
Enforcing User Privacy in Web

Applications using Erlang

Ioannis Papagiannis, Matteo

Migliavacca, Peter Pietzuch

Department of Computing

Imperial College London

David Eyers, Jean Bacon
Computer Laboratory

University of Cambridge

Brian Shand
CBCU

National Health Service

Web 2.0 Security & Privacy (W2SP) 2010
May 20, Berkeley, California, USA

2

User Privacy in Web Applications

Which is longer, the United States Constitution or

Facebook’s Privacy Policy?

Facebook’s Privacy Policy: 5,830 words

United States Constitution: 4,543 words

[NYT, May 12, 2010]

Twitter 0 followers bug

Tweet "accept," followed by "@" and user name

The other user starts following you automatically (!)

[Official Twitter Blog, May 10, 2010]

W2SP 2010

3

User Privacy in Web Applications

User data privacy must be guaranteed independently

of the application’s functional correctness

W2SP 2010

4

User Privacy in Web Applications

Code should access only relevant user data and keep

them isolated from other users’ data

W2SP 2010

5

Use Case: Privacy in Microblogging

A microblogging system should guarantee:

1. Messages from a publisher component shall be
delivered only to authorised subscribers’ components.
[User A’s messages will only go to Users B and C]

2. Authorised subscribers shall not be disclosed to any
other publisher or subscriber component.
[User B will not know about User C]

3. Subscription authorisation requests from a
subscribing component shall be delivered only to the
relevant publisher’s component.
[Only User A can authorise a new User D]

W2SP 2010

6

IFC for Microblogging

W2SP 2010

7

IFC for Microblogging

W2SP 2010

8

IFC for Microblogging

W2SP 2010

9

IFC for Microblogging

W2SP 2010

10

IFC for Microblogging

W2SP 2010

11

IFC for Microblogging

What happens when data belonging to different users

has to be processed by a single component?

W2SP 2010

12

Microblogging: The Dispatcher

Multiple publishing components have to use a single

dispatcher to reach the relevant subscriber components

W2SP 2010

13

Microblogging: The Dispatcher

W2SP 2010

Multiple publishing components have to use a single

dispatcher to reach the relevant subscriber components.

14

Solution

Each User’s data must be kept separate, but

applications are usually monolithic

Compartmentalize the application in multiple isolated

components, one per user

Granularity?

W2SP 2010

15

Solution

Language Isolation Issue

C OS Processes ~100kB per process

W2SP 2010

Each User’s data must be kept separate, but

applications are usually monolithic

Compartmentalize the application in multiple isolated

components, one per user

Granularity?

16

Solution

Language Isolation Issue

C OS Processes ~100kB per process

Java OS Threads Limited isolation: static fields,

object locks, runtime channels

W2SP 2010

Each User’s data must be kept separate, but

applications are usually monolithic

Compartmentalize the application in multiple isolated

components, one per user

Granularity?

17

Solution

Language Isolation Issue

C OS Processes ~100kB per process

Java OS Threads Limited isolation: static fields,

object locks, runtime channels

PHP

JavaScript

OS Processes Spawning a new runtime on top of

spawning a new OS process

W2SP 2010

Each User’s data must be kept separate, but

applications are usually monolithic

Compartmentalize the application in multiple isolated

components, one per user

Granularity?

18

Erlang

Sequential Part:

functional language, single assignment, dynamic typing

Concurrency:

share nothing concurrency, message passing

Erlang is great for IFC

Isolation is free

Asynchronous message passing can be naturally

combined with label checks

Processes are lightweight (~100B, runtime implementation)

W2SP 2010

19

Erlang: Example

Receiver Process:
primeTester() ->

receive

{calculate, Pid, Number} ->

Result = isPrime(Number),

Pid ! {result, Result}

end.

Sender Process:
test(0) -> done;

test(N) ->

pid=spawn(primeTester),

pid ! {calculate, self(), N},

receive

{result, Result}->

io:format(“~w”,[Result])

end,

test(N-1)

end.

Spawning processes is fast!

Async message passing is the
only way* of communication!

You can want to have
lots of them!

W2SP 2010

20

Supporting IFC in Erlang

Attach labels to pids

new_tag()

creates a new tag for the calling process

spawn(TagsAdd, TagsRemove, ...)

changes the tags of the spawned process (≠ caller’s tags)

send(TagsAdd, TagsRemove, ...)

changes the tags of the message (≠caller’s tags)

checks labels

delegate(PidReceiver, Tag, Type)

gives privileges over a tag to another process

W2SP 2010

21

Erlang for Microblogging I

1. Messages from a publisher shall be received only by
authorised subscribers.

W2SP 2010

(untrusted code)

22

Erlang for Microblogging I

W2SP 2010

2. Authorised subscribers shall not be disclosed to any
other publisher or subscriber.

(untrusted code)

23

Erlang for Microblogging II

2. Authorised subscribers shall not be disclosed to any
other publisher or subscriber.

W2SP 2010

(bug prevention)

24

Erlang for Microblogging III

3. Subscription authorisation requests from subscribers
shall be delivered only to the relevant publisher.

W2SP 2010

(bug prevention)

25

Experimental Setup

 Erlang Library that provides the IFC API
 Measure throughput in terms of messages per second
 #publishers=#subscribers, 10 subscriptions/subscriber
 Ignored orthogonal issues like message persistence

Comparison between:
 Python

[represents scripting languages]

 Erlang (no IFC)
[Dispatcher per publisher, better multicore performance]

 Erlang (IFC)
[Anonymisers plus label checks]

 Erlang (IFC + caching)
[cache and reuse of label checks]

W2SP 2010

26

Evaluation

W2SP 2010

27

Limitations & Discussion

 Complexity
 Applications have to handle tags/privileges manually
 Deciding upon a tag allocation scheme is challenging
 Handling tags routines must be correct for secure operation

 Policy languages may come to the rescue

 Persistence
 Messages must be stored permanently
 Fetching and storing data but be compatible with labels

 Extend Mnesia to be label aware

 Scalability
 Inactive users must be offloaded from RAM
 Scalability depends upon the ability to keep in memory only

the required state

 Introduce a primitive to hibernate/restore a process

W2SP 2010

28

Conclusion

Erlang is an attractive approach for web applications that
use IFC to provide privacy guarantees:

 Isolation of components is free
 Asynchronous message passing is the norm in IFC

systems
 Scales well in multicore architectures

Web applications can provide IFC-enabled Erlang APIs and
hosting facilities for untrusted extensions

 The web application has to disseminate tags to components
according to the relationships between users

 Tags can enforce that the third-party extensions do not violate
high level policy

W2SP 2010

29

The End

Ioannis Papagiannis

DoC, Imperial College London

ip108@doc.ic.ac.uk

30

Related Work

[How are Erlang Processes Lightweight? 2006]

Stack frames can be resized/moved (mem)

User-level, efficient caching when switching (time)

Lack of shared state means no locking (time)

[xBook09]

Uses a subset of JavaScript on the server side

Recreates Erlang’s communication model

[Abestos05]

Lightweight OS Processes, one per user

Cooperative Scheduling

