
CONFIDENTIAL 

The State of the Cross-domain 
Nation 
Sebastian Lekies, Martin Johns and Walter Tighzert 
W2SP / May 26th 2011 



©  2011 SAP AG. All rights reserved. 2 Confidential  

Executive summary 

We did an exhaustive survey on the current practice of permitting client-side 
cross-domain HTTP requests 
�  Flash, Silverlight (and CORS) 

Result: A considerable fraction of sites utilize potentially insecure policies  



©  2011 SAP AG. All rights reserved. 3 Confidential  

Agenda 

Technical background 

Methodology 

Results 

Conclusion 

 



Technical Background 



©  2011 SAP AG. All rights reserved. 5 Confidential  

The how and why of client-side cross-domain requests 

Client-side cross-domain requests 
�  Active code in the browser can initiate cross-domain HTTP requests and receive the 

corresponding HTTP response 
�  Generally forbidden by the same origin policy 
�  However, can be conducted with Flash, Silverlight, or CORS under certain circumstances 

The need for this mechanism is not immediately obvious 
Alternative: Server-side proxies 
�  Capable of cross-domain data retrieval 
�  Compliant with the same-origin policy  

–  Requests are routed through the script’s original host 

Advantage of client-side cross-domain requests:  
The HTTP requests are created in the user’s current authentication context 
�  Cookies 
�  Creation within the current intranet 

This allows application scenarios which are impossible with server-side proxies 

 



©  2011 SAP AG. All rights reserved. 6 Confidential  

Security implications 

Scenario 
1. An adversary controlled client-side script is permitted to create cross-domain  
    HTTP requests and receive the corresponding HTTP responses 
2. These requests are created in the user’s current authentication context 
�  I.e., the requests carry the user’s session cookies 

  

http://a.net 

http://b.net 
Cookie for b.net 

CrossDomain.swf 
 

http://a.net 

<crossdomain.xml> 



©  2011 SAP AG. All rights reserved. 7 Confidential  

Potential attack vectors 

Leakage of sensitive information 
�  The adversary can request sensitive web resources  

Circumvention of CSRF protection 
�  Token-based CSRF protection relies on the fact, that the adversary cannot read cross-

domain data 

Session hijacking 
�  Chaining requests & reading responses  

–  Capabilities equal to XSS session hijacking 



©  2011 SAP AG. All rights reserved. 8 Confidential  

Allowing client-side cross-domain requests 

To avoid the outlined security implications cross-domain HTTP requests have 
to be allowed by the receiving site 

Flash 
crossdomain.xml policy files 
�  List of trusted sites which are allowed to create requests 
�  Before issuing a request, the flash-plugin first retrieves the policy and verifies that the origin 

of the requesting script is listed in the policy  

Silverlight  
clientaccesspolicy.xml policy files 
�  Similar mechanism as the one pioneered by Flash, with subtle differences 
�  Fallback to subset of crossdomain.xml policy files possible 

CORS 
�  HTTP response header 
�  Allows fine grained control based on incoming origin-headers  

 



©  2011 SAP AG. All rights reserved. 9 Confidential  

Insecure conditions 

 

 

 

 

Wildcard policies 
�  “*” 
�  Whitelists all existing domains 
�  Results in conditions that roughly match a XSS flaw 

Transitivity of insecurity 
�  If a site is compromised or allows invalidated file uploads, all sites that whitelist this site are 

exposed to the described attacks  

 

3

Listing 3 Insecure crossdomain.xml file

<cross-domain-policy>
<site-control

permitted-cross-domain-policies="all" />
<allow-access-from domain="*" />
<allow-http-request-headers-from domain="*"

headers="*" />
</cross-domain-policy>

topic is discussed further in Sec. III-D). In consequence, it can
be stated that the likelihood of potential security implications
grows with the number of domains that are permitted elevated
cross-domain privileges. Therefore, policies that whitelist all
other domains, using the “*”-wildcard, provide the most
potential for abuse, as in such cases all Web sites, including
sites controlled by an adversary, are outfitted with the relaxed
restrictions.

A. Attacker model:

From now on, we consider the following scenario: The
victim visits a Web site b.net, which is under the control of
the attacker. This Web site is granted the right to create cross-
domain requests to a second Web site c.net, for instance be-
cause c.net has an overly permissive crossdomain.xml
policy file that whitelists (“*”) all foreign domains. Further-
more, the victim currently possesses an authenticated session
state with c.net, i.e., in the victim’s browser exists a session
cookie for this domain.

This setting allows the attacker to create arbitrary HTTP
requests to c.net from within the victim’s browser and
read the corresponding HTTP responses. The victim’s cookies
for c.net, including the authenticated session cookies, are
attached to these requests automatically by the browser, as the
cookies’ domain matches the target domain of the outgoing
HTTP request. These requests are received and handled by
c.net in the same fashion as regular requests coming from
the victim, hence, they are interpreted in the victim’s current
authentication context.

B. Resulting malicious capabilities:

We can deduct the several potential attack vectors, based on
the scenario discussed above.

1) Leakage of sensitive information [8]: The adversary can
obtain all information served by c.net which the victim is
authorized to access by simply requesting the information via
HTTP and forwarding the corresponding HTTP responses to
the attacker’s server.

2) Circumvention of Cross-site Request Forgery protec-

tion [15]: The security guarantee of nonce-based Cross-
site Request Forgery (CSRF) protection [4] is based on the
assumption that the attacker is not able to obtain the secret
nonce which is required for the server to accept the request.
These nonces are included in the HTML of c.net. As the
adversary is able to read HTTP responses from c.net, he
can request the page from c.net that contains the nonce,
extracting the nonce from the page’s source code, and using
it for the subsequent HTTP request.

3) Browser hijacking [12]: As discussed, the adversaries
has the ability to create arbitrary HTTP requests that carry the
victim’s authentication credentials and read the corresponding
HTTP responses. In consequence, this enables him to conduct
attacks that are, for most purposes, as powerful as session
hijacking attack which are conducted via cookie stealing: As
long as the targeted application logic remains in the realm of
the accessible domain (in our case b.net), the attacker can
chain a series of HTTP requests to execute complex actions
on the application under the identity of the user, regardless of
CSRF protection or other roadblocks. This can happen either
in a fully automatic fashion, as seen in the payloads of XSS
worms [9, 11], or interactive to allow the attacker to fill out
HTML forms or provide other input to his attacks. Frameworks
such as BeEF [2] or MalaRIA [12] can be leveraged for the
interactive case.

C. On the insecurity of “*”-policies

Unlike the widespread notion, a wildcard (“*”) policy alone
is not a sufficient precondition to classify a cross-domain
configuration to be insecure. For a Web site which sole purpose
is to serve public information. without the need for any state-
full session management or user authentication, a general
permissive policy is completely adequate.

Also, for sites which partition their functionality over sev-
eral subdomains, having a permissive *-policy for some of the
subdomains is legitimate (e.g., a site that serves static content
via static.b.net and isolates its administrative functions
on admin.b.net does not cause any security problem if
static.b.net provides a permissive policy file).

Only cases, in which an Web application combines authen-
tication tracking (or at least state-full session tracking) with an
over-allowing “*”-policy, the cross-domain configuration has
to be regarded as potentially harmful. In consequence, for the
remainder of this paper we exclusively classify policies to be
insecure if both indicators could be detected by our crawler
(see Sec. IV-B4 for details).

!"#$%%&'()*+
,-./0)-+

!"#$%%1'()*+2..34)+5.-+1'()*+

678791-4#*+

++:&'()*;+

2-.00<.=74('0/5+

+++++++++:&'()*;+

!"#$%%&'()*+

>2-.00?.=74('@=AB+

Fig. 1: Attacker Model



The Survey: Methodology 



©  2011 SAP AG. All rights reserved. 11 Confidential  

Research questions 

(R1) Penetration 
�  How prevalent are cross-domain policies? 
�  Which technologies are used for this purpose? 
�  Can a trend towards CORS be observed? 
�  What kind of sites issue cross-domain policies? 

(R2) Security 
�  How high is the ratio of potentially insecure policies? 
�  How is the relationship between (in)security and site category? 
�  Is there a correlation between (in)security and site popularity?  
�  Which are the sites that are most often whitelisted?  



©  2011 SAP AG. All rights reserved. 12 Confidential  

Identifying insecure policies 

Observation: A wildcard alone does not cause insecurities 
A necessary condition is that the permissive site indeed conducts authentication 
tracking 

Our approach 
�  Check for evidence that indicates that a authentication state can be provided by the site 

–  Password fields 
–  Login dialogues 
–  Session identifiers (HTTPonly cookies, naming conventions)  

�  If authentication forms pointed to different (sub)-domains, we also checked the policy file for 
the form’s target domain 



©  2011 SAP AG. All rights reserved. 13 Confidential  

Classification of sites 

Correlation between potential insecurity and purpose of the site 
�  Hence, site classification needed 
�  Alexa categories did not provide reliable quality 

Our approach: Utilize delicious.com top tags 
�  Downside: Limited set of sufficiently tagged sites (approx. 17.000) 

Alexa 

Delicious top tags 



©  2011 SAP AG. All rights reserved. 14 Confidential  

Probing for CORS adoption 

Looking for CORS is not straight forward 
�  No central policy file 
�  The CORS response headers may only be set for 

–  specific origin domains and 
–  certain target URLs  

Our approach 
�  If a crossdomain.xml or clientaccesspolicy.xml file is present, set the origin header to one of 

the whitelisted domains 
�  If no or a wildcard policy was found, use an arbitrary origin 

This is obviously incomplete 
�  No deep crawl of the sites 
�  Not obvious which domains to set in the origin header, if no further evidence is present 

 



©  2011 SAP AG. All rights reserved. 15 Confidential  

Data collection 

Shallow crawl of the top 1.000.000 sites in the Alexa index 
�  Collect crossdomain.xml, clientaccesspolicy.xml files, and CORS headers 
�  If authentication forms are encountered, get the policy-files for the target domain 

Resulting data 
�  1.093.127 sites examined 

–  Alexa top 1.000.000 plus subdomains which receive authentication info 
�  5 days for the crawl using a distributed crawling infrastructure 



Results 



©  2011 SAP AG. All rights reserved. 17 Confidential  

Results 
Penetration 

1.093.127 domains scanned 

 

 

 

 

67.974 unique consumers 
The actual number might be much higher, as we can’t identify consumers of 
wildcard policies 

Total Percentage 
Flash 82.052 8% 
Silverlight 995 0,09% 
Cors 215 0,02% 



©  2011 SAP AG. All rights reserved. 18 Confidential  

Results 
Penetration / Security - Flash 

Wildcard-policy 
�  31.011 files (37,7% of all 

crossdomain.xml) resulting 
in 2,8% potentially insecure 
sites 

When checking for 
authentication 
�  15.060 sites (1,3% of all 

analyzed sites) 

 

Collected crossdomain.xml files 



©  2011 SAP AG. All rights reserved. 19 Confidential  

Results 
Penetration / Comparison to 2008 

Grossman study in 2008 
�  Alexa Top 500 and Fortune 500 

–  28% providing a crossdomain.xml policy  
–  7% with a wildcard-policy 

Our results (2011) 
�  Alexa top 1000 

–  48% provide a crossdomain.xml policy 
–  12% with a wildcard policy 

 

àIndicator that adoption of the technology is increasing 

 



©  2011 SAP AG. All rights reserved. 20 Confidential  

Results 
Relative security - Flash 

 

 

 

 

 

 

 

S 
 
Conclusion: No apparent „long-tail“ effect.  

!"!!#$

%!"!!#$

&!"!!#$

'!"!!#$

(!"!!#$

)!"!!#$

*!"!!#$

!"
#$
"%

&'
("
)

*+",')-'%.)

+,-./012/34+56.-0-73$

+89370:274+56.-0-73$



©  2011 SAP AG. All rights reserved. 21 Confidential  

Results 
Security - Flash 

 

 

 

Mapping policy files to the 
top-categories 

 

 

 

 

 



©  2011 SAP AG. All rights reserved. 22 Confidential  

Results 
Transitivity of vulnerability 

 

 

 

 

 

Observations: 
�  The majority of sites whitelist 7 or less domains 
�  Only few domains are whitelisted by more than 300 policies 

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

1 2 3 4 5 6 7 8 9 10 11 12 13 14

N
u
m
b
e
r
o
f
P
o
lic
ie
s

#-­‐Entries

No.  of  Entries

6

Flash
Total Flash only with SL with CORS

82.052 81.439 555 58

Silverlight
Total SL only with Flash with CORS

995 436 555 0

CORS
Total CORS only with Flash with SL

215 153 58 0

TABLE I: Total numbers of collected policy files and CORS
headers

the request is granted. If this domain is not whitelisted the
server does simply not add the response header and the request
will be dropped by the browser.

This fact makes it quite difficult to detect the presence of
CORS capabilities, as one must know a whitelisted domain in
order to get the correct response containing a response header
which indicated CORS readiness. In order to get a realistic
view on the dissemination of CORS we therefore utilized two
different approaches to receive CORS headers. For one, we
used the domain value of the target of the HTTP request as
the origin of the request (in lack of a better alternative).

Furthermore, we checked the target domain for existing
Flash or Silverlight cross-domain policies. If such policies
existed, we compiled the set of whitelisted domains in these
policies and used these values within the origin-header of
the test requests. The underlying reasoning is that, if a server
allows cross-domain requests through Silverlight or Flash it is
very likely that it also allows requests through CORS to the
same domain.

4) Identification of insecure policies: As explained in
Sec. III-C, there are legitimate cases for using a general wild-
card policy without compromising the issuing site’s security.
Thus, the mere existence of such a policy is not a sufficient
indicator for a present insecurity.

However, as soon as such a policy is combined with
authentication tracking, the discussed attacks (see Sec. III-B)
gain severity. For this reason, we tested all examined sites for
indicators of authentication dialogues. More precisely: We did
a shallow crawl of the Web application’s UI and attempted to
locate either password fields or links to login pages.

Please note: For such authentication forms, the target do-
main of the form action can differ from the domain value for
which the from originally has been served. Hence, whenever
we encountered a authentication form that leads to submission
of the entered data to a different domain, we tried to obtain the
cross-domain policy file for the form’s target domain. In such
cases, this policy file was the basis for our security assessment.

If for a given site both a wildcard ”*” policy and a login
dialogue could be found, we labeled the site as insecure.

V. RESULTS AND ANALYSIS

In this section, we present the results of our survey and
discuss these results in the context of the identified research
questions.

A. (R1) Penetration
In total we probed 1.093.127 individual domains for cross-

domain policy files and CORS headers. This number resulted

from the first one million domain names included in the Alexa
index plus a set of additional domains, which were added to
our list because the action-attribute of a login from pointed
to these domain (as pointed out above, the security properties
depend on the cross-domain configuration of the domain that
received the login data, not the one providing the login field).

Out of these domains, a total of 82.052 served valid
crossdomain.xml files. In addition, we were able to find
995 clientaccess.xml files and detect CORS headers
in the responses of 215 sites (see Table I for details on
combined occurrences). Given the numerical dominance of
Flash policies, for now we limit the further discussion to these
policies.

While each website serving a valid policy file can be
seen as a supplier for cross-domain services, the websites
specified within the policies can be seen as consumers of
cross-domain services. For the flash policies, we were thus
able to identify 82.052 unique suppliers and 67.974 unique
consumers of cross-domain services. (Note: In practice the
number of consumers could be much higher than the number
stated above, as policies only containing a wildcard do not
reveal information about the consumers).

In average approximately 8% of all examined sites provide
a crossdomain.xml policy file. It is noteworthy, that the
sites which are within the top 1000 Alexa positions expose
a considerable higher probability of providing cross-domain
policy files (see Fig. 2). For instance, 70 out of the Alexa top
100 sites provide a policy file and within the Alexa top 1000,
48% of the sites. For the “long tail” of sites, the 8% number
is surprisingly stable.

Hence, compared with the results of Grossman’s 2008 study,
we can observe an increase in the uptake of this technology:
Grossman examined the top 500 Alexa and Fortune 500 and
observed a ratio of 28% of sites providing policy files.

The majority of analyzed policy files contain references to

# Domain Alexa #Ref. Category Subcategory

1 ning.com 249 1188 Society Social
2 cooliris.com 2231 1076 Computers Software
3 mochiads.com 23560 726 Business Advertisement
4 brightcove.com 5125 718 Arts Video
5 mochimedia.com 2822 405 Games Video Games
6 2mdn.net 1892 394 Business Advertisement
7 facebook.com 2 347 Society Social
8 amazonaws.com 157 305 Computers internet
9 weebly.com 462 267 Computers internet
10 userplane.com 24671 255 Society Social

TABLE II: Top ten most trusted urls

# Domain Entries Category Subcategory

1 youronlineagents.com 980 Home Real Estate
2 grand-casino.com 951 Games Gambling
3 www.stormpulse.com 848 News Weather
4 comned.com 443 Computers Internet
5 orange.co.il 421 Business Telecommunication
6 www.ivgstores.com 398 Shopping Furniture
7 www.pointpoker.com 305 Games Gambling
8 www.mychallenges.net 304 Society Social
9 timwe.com 294 Business Advertisement
10 fr.viamichelin.com 283 Reference Maps & Views

TABLE III: Biggest Policy Files



Conclusion 



©  2011 SAP AG. All rights reserved. 24 Confidential  

Conclusion 

The number and percentage of insecure sites is considerable 

This (in connection with many partially incorrect policies) suggests that the 
general knowledge on how to use this technique securely is still weak 

–  One third of all policies are wildcard policies 
–  Out of these 15.060 are insecure sites according to our criteria 

No apparent signs for adoption of CORS 
�  However, as noted our methodology is insufficient for a full assessment 

No long tail effect 

What did we not examine? 
�  Flash subpolicies  
�  Consumer behavior  
 



 
Thanks for listening 

Martin Johns 
SAP Research Karlsruhe 
martin.johns@sap.com 


