The State of the Cross-domain Nation

Sebastian Lekies, Martin Johns and Walter Tighzert
SAP Research Karlsruhe
{firstname.lastname } @sap.com

Abstract—By deploying a configuration that allows the creation
of client-side, cross-domain HTTP requests, a Web applica-
tion weakens the same-origin policy. This enables sophisticated
browser-based interaction which is not possible in the standard
model, but also may lead to insecurities. In this paper, we briefly
cover the technical background of client-side, cross-domain
requests and explore the resulting potential security problems.
Then, we present an extensive empirical study on observable
cross-domain configurations and conduct an analysis of the
collected data to assess the fraction of potentially vulnerable
sites. For this purpose, we collected the cross-domain policies of
1.093.127 Web sites. The results of our analysis show that 2,8%
of all examined sites are potentially insecure, including 15.060
sites for which an exploitable condition can be predicted with a
high level of confidence.

I. INTRODUCTION

The Web is ever changing. This constant evolution is driven
by a steady stream of innovative Web application types or
novel use-cases for existing functionality. In this progression
of the field, upcoming application scenarios occasionally are
hindered by the limits of the underlying technology and
standards. This in turn fosters the further development of the
Web server and browser model. Several times in the past, new
capabilities were added to the mix via Web browser extensions
or plug-ins, such as Adobe Flash or Google Gears, before they
were adopted to become native browser features.

One example of such a development was the introduction
of capabilities for client-side, cross-domain HTTP requests,
which enable the cooperation of more than one Web applica-
tion within the browser without server-side involvement. Such
capabilities were first introduced by the Adobe Flash plug-in.

The security implications of this extension of the same-
origin model of the web browser were discussed in the security
community early on [5, 15, 16]. A small study of Jeremiah
Grossman revealed in 2008 a percentage of 7% of the top
500 Web sites issue probably insecure cross-domain policy
configurations [7]. Since then, only little evidence is present to
assess to which degree the awareness of the potential security
implications has reached the operators of modern Web sites.

In this paper, we present an empirical study on the current
deployment of cross-domain policies and conduct an extensive
analysis in respect to the observable level of security of these
deployments. For this purpose, we analyze the cross-domain
policies of the top 1.000.000 sites listed in the Alexa [3] index.

II. TECHNICAL BACKGROUND
In this section, we briefly revisit the technical background
of client-site cross-domain request and explore the motivation

This work was in parts supported by the EU Project WebSand (FP7-
256964), http://www.websand.eu.

that has led the introduction of this technique.

A. Client-side cross-domain HTTP requests

In general, the same-origin policy (SOP) [14] is the main
security policy for all active content that is executed in a
Web browser within the context of a Web page. This policy
restricts all client-side interactions to objects which share the
same origin. In this context, an object’s origin is defined by
the URL, port, and protocol, which were utilized to obtain
the object. While this general principle applies to all active
client-side technologies (e.g., JavaScript, Java applets, Flash,
or Silverlight), slight variations in the implementation details
exist. Please refer to [20] for further reference.

Based on the SOP, the initiation of network connections
from active content in the browser is restricted to targets that
are located within the origin of the requesting object'. This
means, a JavaScript that is executed in the browser in the
context of the origin http://www.example.orqg is only
permitted to generate HTTP requests and read the response
(via the XMLHttpRequest-object [17]) from URLs that match
this origin. The same general rule exist for Flash, Silverlight,
and Java.

However, in the light of increasing popularity of multi-
domain, multi-vendor application scenarios and ever growing
emphasis on client-side functionality, a demand for browser-
based cross-domain HTTP requests arose (e.g., in the field
of Web2.0 Mashups), as such request have the ability to mix
data and code from more than one authorization/authentication
context (see Sec. II-B).

Following this demand, the ability to create cross-domain
HTTP requests from within the browser has been introduced
by Adobe Flash [1], later followed by Sliverlight and the
browser’s native JavaScript (see Sec. II-C for technical details).

B. Use cases for client-side cross-domain HTTP requests

The need for client-side cross-domain requests is not imme-
diately obvious. Alternatively, the Web application could offer
a server-side proxying service that fetches the cross-domain
content on the server-side, instead of requiring the client-side
browser to issue the cross-domain requests. Such a service
can be accessed by the client-side code via standard, SOP-
compliant methods. This technique is offered for example by
Google’s Gadget API [6].

However, this technique is only applicable in cases in which
the Web application’s server-side code is able to access the

INB: This restriction only applies to HTTP requests that are created by
active code. HTML elements, such as IMG or IFrame are unaffected and
can reference cross-domain objects.

requested content, e.g, when requesting publicly available
internet resources. Server-side proxies might not be applicable
whenever the access to the requested content is restricted.
Examples for such scenarios include situations in which the
requested content is unavailable to the server because of
network barriers (e.g., an internet Web application interacting
with intranet data) or cases in which the demanded information
is only available in the current authentication context of the
user’s Web browser (e.g., based on session cookies, see Sec. II1
for details). Such use cases can only be realized with client-
side cross-domain capabilities.

C. Techniques for implementing client-side cross-domain re-
quests

Since cross-domain requests can be abused for various
different attacks (see Sec. III for details), Adobe introduced
a policy-based security mechanism which was imitated by
several other cross-domain technologies. This mechanism can
be described as a server-side opt-in approach, where the
server has to explicitly allow cross-domain communication
to requesting domains. In order to do so, the server keeps
a whitelist of domains in his policy file. When an applica-
tion initiates a cross-domain request the responsible browser
plugin downloads the policy file from the server and checks
whether the calling domain is whitelisted or not. Only if
this check is successful the request is conducted, otherwise
the request is dropped. Besides full domain names (e.g.
sub.domain.example.org) these policy files also use wildcards
to grant cross-domain communication to several domains at
once. *.example.org for example grants cross-domain access to
all subdomains of example.org and a single ”*” grants access
to any domain. This is especially helpful for domains offering
an API which is intended to be used by any other website.
Under certain circumstances, however, having a ”’*” in a policy
file can have severe security implications (see section III).

1) Adobe Flash: In order to allow cross-domain request
of remote flash applets a server has to place a file called tt
crossdomain.xml into the root folder of the web server. Listing
1 shows an exemplary cross-domain policy which contains
the two main directives supported by flash. The allow-access-
from-tag grants a domain to pull data from the web server,
while the allow-http-request-header-tag allows a flash applet to
push data onto the server in the form of http-request headers.
The policy file at the server root is also called master-policy
file and is valid for all files on the same domain. Sometimes
it is desirable to grant access only to subfolders of a domain,
thus, a flash-applet is able to specify the location of additional
meta policies. A meta-policy can be placed anywhere on the
server and is valid only for the directory it is situated in and
all its subfolders. In order to avoid abuse of meta-policies the
master policy has to grant the usage of such additional policies.
The file in Listing 1 explicitly forbids other policies besides
the master policy by specifying a site-control element.

2) Silverlight: Following Flash’s example, Silverlight also
implemented a policy-based recipient-opt-in approach to avoid
the misuse of its cross-domain capabilities. It even uses
Flash’s crossdomain.xml as a fallback mechanism in

Listing 1 Exemplary crossdomain.xml file

<cross—domain-policy>
<site-control
permitted-cross—-domain-policies=
"master-only" />
<allow-access-from domain="a.net" />
<allow-http-request-headers—-from
domain="a.net" headers="SOAP" />
</cross—-domain-policy>

case it cannot find its own policy file which is called
clientaccesspolicy.xml. In contrast to Flash Sil-
verlight only relies on one policy file and waives meta policies.
This file however, can make use of more fine-grained policies
and thus is also able to set access restrictions on the sub folder
level. Listing 2 shows an exemplary client access policy. Each
policy file can specify multiple policies consisting of a set of
domains (<allow-from>...<\allow-from>) to which access is
granted and a set of resources (<grant-to>...<\grant-to>) to
which the cross-domain request can be send.

Listing 2 Exemplary clientaccesspolicy.xml file

<access-policy>
<cross—-domain-access>
<policy>
<allow—from http-request-headers="x">
<domain uri="a.net" />
</allow-from>
<grant-to>
<resource path="/"
include-subpaths="true"/>
</grant-to>
</policy>
</cross—-domain-access>
</access-policy>

3) CORS: In the course of expanding JavaScript’s network-
ing stack, the ability to create cross-domain HTTP requests
have been added. JavaScript’s native implementation is called
Cross-origin Resource Sharing (CORS) [18]. CORS utilizes
JavaScript’s XMLHttpRequest-object for this purpose. Instead
of following Flash’s example of utilizing policy files, CORS
utilizes HTTP response headers to allow or deny the requests.
Only if the HTTP response carries an allowing HTTP header,
the received data is passed on to the calling script. This behav-
ior allows much more fine-grained access control compared to
the established policy-based mechanisms.

III. SECURITY IMPLICATIONS OF CLIENT-SIDE
CROSS-DOMAIN HTTP REQUESTS

The security implications of client-side cross-domain capa-
bilities are known in the security community ever since the
introduction of this mechanism in Adobe Flash [5]. In this
section, we briefly discuss the general security problems that
can arise to motivate our survey.

A cross-domain policy expands the security perimeter of
the issuing Web site through relaxing the applicable origin-
based restrictions for the domain listed in the policy (this

Listing 3 Insecure crossdomain.xml file

<cross—-domain-policy>
<site-control
permitted-cross—-domain-policies="all" />
<allow—access—from domain="x" />
<allow-http-request-headers—-from domain="x"
headers="*" />
</cross-domain-policy>

topic is discussed further in Sec. III-D). In consequence, it can
be stated that the likelihood of potential security implications
grows with the number of domains that are permitted elevated
cross-domain privileges. Therefore, policies that whitelist all
other domains, using the “*”-wildcard, provide the most
potential for abuse, as in such cases all Web sites, including
sites controlled by an adversary, are outfitted with the relaxed
restrictions.

A. Attacker model:

From now on, we consider the following scenario: The
victim visits a Web site b . net, which is under the control of
the attacker. This Web site is granted the right to create cross-
domain requests to a second Web site c . net, for instance be-
cause c.net has an overly permissive crossdomain.xml
policy file that whitelists (“*”) all foreign domains. Further-
more, the victim currently possesses an authenticated session
state with c.net, i.e., in the victim’s browser exists a session
cookie for this domain.

This setting allows the attacker to create arbitrary HTTP
requests to c.net from within the victim’s browser and
read the corresponding HTTP responses. The victim’s cookies
for c.net, including the authenticated session cookies, are
attached to these requests automatically by the browser, as the
cookies’ domain matches the target domain of the outgoing
HTTP request. These requests are received and handled by
c.net in the same fashion as regular requests coming from
the victim, hence, they are interpreted in the victim’s current
authentication context.

B. Resulting malicious capabilities:

We can deduct the several potential attack vectors, based on
the scenario discussed above.

1) Leakage of sensitive information [8]: The adversary can
obtain all information served by c.net which the victim is
authorized to access by simply requesting the information via
HTTP and forwarding the corresponding HTTP responses to
the attacker’s server.

2) Circumvention of Cross-site Request Forgery protec-
tion [15]: The security guarantee of nonce-based Cross-
site Request Forgery (CSRF) protection [4] is based on the
assumption that the attacker is not able to obtain the secret
nonce which is required for the server to accept the request.
These nonces are included in the HTML of c.net. As the
adversary is able to read HTTP responses from c.net, he
can request the page from c.net that contains the nonce,
extracting the nonce from the page’s source code, and using
it for the subsequent HTTP request.

3) Browser hijacking [12]: As discussed, the adversaries
has the ability to create arbitrary HTTP requests that carry the
victim’s authentication credentials and read the corresponding
HTTP responses. In consequence, this enables him to conduct
attacks that are, for most purposes, as powerful as session
hijacking attack which are conducted via cookie stealing: As
long as the targeted application logic remains in the realm of
the accessible domain (in our case b.net), the attacker can
chain a series of HTTP requests to execute complex actions
on the application under the identity of the user, regardless of
CSRF protection or other roadblocks. This can happen either
in a fully automatic fashion, as seen in the payloads of XSS
worms [9, 11], or interactive to allow the attacker to fill out
HTML forms or provide other input to his attacks. Frameworks
such as BeEF [2] or MalaRIA [12] can be leveraged for the
interactive case.

C. On the insecurity of “*”-policies

Unlike the widespread notion, a wildcard (“*””) policy alone
is not a sufficient precondition to classify a cross-domain
configuration to be insecure. For a Web site which sole purpose
is to serve public information. without the need for any state-
full session management or user authentication, a general
permissive policy is completely adequate.

Also, for sites which partition their functionality over sev-
eral subdomains, having a permissive *-policy for some of the
subdomains is legitimate (e.g., a site that serves static content
via static.b.net and isolates its administrative functions
on admin.b.net does not cause any security problem if
static.b.net provides a permissive policy file).

Only cases, in which an Web application combines authen-
tication tracking (or at least state-full session tracking) with an
over-allowing “*”-policy, the cross-domain configuration has
to be regarded as potentially harmful. In consequence, for the
remainder of this paper we exclusively classify policies to be
insecure if both indicators could be detected by our crawler
(see Sec. IV-B4 for details).

http://b.net

NS
§’

Browser

http://b.net

v \ http://c.net
JavaScript

(bnet) — " > B
Y CrossDomain.swf])

(b.net) .
| <Crossdomain.xml>

Fig. 1: Attacker Model

Cookie for c.net

D. Transitivity of insecurity

As stated above, the inclusion of a domain a.net in
the cross-domain policy of the site b.net is an expression
of b.net’s trust in the operators of a.net to handle the
capability to create authenticated HTTP requests responsible.
Hence, in parts the security perimeter of b.net is expanded
into the realm of a.net. This in turn means, that a potential
compromise of any site which has been included into b . net’s
trust domain this way, may also directly affect b.net’s
security.

The type of enabling vulnerability, that allows the adversary
to exploit this circumstance, differs depending on the utilized
techniques for granting client-site requests:

1) CORS: As CORS is implemented in the browser’s native
JavaScript, it is sufficient for the attacker to be able to execute
JavaScript under the domain of a . net, i.e., a simple XSS flaw
is sufficient.

2) Flash and Silverlight: Unlike injected JavaScript, plug-
in content, such as Flash or Silverlight objects, retain their
origin when being included in foreign web pages. Hence, to
abuse a cross-domain trust relationship, the adversary is re-
quired to cause a . net to serve the attackers Flash/Silverlight
object. Hence, in this case an arbitrary file-upload vulnerability
has to be present [§].

E. Case study:

To exemplify the malicious capabilities an adversary may
gain through a liberal crossdomain.xml file, we briefly
document security issues that we encountered during our study
at a site image sharing site?.

The affected is a popular image and video-hosting website
which offers the possibility for its users to upload and share
media files. At the time this paper was written the site was
ranked in the top 1000 of the most popular websites in the
world according to the Alexa [3] index. After logging in the
user is presented with a list of his media files where he can
conduct several actions, like editing the images or marking
them as private or public. This personal list can be accessed
on the site.

The site serves a crossdomain.xmlfile from its Web
root. An excerpt of the file can be seen in Listing 4. As it
can be seen in the excerpt, the site issues a wildcard policy
(“**”), thus, allowing any foreign domain to read data by the
use of a cross-domain request. Such cross-domain requests are
outfitted by the browser with the website’s cookie. Therefore,
a flash applet’s request appears to the site as if the user itself
conducted the request within his authenticated session.

An adversary could, therefore, setup a webpage where he
embeds an invisible flash file. If he is able to get a user who
is concurrently logged in in the site to visit this website he is
able to conduct arbitrary actions in the name of the user. As a
prove of concept we implemented a flash applet which reads
out the list of images and changes the visibility of all photos
which are marked private to public. Besides this obviously
very undesired attack a lot of other scenarios are conceivable,

2We notified the operators of the site about our findings. The issue has
been resolved and the site does not use a wildcard policy anymore.

like the stealing of personal account data or the upload virus-
infected files.

Listing 4 Excerpt of vulnerable site’s crossdomain.xml file

<cross—-domain-policy>
<allow—access—from domain="*"/>
[...]

</cross-domain-policy>

IV. ASSESSING THE CURRENT PRACTICE OF CLIENT-SIDE
CROSS-DOMAIN POLICIES

The last public examination of deployed cross domain
policies that received considerable attention was done by
Jeremiah Grossman in 2008. He examined the policy files of
the Alexa Top 500 and Fortune 500 websites [7]. He found that
at this point in time 7% of the examined websites had a policy
that granted every domain full access via the *-wildcard. In
this paper, we give a more recent and more complete account
on the current situation.

A. Research questions

In this study, we are not only interested in the total number
of perceived insecure sites. Furthermore, the goal of the study
is to provide a better understanding on the details of currently
deployed policies. More precisely, we target to address the
following research questions:

(R1) Penetration
This study is aimed to provide insight on the current
level of usage of client-side cross-domain interaction.
As providing a cross-domain policy file is an active
act of the serving site, it is safe to state, that each of
these files was created to enable at least one specific
technical requirement, which is not solvable with the
full same-origin restrictions in place. Hence, quantitative
data is a valid indicator. In this context, we identified the
following points of interest:
« How prevalent is the usage cross-domain policies?
« Which techniques are utilized for this purpose?
o Can a trend towards native JavaScript techniques (i.e.,
CORS) be observed?
« What kind of sites do issue cross-domain policies?
(R2) Security
As already mentioned, the driving force of this sur-
vey is the assessment in respect to currently deployed
insecure configurations. Hence, we explore:
« How high is the ratio of potentially insecure policies?
o Can we observe a connection between the likelihood
of insecure policies and category of the corresponding
Web site? I.e, are certain types of sites “more secure”
than others in the context of cross-domain policies?
o Is there a correlation between security awareness and
non-technical factors such as popularity? Le., does the
ratio of insecure configurations raise when the Alex
rang declines?

o Which sites are listed in the most policy files and
hence attractive targets for attacks that try to leverage
the transitivity of insecurity problem (see Sec.IlI-D)?

B. Methodology

In this section, we briefly document the setup of our exper-
iment. Furthermore, we explore selected aspects of our data
collection methodology which we consider worth mentioning.

1) General approach: In order to gain meaningful insights
into the usage of cross-domain requests on the web, we
decided to crawl as many websites as possible. Therefore,
we choose the Alexa top 1.000.000 Websites as it is one of
the biggest and most popular rankings. For each website in
the ranking we first checked the availability of the website
by sending a request to the main page. So if the domain
was example.org we first sent an HTTP request to http://
example.org/. If the website was not available we also
called http://www.example.org. After having received
the response, we stored the returned response headers (con-
taining the CORS and the cookie headers), checked if the
main page contained any password fields and downloaded
crossdomain.xml and clientaccesspolicy.xml
files. With our crawler infrastructure we crawled the websites
in a time frame of about 5 days. As many web server are not
using standard HTTP response codes, we also downloaded a
lot of invalid files which were mainly error messages served
with a 200 response code. Therefore, we conducted some
cleansing and preprocessing on the data.

2) Classifying domain values based on topics: Research
question (R2) includes the objective to gain insight, whether
certain classes of Web sites are more prone to insecure
configurations than others.

For this purpose, it is essential to have a notion on the
business area of the involved sites (both the provider of the
policy file as well as the domains listed). Hence, a method for
mapping domain names to their respective Web application
category is needed.

Our first stab at this problem was to use the categories which
are provided by the Alexa service [3]. Unfortunately, first
manual tests revealed that the Alexa categories do not have
the level of quality which would be needed for meaningful
results. For instance, the provided categories for the video site
Youtube.com (at time of writing with an Alexa rank of 3) did
not even contain the term “video” at all (see Listing 5). We
experienced similar problems with the Google Web directory?
and the open directory DMOZ*.

For this reason, we resorted to the wisdom of the crowd
approach. Instead of using a directory of Web sites, we utilized
the social bookmarking service Delicious.com [19] for infor-
mation gathering. For each examined domain value, we looked
up the top tags which have been assigned to this domain by
the Delicious.com users. As social tagging is a decentralized,
unorganized process, we had to execute normalization on the
data (e.g., identifying terms given in singular and plural form).
Furthermore, with sites of big brands, often the actual name of

3Google Web directory: http://www.google.com/dirhp
4DMOZ: http:www.dmoz.org

the brand is the most often assigned tag (for youtube.com the
second top tag was, for instance, indeed ‘“‘youtube”). Hence,
such tags had to be identified and removed from the index.
Furthermore, to end up with a set of categories that has a
manageable size, we choose the 100 most frequently used
tags from the cleaned set and manually assigned these as sub-
categories to 15 top-categories, which were selected according
to the top-categories of the other Web directories.

After these cleaning steps, we merely took a site’s top
tag (i.e., the tag that was used by the largest number of
Delicious.com users to characterize the site) to serve as the
Website’s sub-category, thus, implicitly determining the site’s
top-category. Applying this for youtube.com, the resulting top
tag is “video” which is linked to the video sub-category and
thus to the art top-category.

However, using a social bookmarking service as a data
source has one noteworthy disadvantage: Only sites that reach
a certain level of popularity are posted to the bookmarking
service by enough individual users so that the assigned tags
provide reliable information on the nature of the site. For this
reason, only a subset of 16.467 of the examined domain values
in our test set carry category information. Nonetheless, we
believe this number of categorized sites is large enough to
gain first insights.

Listing 5 Alexa category results for youtube.com

World > Cesky > Kultura > Zabava

World > Espana > Guias y directorios
World > Suchen > Suchmaschinen > Google
World > ... Moteurs de recherche > Google
Computers > > Internet Traffic

World > > Wyszukiwarki > Google

World > Internet > Ricerca > Motori

Listing 6 Delicious.com top tags for youtube.com

video (25972),
entertainment (9200),
(6743), social (46406),
community (3141)

(18248), wvideos (16876),
media (7544), web2.0
fun (4624), music (3378)

youtube

3) Probing for CORS adoption: As part of research ques-
tion (R1), we were interested if indicators on technology
adoption can be collected. As described in section II-C CORS
utilizes HTTP header fields instead of policy files. In order
to receive such a CORS header one has to send a header
called ”Origin:” with the HTTP request. The value of this
header has to be the domain from which the cross-domain
request originates. If the header is set and the domain is on the
whitelist of the receiver, the server adds an additional header
named ~Access-Control-Allow-Origin:” to the response. The
value of the header contains either a wildcard or a list of
domains which are allowed to conduct cross-domain requests
to the server. If the domain which was sent to the server by the
use of the origin header is on that list or a wildcard is received,
the request is granted. If this domain is not whitelisted the

Flash Total Flash only | with SL | with CORS
82.052 81.439 555 58
. . Total SL only | with Flash | with CORS
Silverlight - |53 436 355 0
Total CORS only | with Flash | with SL
CORS 215 153 53 0

TABLE I: Total numbers of collected policy files and CORS
headers

server does simply not add the response header and the request
will be dropped by the browser.

This fact makes it quite difficult to detect the presence of
CORS capabilities, as one must know a whitelisted domain in
order to get the correct response containing a response header
which indicated CORS readiness. In order to get a realistic
view on the dissemination of CORS we therefore utilized two
different approaches to receive CORS headers. For one, we
used the domain value of the target of the HTTP request as
the origin of the request (in lack of a better alternative).

Furthermore, we checked the target domain for existing
Flash or Silverlight cross-domain policies. If such policies
existed, we compiled the set of whitelisted domains in these
policies and used these values within the origin-header of
the test requests. The underlying reasoning is that, if a server
allows cross-domain requests through Silverlight or Flash it is
very likely that it also allows requests through CORS to the
same domain.

4) Identification of insecure policies: As explained in
Sec. III-C, there are legitimate cases for using a general wild-
card policy without compromising the issuing site’s security.
Thus, the mere existence of such a policy is not a sufficient
indicator for a present insecurity.

However, as soon as such a policy is combined with
authentication tracking, the discussed attacks (see Sec. III-B)
gain severity. For this reason, we tested all examined sites for
indicators of authentication dialogues. More precisely: We did
a shallow crawl of the Web application’s UI and attempted to
locate either password fields or links to login pages.

Please note: For such authentication forms, the target do-
main of the form action can differ from the domain value for
which the from originally has been served. Hence, whenever
we encountered a authentication form that leads to submission
of the entered data to a different domain, we tried to obtain the
cross-domain policy file for the form’s target domain. In such
cases, this policy file was the basis for our security assessment.

If for a given site both a wildcard ”*” policy and a login
dialogue could be found, we labeled the site as insecure.

V. RESULTS AND ANALYSIS

In this section, we present the results of our survey and
discuss these results in the context of the identified research
questions.

A. (RI) Penetration

In total we probed 1.093.127 individual domains for cross-
domain policy files and CORS headers. This number resulted
from the first one million domain names included in the Alexa

index plus a set of additional domains, which were added to
our list because the action-attribute of a login from pointed
to these domain (as pointed out above, the security properties
depend on the cross-domain configuration of the domain that
received the login data, not the one providing the login field).

Out of these domains, a total of 82.052 served valid
crossdomain.xml files. In addition, we were able to find
995 clientaccess.xml files and detect CORS headers
in the responses of 215 sites (see Table I for details on
combined occurrences). Given the numerical dominance of
Flash policies, for now we limit the further discussion to these
policies.

While each website serving a valid policy file can be
seen as a supplier for cross-domain services, the websites
specified within the policies can be seen as consumers of
cross-domain services. For the flash policies, we were thus
able to identify 82.052 unique suppliers and 67.974 unique
consumers of cross-domain services. (Note: In practice the
number of consumers could be much higher than the number
stated above, as policies only containing a wildcard do not
reveal information about the consumers).

In average approximately 8% of all examined sites provide
a crossdomain.xml policy file. It is noteworthy, that the
sites which are within the top 1000 Alexa positions expose
a considerable higher probability of providing cross-domain
policy files (see Fig. 2). For instance, 70 out of the Alexa top
100 sites provide a policy file and within the Alexa top 1000,
48% of the sites. For the “long tail” of sites, the 8% number
is surprisingly stable.

Hence, compared with the results of Grossman’s 2008 study,
we can observe an increase in the uptake of this technology:
Grossman examined the top 500 Alexa and Fortune 500 and
observed a ratio of 28% of sites providing policy files.

The majority of analyzed policy files contain references to
five or less external domains (see Fig. 3). The largest number

Domain Alexa | #Ref. | Category Subcategory

1 ning.com 249 1188 Society Social

2 cooliris.com 2231 1076 | Computers | Software

3 mochiads.com 23560 | 726 Business Advertisement

4 brightcove.com 5125 718 Arts Video

5 mochimedia.com | 2822 405 Games Video Games

6 2mdn.net 1892 394 Business Advertisement

7 facebook.com 2 347 Society Social

8 amazonaws.com 157 305 Computers | internet

9 weebly.com 462 267 Computers | internet

10 | userplane.com 24671 | 255 Society Social
TABLE II: Top ten most trusted urls

Domain Entries | Category Subcategory

1 youronlineagents.com 980 Home Real Estate

2 grand-casino.com 951 Games Gambling

3 www.stormpulse.com 848 News Weather

4 comned.com 443 Computers | Internet

5 orange.co.il 421 Business Telecommunication

6 WwWww.ivgstores.com 398 Shopping Furniture

7 www.pointpoker.com 305 Games Gambling

8 www.mychallenges.net | 304 Society Social

9 timwe.com 294 Business Advertisement

10 | fr.viamichelin.com 283 Reference Maps & Views

TABLE III: Biggest Policy Files

30,00%
25,00%
20,00%

15,00%
——Flash Policy Files

------ Wildcards

10,00% Insecure

5,00%

0,00%

S O & & S & &
F&F&&F&FF S
£ ® & O & P

Alexa Rank

Fig. 2: Collected crossdomain.xml files

of entries in a single crossdomain.xml file that we could
observe was 980 domains (see Tab III).

B. (R2) Security

Out of the 82.052 crossdomain.xml files that we col-
lected, 31.011 utilized a general wildcard (a star policy), which
enables all sites to conduct client-side cross-domain interac-
tion. This results in 37,7% of potentially insecure policies and,
thus, a total of 2,8% potentially insecure site in our dataset of
1.093.127 examined domains.

However, as discussed in Sec. III-C, a wildcard policy alone
is not a sufficient indicator, that the site is indeed insecure.
Hence, we utilized our method of associating evidence for
login/session-tracking and wildcard policies (see Sec. III-C)
to establish a more conservative number of sites which have
to be considered to be insecure.

We identified 15.060 sites in which a wildcard policy is
combined with evidence of authentication tracking, resulting

9000
8000
7000
6000
5000

4000 ——No. of Entries

Number of Policies

3000

2000

1000

1 2 3 4 5 6 7 8 9 10 11 12 13 14

#-Entries

Fig. 3: Hosts Per Policy

in a percentage of 1,3% of sites which are very likely to be
susceptible to the attacks, that we outline in Sec. III-B.

Based on the collected data, we could not identify a correla-
tion between Alexa rang and observed percentage of insecure
policies. In fact, both the ratio of deployed policies to wildcard
policies as well as deployed policies to insecure wildcard
policies remains relatively stable over the whole dataset with a
slight decrease in the percentage of wildcard policies for lower
ranked sites. For illustrations of this circumstances refer to
Fig. 2 which visualizes the total numbers, Fig. 4 which shows
the percentage of wildcard and insecure policies within the set
of all collected policies, and Fig. 5 which plots the ratio of
insecure policies to wildcard policies.

To a certain degree, this result surprised us. We expected to
observe a “long tail” phenomena, i.e., an increase in insecure
policies as the importance (measured via the Alexa rang) of
the site decreases.

When it comes to map the sites to their respective categories
(see Fig. 6), it can be observed that Web sites of a more
causal nature (such as members of the games, adult, or sports
category) have the tendency to be more insecure, than their
more serious counterparts (e.g., health or business sites).

Very telling data points are provided by the education and
reference categories. Even though the percentage of wildcard
policies compared to the total number of cross-domain policies
on the higher end of the spectrum, the ratio of insecure policies
is low. Such sites often only provide information without so-
phisticated interaction capabilities or user management. Thus,
they serve as good examples for cases in which wildcard
policies are completely legitimate.

Even not having a wildcard policy but allowing specific
domains may still be at a risk: as described in Sec. III-D, the
inclusion of a domain in the cross-domain policy may increase
the overall vulnerability of the trusting domain. An attacker
may have a look at the trusted domains in the policy files and
check those for vulnerabilities. If we consider it the other way
round, an attacker may crawl the web, collect the policy files
and then make a list of the most trusted urls as those urls are a
target of choices for him (see Tab II). If he manages to exploit
a vulnerability in one of those, the number of domains that
trust it is high.

VI. SECURELY USING CROSS-DOMAIN POLICIES

The results of our study suggest, that a significant number
of Web site operators endanger their users through deploying
insecure policies. There a two potential explanations for this:
Either the operators are not aware of the security risks that
are connected to allowing client-side cross-domain requests.
Or, the operator’s knowledge on how to securely offer public
cross-domain interfaces is limited to a degree, that they resort
to deploying general wildcard policies due to a perceived lack
of alternatives.

For the former case multiple sources are available, that dis-
cuss the security issues (see Sec. III). However, the latter case
is much more sparsely documented. Especially, the scenario
in which a Web site administrator wants to open a selected
subset of his application’s interface to cross-domain requests

60.00%

50.00%

40.00%

30.00%

Percentage

—#Wildcards/#Policies

—#Insecure/#Policies
20.00%

10.00%

0.00%

Q N

S & & & S
e @QQ QQQQ QQQQ 0°°0 0000 @& 0°°°
Vv k) ™) © A L L)

Alexa Rank

O
©
S

Fig. 4: Percentage of wildcard and insecure policies within the
set of collected policies

35,00%

30,00% -

25,00% -

20,00%

15,00%
Insecurity Ratio

10,00%

5,00%

0,00%

Alexa Rank

Fig. 5: Ratio insecure policies in the set of all wildcard policies

from arbitrary sources while denying them for the rest of the
application is not well covered.

In this section, we give recommendation for such situations,
through discussing how the public content can be separated
from the restricted interfaces with properly configured policy
files. There are two approaches to achieve this goal:

1) Usage of different subdomains: Each type of content
can be stored an a specific subdomain like api.a.net for
the public one and secret .a.net for the restricted one. In
this case, each subdomain will have its own Flash/Silverlight
policy files. The policy file of api.a.net could then contain
a wildcard as it is only used for public content whereas the
policy file of secret.a.net only contains domains that
are trusted, for example partners or other sites under the
control of a.net owner.

2) Usage of different subfolders: If creating a new sub-
domain is not possible, the content can be separated using
subfolders, like a.net/api and a.net/restricted.
As described in Sec. II-Cl, it is possible to define Flash

meta-policies that apply to specific folder. For this, the
master policy has to allow it by using the site-control
permitted-cross—-domain-policies element. Given
such a master policy, further policy files can be served on
subpaths of the application, which govern the cross-domain
access for this path and all further subpaths.

Please note: When setting permitted-cross-—
domain-policies to all, any file can be used as a policy
file. This can be dangerous when not all the files on the server
are under the control of the site’s owner. If a user can upload
files on the server, an attacker could upload its own Flash
policy file [5]. It is therefore recommended to set this attribute
to by—-content-type. Only policy files that are served
with Content-Type: text/x-cross—domain-policy
are allowed.

For Silverlight, this is not a problem as there is only
one policy file with multiple policies that apply for different
resources.

VII. RELATED WORK

In concurrent and independent work, Kontaxis et al. have
published a study on Flash policy files closely related to our
efforts [10]. The authors examine the cross-domain policy files
of the top 100K site listed in the Alexa index. The authors
observe that the frequency of insecure policies increases
with decreasing popularity. This observation differs from our
results, as we did not observe such a ”long tail” phenomena.
The reason for this conflicting outcomes lies in two facts:
For one, their definition of an insecure policy is broader than
ours, as they classify all wildcard policies to be insecure
and all partial wildcards to be “weak” policies. Furthermore,
their data basis is significantly smaller than ours (100K vs
1.1 million examined sites). As it can be seen in Figure 4, their
observed increase in insecurity only applies to the first 10K
of examined sites and after the first 100K sites the percentage
of wildcard policies is actually decreasing while the ratio of
insecure polices (in our definition) is relatively stable over the
full data set (see Fig 5).

In addition, the recent history has shown that the intro-
duction of capabilities for client-side, cross-domain HTTP
requests is prone to abuse. In the remainder of this section
we list documented cases that relate to the issues discussed
in this paper. The potential security issues with Flash’s cross-
domain capabilities have received attention from the applied
security community [5, 16] early on. Public documentation
of real issues were given by, e.g., Rios [13] who compro-
mised Google’s mail service GMail by attaching a forged
crossdomain.xml to an email, and by Grossman [8] who
accessed private information on youtube . com by uploading
a swf-file to a host which was whitelisted in YouTube’s
policy. In 2010, the tool MalaRIA (short for *Malicious Rich
Internet Application’) [12] was released. The tool provides
a graphical user interface to interactively conduct session
hijacking attacks, as outlined in Section III.

VIII. CONCLUSION

In this paper, we presented an empirical study on currently
deployed cross-domain policy files to assess the level of adop-

35,00% 1~

30,00% -f

\

25,00%

20,00% +

arts

%Policies
= %Wildcards
m %lnsecure

15,00%

10,00%

(| \
| \
news ||

recreation

(]
| |
\
]
|
L
|
(]
I

5,00%

education | g
(O

| |
society |
shopping 4-
business 4-
computers 4-

0,00%

games
adult
sports
home
health

science |
reference

Fig. 6: Mapping policy files to the top-categories

uQ

tion of this Web application technique and the corresponding
ratio of potentially insecure configurations. For this purpose,
we collected the policy files of the top 1.000.000 domains
listed in the Alexa index, along with a set of policies of
domains which are directly connected to these site through
login processes.

We found a total of 82.052 valid crossdomain.xml
policies. Out of these policies, 31.011 implement a general
wildcard policy, hence, allowing all external sites to generate
client-side, cross-domain requests to the site. Furthermore,
through associating indicators for authentication tracking with
wildcard policies, we deducted that for 15.060 of these sites
the likelihood of resulting vulnerabilities is very high.

REFERENCES

[1] Adobe Coperation. Adobe flash. [online] http://www.
adobe.com/products/flash/flashpro/.

[2] Wade Alcorn et al. Browser Exploitation Framework
(BeEF. [software], http://code.google.com/p/beef/, ac-
cessed in January 2011, 2011.

[3] Alexa Internet, Inc. Alexa Top 500 Global Sites. Website,
http://www.alexa.com/topsites, accessed in March 2010.

[4] Jesse Burns. Cross Site Request Forgery - An
introduction to a common web application weakness.
Whitepaper, https://www.isecpartners.com/documents/
XSRF_Paper.pdf, 2005.

[5] Stefan Esser. Poking new holes with
Flash Crossdomain Policy Files. [online],
http://www.hardened-php.net/library/poking_new_holes_
with_flash_crossdomain_policy_files.html, Accessed in
January 2011, October 2006.

[6] Google inc. Google Gadgets API: Working with Remote
Content. [online], http://code.google.com/apis/gadgets/
docs/remote-content.html, accessed in January 2011.

[7] Jeremiah Grossman. Crossdomain.xml Invites Cross-site
Mayhem. [online], http://jeremiahgrossman.blogspot.
com/2008/05/crossdomainxml-invites-cross-site.html,
Accessed in January 2011, May 2008.

[8] Jeremiah

—_

Grossman. I wused to know
what you watched, on YouTube. [online],
http://jeremiahgrossman.blogspot.com/2008/09/
i-used-to-know-what-you-watched-on.html, Accessed
in January 2011, September 2008.

Samy Kamkar. Technical explanation of the MyS-
pace worm. [online], http://namb.la/popular/tech.html,
accessed in January 2011, October 2005.

Georgios Kontaxis, Demetris Antoniades, lasonas Po-
lakis, and Evangelos P. Markatos. An Empirical Study
on the Security of Cross-Domain Policies in Rich Inter-
net Applications. In Proceedings of the 4th European
Workshop on System Security (EuroSec 2011), 2011.
Benjamin Livshits and Weidong Cui. Spectator: Detec-
tion and Containment of JavaScript Worms. In Usenix
Annual Technical Conference, June 2008.

Erlend Oftedal. Malicious rich internet applica-
tion (malaria). [software], http://erlend.oftedal.no/blog/
7blogid=107, accessed in January 2011, April 2010.
Billy Rios. Cross Domain Hole Caused By
Google Docs. [online], http://xs-sniper.com/blog/
Google-Docs-Cross-Domain-Hole/, Accessed in January
2011, 2007.

Jesse Ruderman. The Same Origin Policy. [online],
http://www.mozilla.org/projects/security/components/
same-origin.html (01/10/06), August 2001.

Chriss Shiflett. Cross-Domain Ajax Insecurity.
[online], http://shiflett.org/blog/2006/aug/
cross-domain-ajax-insecurity, Accessed in January
2011, August 2006.

Chriss Shiflett. The Dangers of Cross-Domain Ajax
with Flash. [online], http://shiflett.org/blog/2006/sep/
the-dangers-of-cross-domain-ajax-with-flash, Accessed
in January 2011, September 2006.

Anne van Kesteren. The XMLHttpRequest Ob-
ject. W3C Working Draft, http://www.w3.org/TR/
XMLHttpRequest, April 2008.

Anne van Kesteren (Editor). Cross-Origin Resource
Sharing. = W3C Working Draft, Version WD-cors-
20100727, http://www.w3.org/TR/cors/, July 2010.
Yahoo Inc. Delicious.com - Social Bookmarking. [Web
application], http://delicious.com/, accessed in January
2011.

Michal Zalewski. Browser Security Handbook. Whitepa-
per, Google Inc., http://code.google.com/p/browsersec/
wiki/Main, accessed in January 2011, 2008.

