the INTERNET permission
to load the target, but so would the legitimate version.

Web Browser. If the target web site hides its URL bar,
then the mobile application could load a phishing web site in
the browser. The phishing web site would then hide the URL
bar. Many password-protected web sites (such as Bank of
America, Amazon, and Facebook) hide their URL bars [10].

If the target web site does not hide its URL bar, then
the attacker can spoof the trusted browser chrome. There
are two ways to do this. First, the attacker could launch
the browser, hide the URL bar, and then present a fake
URL bar. We discuss how to build spoofed URL bars in
Section 4.4.1. Alternately, the attacker could display a fake
browser that looks identical to the real browser, except it lies
about the current URL. Unlike their desktop counterparts,
mobile browser interfaces are not customizable; this makes
them easier to falsify. The fake browser could load the real



(a) Real browser. (b) Our fake browser.

Figure 4: Our fake Android browser for a Nexus One phone. It
displays the legitimate GMail website.

web site in a WebView and listen to the user’s keystrokes.
If the user were to try to use features of the browser that
the fake browser can’t implement (e.g., history), then the
attacker needs to end the attack and launch the real browser.
We implemented this for Android (see Figure 4).

Evaluation. The first attack is extremely simple and could
be effective with users who do not check browser chrome for
security indicators. It does not require any notable Android
permissions, and the target web site could be benign until af-
ter Apple’s review process. A security-conscious user could
detect the ongoing attack by deciding to check the URL bar,
although a user study shows that users do not do this in
practice [10]. The second attack is more complete, although
the user might notice that the bookmarks button next to
the URL bar is not functional. Niu et al. previously demon-
strated that spoofed URL bars can be convincing enough to
trick security experts [10]. The third attack would likely fool
users despite some shortcomings. Real browsers have data
and functionality that a fake browser cannot replicate (e.g.,
history). For example, the Nexus One browser has 14 menu
items, 3 of which our fake browser cannot handle smoothly.
However, it is unlikely that a user would press these buttons
before entering her password.

4.2.2 Man-In-The-Middle
When users of mobile devices connect to the Internet

over insecure WiFi hotspots, they are at risk of man-in-
the-middle attacks. For instance, in one well-known active
attack [12], if a user navigates to an HTTP web site with an
HTTPS login form, then the network attacker can change
the HTTP web content so that the login form submits the
password to the attacker’s server. Security-conscious web
sites defend against this attack by not including login forms
in HTTP pages. Instead, the user must click on a link to go
to a separate, all-HTTPS login page. If the attacker redi-
rects the user to a login page on a different domain, the user
has the opportunity to notice that the login page in the URL
bar is from the wrong domain. This defense against network
attacks relies on the presence of a trusted URL bar, which
may not be present on a phone.

Embedded Web Content. Consider a legitimate mobile
application that embeds a web page served over HTTP. A
network attacker could change the “login” button on this
page so that it links to a page owned by the attacker. When
the user clicks this button, she will be taken to a phishing
page within the embedded web frame. Since there is no URL
bar for embedded content, there is no way for the user to
detect that she has left the original web site. The attacker
can thus steal the user’s credentials. To better mimic the
user’s expected workflow, the attacker could then relay the
credentials to the valid web site and sign the user in.

Evaluation. This attack is not detectable by the user. Of
our 100 sampled applications, 4 applications embed HTTP
content with login links.

Web Browser. A similar attack is possible when a legit-
imate mobile application links the user to an HTTP web
page that will be rendered in the browser. Normally, when
not under attack, a browser would display a URL bar that
indicates what site the user is currently browsing. However,
this does not pose a barrier to the attack because mobile
browser chrome can be hidden and spoofed. (Section 4.4.1
describes how to spoof mobile browser chrome.)

Evaluation. This attack tricks the user with a spoofed URL
bar, which can be made almost indistinguishable from real
browser chrome. Of our 100 sampled applications, 7 link to
HTTP content with login links in the browser. For example,
the popular Android application Shazam links to songs on
http://www.amazon.com for the user to purchase them.

Applications can prevent these attacks by only sending
users to HTTPS web pages, and never to a HTTP web page.
The site must support HTTPS for all of its pages.

4.3 Web Sender ⇒ Mobile Target
In this scenario, the user interacts with a web site in the

browser. The web site links to a trusted mobile application.

4.3.1 Direct Attack
Web sites often link the user to mobile applications, as

discussed in Section 3.2.1. Malicious web sites could mimic
this behavior without appearing suspicious. For example, a
phishing site might provide a link to buy a song from the
iTunes Store. When the user clicks on the button, the web
site can pretend to transfer the user to the target applica-
tion, but actually display a fake version of the target appli-
cation. The malicious web site must hide the URL bar and
style the web site to respond to user touch in the same way as
the mobile application. For example, in Android, form fields
should have rounded edges and turn orange when selected.
Title text and dialog boxes need subtle drop shadows, and
the browser’s zoom feature should be disabled unless the
application also supports zooming.

Evaluation. As we demonstrate in Figure 5, it is possible to
build a web site that looks very similar to a mobile applica-
tion. However, the degree to which a web site can emulate
an application differs by platform. In iOS, the mobile Safari
browser places a navigation bar on the bottom of the screen.
This makes it impossible for a normal web site to occupy the
entire screen. However, users can “install” web sites to their
home page (i.e., add an icon that launches the browser to
that page). Installed web sites can remove the navigation
button to mount an attack that would be close to unde-



(a) Real application. (b) Web site in the browser,
spoofing the application.

Figure 5: Our web site spoofs the Amazon MP3 Store (an Android
application). The browser is the default Nexus One browser.

tectable. However, it may not be feasible for an attacker to
convince a user to install a web site.

In Android, one unavoidable difference is how the spoofed
web application responds to the physical Menu button on
the phone. A web site cannot change the options that the
browser presents, and the browser will have different Menu
options than the target application. However, few users will
try to use the Menu when presented with a login screen
that does not allow any other actions. The user will likely
be focused on the task of logging in.

4.3.2 Man-In-The-Middle
Web-to-mobile links are vulnerable to the same man-in-

the-middle attacks as mobile-to-mobile links (Section 4.1.2),
with the same strengths and weaknesses. A malicious mobile
application can scheme squat or watch the task list for the
start of a target application.

4.4 Web Sender ⇒ Web Target
In this scenario, the user interacts with a web site in the

browser. The web site links the user to a trusted web site.

4.4.1 Direct Attack
Niu et al. present detailed web-to-web phishing attacks

on mobile devices [10]. They discuss how phishing attacks
can be built by hiding the browser URL bar or spoofing
the URL bar. URL bar spoofing has three steps: (1) the
attacker hides the legitimate URL bar, (2) the attacker adds
a spoofed URL bar to the visible top of the page, and (3)
the attacker catches any attempts to scroll to the real top
of the page and instead jumps to the fake URL bar [10, 13].

Niu et al. describe several differences between the behavior
of their spoofed URL bar and the real browser user inter-
face. We find that we can reduce the obviousness of two of
these glitches. First, they always send the user to the fake
top of the page whenever the user attempts to scroll in any
direction. The users in their user study find this annoying.
We ease the intrusiveness of our scrolling control by always
scrolling a fixed amount away from the current location in

the document, but not to a specific location. The scroll
event therefore might scroll slightly more or less than the
user intended, but the screen will never unexpectedly shift
a large amount. Second, they observe that the URL bar is
visible while the page loads and renders, giving the user the
opportunity to see the real URL. We reduce the URL load-
ing and rendering time by delivering a phishing page that is
empty except for a script. The page load will complete very
quickly, so the user cannot read the real URL bar. After the
page load event completes, the script dynamically adds all
of the visible elements to the phishing web site.

Evaluation. An observant user could unmask the URL bar
hiding attack by scrolling up to view the URL. There are
also two weaknesses in the spoofing attack. First, the book-
marks button is placed next to the URL bar. In iOS, the
bookmarks cannot be faked, and the user might notice a
non-functional bookmarks button. (In Android, an applica-
tion with the appropriate bookmark permissions can access
the browser’s bookmark storage.) Second, both browsers
have a window selection feature that lets the user view the
URLs of the open windows.

Despite these shortcomings, Niu et al. found that the URL
bar hiding and spoofing attacks were very successful on a set
of 37 users that included security experts. None of the users
identified the phishing attacks when the URL bar was hid-
den, and only 1 noticed the fake URL bar. The user who
noticed the fake URL bar did so because of a small imple-
mentation error in their emulation of the browser chrome.
The near-perfect success rate of their phishing attacks on
primed, expert users indicates that these techniques have the
potential to enable highly successful phishing attacks. Their
user study found that small glitches (e.g., a non-functional
bookmark button) were attributed to browser or web site
bugs and did not raise suspicion.

4.4.2 Man-In-The-Middle
In Section 4.2.2, we describe an active attacker that sub-

verts HTTPS form submission after a mobile application has
linked the user to an HTTP site. An even more powerful
network attack is possible in the web-to-web setting. If the
user ever visits any HTTP page in the browser while there is
an active attacker tampering with the network connection,
then all subsequent browsing can be compromised. A net-
work attacker could subvert all HTTP web pages so that all
links to HTTPS pages point to an attacker-controlled server.
In a desktop browser, the user would have an opportunity to
detect the attack by looking at the URL bar. However, in a
mobile browser, the attacker can suppress visual indicators
of the attack with a fake URL bar. This attack could be
automated by a tool like Ettercap [1].

Evaluation. This attack is unobtrusive and would likely go
undetected by users. It relies on the mobile browser URL
hiding and spoofing techniques, which are demonstrably ef-
fective at tricking users. The only way for the user to avoid
the attack is to manually enter HTTPS URLs directly into
the browser URL bar (or with a saved bookmark).

5. RISK EVALUATION
We consider how likely different phishing attacks are, given

the prevalence of the legitimate application behaviors. We
also discuss the most targeted web sites.



Legitimate Behavior Prevalence Attack Technique Accuracy

Mobile Sender → Mobile Target
Social sharing, upgrades, game credits Very Common Fake mobile login screen Perfect
Social sharing, upgrades, game credits Very Common Task interception Perfect
Social sharing, upgrades, game credits Very Common Scheme squatting Low
Mobile Sender → Web Target
Embedded login pages Common Keylogging Perfect
Opening a target in the browser Very Uncommon URL bar hiding High
Opening a target in the browser Very Uncommon URL bar Spoofing High
Opening a target in the browser Very Uncommon Fake browser High
Embedded HTTP page links to HTTPS login Very Uncommon Active network attack Perfect
App sends user to HTTP page in browser that Uncommon Active network attack High

links to HTTPS login + URL bar spoofing
Web Sender → Mobile Target
Link to mobile e-mail or Twitter Common Web site spoofs mobile app High
Link to mobile e-mail or Twitter Common Task interception Perfect
Link to mobile e-mail or Twitter Common Scheme squatting Low
Web Sender → Web Target
Payment via PayPal or Google Checkout Common Hide the URL bar High
Payment via PayPal or Google Checkout Common Spoof the URL bar High
User follows link from HTTP to HTTPS Very Common Active network attack High

+ URL bar spoofing

Table 4: We match each attack technique with the legitimate behavior that it subverts, along with how common the legitimate behavior
is. The most effective attacks mimic common behavior with perfect accuracy. “Perfect” accuracy means the user cannot distinguish the
attack from the original, and “high” accuracy means the user can only identify the attack by doing something unusual.

5.1 Attacks
A phishing attack is comprised of two components: the

legitimate behavior that it mimics, and the technique used
to carry out the attack. An attack’s plausibility is therefore
a combination of (1) how prevalent the legitimate behavior
is in real applications, and (2) how accurately the attacker
can copy the legitimate behavior. Table 4 summarizes all of
the phishing attacks discussed in this paper, along with the
prevalence of their corresponding behaviors and an evalua-
tion of the accuracy of the mimicry. We judge prevalence
using the data from our study of iOS applications, Android
applications, and mobile web sites (Section 3). We assign
an accuracy score based on our evaluation of the strengths
and weaknesses of each attack technique (Section 4).

The most effective attacks mimic common behavior with
techniques that perfectly match the target workflow. Of the
15 attacks presented in this paper, 8 mimic common legiti-
mate behaviors and use highly accurate attack techniques. 5
more use highly effective attack techniques, but their associ-
ated behaviors are uncommon within our set of applications.

5.2 Targets
We identify the password-protected applications that are

linked to the most often by the applications in our data set.
These target applications are at the highest risk of phishing
attacks because legitimate links to them are so common.

Facebook and Twitter are the most common legitimate
link targets. This is likely because developers want to en-
courage sharing on social networks for the free marketing.
The 100 iOS and Android applications link to Facebook 35
times and Twitter 20 times. Notably, login forms for Face-
book and Twitter were embedded in 19 and 12 applications,
respectively. Additionally, 13 of the 85 web sites link to
Twitter. This indicates that Facebook and Twitter would
be ideal candidates for phishing attacks. In particular, em-

bedded login links have trained users to enter their Facebook
and Twitter passwords into other applications.

Android- and Apple-sponsored stores are also quite pop-
ular as link targets. The 50 Android applications linked
to the Android Market 7 times, and the 50 iOS applications
linked to the three Apple stores (iTunes, the App Store, and
the Game Center) a collective 23 times. 21 of the web sites
targeted at iOS users link to the iTunes and App Store.

6. ATTACK PREVENTION
The phishing attacks in this paper all exploit the mobile

platform’s pervasive lack of application identity indicators.
A user cannot reliably tell what application is currently run-
ning or what web site is currently loaded in the browser. In
the absence of identity indicators, applications and web sites
can mimic each other with a high degree of accuracy.

One solution is to permanently dedicate some small por-
tion of the screen to application identity. The operating sys-
tem would provide an always-present identity bar that dis-
plays the name of the current foreground application, and
the browser could similarly provide a minimalist, always-
present address bar that simply displays the domain in a
small font. However, there are three significant problems
with this solution: mobile screen space is limited, users
ignore security indicators [5], and users will still be con-
ditioned to fall for embedded phishing attacks as long as
legitimate applications continue to ask for passwords with
embedded login forms.

An alternate solution is for the operating system to sup-
port a trusted password entry mechanism. SpoofKiller is
a proposal for such a trusted login mechanism [7]. When
using SpoofKiller, a user presses the “Home” button when
she wants to log in to a web site or application. The op-
erating system then presents the user with a standardized
login screen that displays security information and any other



relevant security indicators (e.g., SSL status). The primary
challenges for this approach are usability and adoption; users
must be convinced to always press the button before supply-
ing a password, and applications and web sites must support
this form of password entry.

In general, phishing is an open problem, and the con-
straints of mobile devices make it more difficult. As an im-
mediate measure, we recommend that companies stop using
embedded login forms. Companies like Facebook and Twit-
ter should encourage developers to implement social sharing
using their mobile applications instead of embedded logins.
Embedded logins exacerbate the problem of training users
to ignore security indicators.

7. RELATED WORK
Niu et al. identify several aspects of the iPhone’s browser

user interface that enable phishing attacks [10]. They per-
form a user study and find that users do not notice missing
or spoofed browser user interface elements. Their work ap-
plied these techniques to the web-to-web phishing scenario.
We build an improved version of their address bar spoofing
attack and apply it to new scenarios, such as enabling a web
application to spoof a mobile application.

Rydstedt et al. present framing attacks on web sites dis-
played on mobile phones [13]. They spoof the iPhone’s
browser address bar to perform their “tapjacking” attacks.
Their attacks are all intended for the web-to-web attack
scenario, although we believe that their attacks could be
extended to mobile applications with WebViews.

Dhamija et al. challenged desktop web browser users to
identify phishing attacks, and the best phishing web sites
in their data set fooled 90% of the study participants [5].
Simple spoofing attacks (e.g., copying images of SSL indica-
tors) fooled users, and a quarter of their participants only
looked at the contents of web sites (e.g., logos and layout)
to determine legitimacy. Given their results, we feel it is
unlikely that smartphone users could differentiate between
our spoofed applications and the legitimate ones.

8. CONCLUSION
We examine the threat of phishing on mobile devices. A

successful phishing attack has two parts: the user must be
conditioned to enter her credentials in a certain setting, and
the attacker must be able to imitate that setting. We study
real mobile applications and web sites to understand the
scenarios in which users enter passwords on mobile phones,
and then we propose attacks that subvert these scenarios.

Our analysis of 100 mobile applications and 85 web sites
finds that mobile applications and web sites commonly in-
teract in ways that can be spoofed by attackers. Many ap-
plications and web sites link to each other for the purpose of
social sharing and payment, both of which require the user
to enter her authentication credentials in contexts where the
user has no way to identify who is receiving those credentials.
Users are therefore likely accustomed to switching from one
application to another and then entering their passwords
into the second application, without any way to verify the
authenticity of the second application.

We present 15 phishing attacks that mimic this pattern of
interaction. A malicious application can link the user to a
social networking or payment web site, and then present the
user with a fake login screen. Alternately, an attacker can

intercept the interaction and substitute a fake login screen
for the intended target. We evaluate how accurately the
15 attacks can mimic legitimate application behavior and
conclude that 13 could occur without user detection.

Our analysis suggests that mobile users’ passwords for sev-
eral major sites (notably including Facebook and Twitter)
may be at risk. We hope that this research will motivate
further research into defenses against mobile phishing.

9. REFERENCES
[1] Ettercap. http://ettercap.sourceforge.net.

[2] Android bug report. Internet access without
permission. http://code.google.com/p/android/
issues/detail?id=8007.

[3] Canalys. Google’s Android becomes the world’s
leading smart phone platform. Canalys research
release 2011/013, 2011.

[4] E. Chin, A. P. Felt, K. Greenwood, and D. Wagner.
Analyzing Inter-Application Communication in
Android. In MobiSys, 2011.

[5] R. Dhamija, J. D. Tygar, and M. Hearst. Why
Phishing Works. In CHI, 2006.

[6] A. P. Felt, K. Greenwood, and D. Wagner. The
Effectiveness of Install-Time Permission Systems for
Third-Party Applications. In WebApps, 2011, to
appear.

[7] M. Jakobsson and W. Leddy. SpoofKiller.
http://www.spoofkiller.com.

[8] M. Jakobsson, E. Shi, P. Golle, and R. Chow. Implicit
Authentication for Mobile Devices. In HotSec, 2009.

[9] C. Karlof, J. D. Tygar, and D. Wagner.
Conditioned-safe Ceremonies and a User Study of an
Application to Web Authentication. In NDSS, 2009.

[10] Y. Niu, F. Hsu, and H. Chen. iPhish: Phishing
Vulnerabilities on Consumer Electronics. In UPSEC,
2008.

[11] PayPal X Developer Network. The Application
Showcase Directory. https://www.x.com/community/
ppx/showcase/ap_directory.

[12] M. Prandini, M. Ramilli, W. Cerroni, and
F. Callegati. Splitting the HTTPS Stream to Attack
Secure Web Connections. In IEEE Security & Privacy,
volume 8, Issue 6, December 2010.

[13] G. Rydstedt, B. Gourdin, E. Bursztein, and D. Boneh.
Framing attacks on smart phones and dumb routers:
tap-jacking and geo-localization attacks. In WOOT,
2010.

[14] M. Schultz. Handy Light: Tethering App Camouflaged
as Flashlight.
http://appshopper.com/blog/2010/07/20/

handy-light-tethering-app-camouflaged-as-flashlight/.

[15] M. Zalewski. Browser Security Handbook, part 2:
Same-origin policy for DOM access.
http://code.google.com/p/browsersec/wiki/

Part2#Same-origin_policy, 2009.


