
What You See is What They Get
Protecting users from unwanted use of microphones, cameras, and other sensors

Jon Howell and Stuart Schechter
Microsoft Research

{howell,stus}@microsoft.com

Abstract

Sensors such as cameras and microphones collect
privacy-sensitive data streams without the user’s explicit
action. Conventional sensor access policies either hassle
users to grant applications access to sensors or grant with
no approval at all. Once access is granted, an application
may collect sensor data even after the application’s inter-
face suggests that the sensor is no longer being accessed.

We introduce the sensor-access widget, a graphical
user interface element that resides within an applica-
tion’s display. The widget provides an animated rep-
resentation of the personal data being collected by its
corresponding sensor, calling attention to the applica-
tion’s attempt to collect the data. The widget indicates
whether the sensor data is currently allowed to flow to
the application. The widget also acts as a control point
through which the user can configure the sensor and
grant or deny the application access. By building per-
petual disclosure of sensor data collection into the plat-
form, sensor-access widgets enable new access-control
policies that relax the tension between the user’s privacy
needs and applications’ ease of access.

1 Introduction
Operating systems and web browsers are increasingly
supporting application access to privacy-sensitive de-
vice sensors: cameras, microphones, accelerometers,
and geolocation positioning systems. Mobile phones of-
fer a wide variety of sensors and provide applications
with APIs to access them. Flash [1] and Silverlight [12]
provide web applications with access to cameras and mi-
crophones today, and an addendum to the HTML 5 stan-
dard promises to allow device access direct from pure
JavaScript web applications [11, 15]. Lagging behind
these rapid developments have been the tools required to
help users manage the disclosure of sensor data.

We propose a new GUI primitive, the sensor-access
widget, to enable users to manage application access
to sensors. Sensor-access widgets borrow from an ex-
isting concept: hardware sensor-use indicators, such
as camera-use LED indicators, that light up when the
sensor is collecting data. Whenever an application re-
quests access to a sensor, a sensor-access widget will

(a) Access allowed: sensor (ac-
celerometer) readings are being col-
lected by the application

(b) Access denied: virtual blinds in-
dicate that sensor (accelerometer) data
can not be seen by the application

Figure 1: A possible design for a sensor-access widget to
appear within applications that request access to the ac-
celerometer. The widget represents the data collected by
the accelerometer by animating the position and move-
ment of the user’s laptop in relation to a gravity source.
The widget indicates whether the application can cur-
rently access the sensor, using the metaphor of window
blinds in this example.

appear and remain until the application releases access.
A sensor-access widget displays a real-time human-
comprehensible visualization of the data streaming from
the sensor, much in the same way as the self-image wid-
get used by video-chat systems displays the input from
a user’s own camera. For example, a sensor-access wid-
get for an accelerometer might animate the movement
of the user’s laptop with respect to the ground, as illus-
trated in Figure 1. The sensor-access widget also indi-
cates whether or not the application currently has access
to the data stream, and acts as a control point through
which the user can grant or deny access. If a sensor-
access widget is obscured, the application’s access to
the corresponding stream is interrupted. This prevents
sneaky applications from burying the widget behind a
popup, and it also lets the user momentarily “cover the
camera lens”.

The goal of sensor-access widgets is to make pas-
sively providing sensor data as conscious and pre-
ventable as actively entering data via a keyboard, mouse,
or touchscreen. Keyboards, mice, and touchscreens are
active-feedback input devices; data is only input as a re-
sult of user action and this action results in immediate
visual feedback that indicates the application to which
it is currently directed. Like active-feedback input de-



Figure 2: The countdown timer and the animated opening of window blinds inform the user that the application will
soon be able to access a video stream—unless he disables it first.

vices, sensor-access widgets provide feedback to illus-
trate the data flowing into the system and, because they
appear within an application’s display region, they indi-
cate which application is receiving this flow.

To make sensors true active-feedback input devices,
we pair sensor-access widgets with a new access control
policy we call Show Widget and Allow After Input and
Delay (SWAAID). When an application requests access
to a sensor controlled by this policy, the widget appears,
indicates that access is not currently granted, and shows
a countdown until the application will receive access, as
illustrated in Figure 2. The countdown period should be
long enough to allow the user to deny the application
access. To prevent access from being granted when the
user’s attention is elsewhere, the countdown begins im-
mediately after active user input is directed to the appli-
cation, such as input from a keyboard, mouse, or touch-
screen.

2 Related Work
In conventional desktop operating systems, including
Windows and UNIX derivatives, applications running on
behalf of the device owner have traditionally received
access to all devices.

Systems to restrict device access and other privileges
have addressed the problem both in terms of applica-
tion plug-ins and the OS applications themselves. For
example, in the mid 1990s Goldberg et al. described
a system to sandbox native-code application plug-ins
and limit their access to system APIs [9]. In roughly
the same period, the Java language was introduced with
a browser-based applet model that enabled the execu-
tion of “subversive code” restricted from accessing sys-
tem resources [10]. Further efforts to confine applica-
tions and impose policies that restrict access to system
APIs included Cowan et al.’s AppArmor (then called
SubDomain) [4] and Provos’s SysTrace [17]. SysTrace
would request user’s consent before granting access to
previously-restricted resources.

Another approach to restricting device access in con-
ventional operating systems has been to make the de-
vice accessible only to the superuser (admin/root), run
applications as a user other than superuser, and request
an elevation of privileges in order to access the device.
In UNIX-derivatives this elevation is performed using

the sudo command. Elevation was introduced to Win-
dows as Vista’s User Account Control (UAC) [13]. Alas,
these mechanisms provide all-or-nothing elevation to su-
peruser mode and their user interfaces (including the
GUI dialogs on Windows and Mac OS) are much ma-
ligned. Dissatisfaction with the frequency of UAC’s el-
evation requests led the Windows 7 team to create a de-
fault mode with fewer prompts [14].

Adobe’s Flash player and Microsoft’s Silverlight,
browser plug-ins that enable web applications to access
sensors today, require user approval before devices such
as cameras can be accessed [1, 12]. Users of the Flash
player can grant or deny access to a resource for a single
session or may check the remember box to apply their
decision indefinitely, as illustrated in Figure 3.

Figure 3: Adobe’s Flash player asks users to grant camera
and microphone access to a website.

Explicit authorization before use is also the policy im-
plemented by many mobile phones. Google’s Android
OS grants access to sensors such as cameras and audio
inputs only if their use is disclosed at installation time,
as illustrated in Figure 4 [2]. At installation time, a user
may not understand an application well enough to deter-
mine why it would need sensor data or gauge its trust-
worthiness.

The early Apple iPhone limits application access to
the camera by routing all camera use through a standard-
ized OS interface, as illustrated in Figure 5a [3]. When
an iPhone application is loaded and requests access to
location (GPS) sensor data, the OS prompts the user
to approve access, as shown in Figure 5b. A recently-
announced update takes a first step in the direction of
sensor-access widgets, displaying an icon when an ap-
plication is using location data [7].



Figure 4: Google’s Android OS discloses applications’ use of
sensor data (GPS location) before the application is installed.

(a) (b)

Figure 5: Apple’s iPhone OS (5a) limits applications to us-
ing the device’s camera only through this OS-provided user
interface, and (5b) asks the user to approve access when an
application requests access to a location sensor.

Alas, per-session grants may not be sufficiently gran-
ular. In order to authorize access to sensors for a five-
minute phone call, the user must grant access for an en-
tire session, which could last days. Yet unless the user
grants indefinite access she will still have to interrupt
her workflow to re-authorize every time she restarts her
browser, application, or computer.

Acquiring the consent of a device owner alone may
be insufficient for collecting privacy-sensitive data when
the device owner’s incentives do not align with those of
a legitimate device user. This became abundantly clear
when a Pennsylvania high school, which had provided
laptops to students, was found to be using the cameras
on these devices to spy on the students to whom they
were given [8, 21].

(a) Camera

(b) Microphone (option 1)

(c) Microphone (option 2)

(d) Location (GPS)

(e) Accelerometer

72f

(f) Thermometer

Figure 6: Sensor inputs are converted into animated rep-
resentations that match the flow of real-time sensor data.
This figure shows possible animations for five sensor
types.

3 Sensor-access widgets
We propose that when an application requests access to
a sensor, the runtime environment (such as the desktop
OS or the browser) should overlay a GUI widget onto
the portion of the display controlled by the application.
This sensor-access widget displays the live data stream-
ing from the sensor, indicates whether the application
can see the sensor data (the effective access policy), and
acts as a control point from which the user can configure
devices and control application access to them.
Displaying data collected by the sensor. The sensor-
access widget animates a representation of the data be-
ing streamed by the sensor in a form that is meant to
be recognizable to the user; users should notice the cor-
relation between the animation in the widget and their
environment (what they see, hear, or feel). For exam-
ple, consider a video widget of your own movements
or a graphic-equalizer display moving in time with your
voice or the sounds of your immediate environment. To
accomplish this goal, different types of sensor data will
need to be displayed in different ways, as illustrated in
Figure 6. Some sensors, such as location sensors, may
not be as easily correlatable to a user’s experience as mi-
crophone or video data.
Displaying effective access policy. Sensor-access wid-
gets indicate whether applications have access to sensor
data by changing their appearance appropriately. When
an application is allowed to access sensor data, the user



Figure 7: Window blinds illustrate that applications can-
not see a data stream.

sees a clear stream of data as the application would—
hence “what you see is what they get”. When policy
prohibits the application from accessing sensor data, the
widget modifies its appearance to indicate that the appli-
cation cannot get access to the sensor data; it could show
virtual window blinds, as illustrated in Figures 1b and 7,
overlay a red filter over the image, or lay an indicator
such as an X or ‘disabled’ on top of the image.

Prior work on file system access control interfaces
shows that users appreciate seeing effective policy–the
outcome of policy rules rather than the policy itself [18].
Sensor-access widgets readily indicate whether an appli-
cation is receiving data, and can indicate the granularity
of the data stream graphically, such as by drawing an
uncertainty disk on a GPS map.
Managing an application’s access to sensor data.
Sensor-access widgets act as control points from which
users may specify when applications may access the sen-
sor. For example, a right-click on a widget might allow
the user to set the policy to allow or deny as they can
today using preference dialogs. The use of a widget as a
control point is illustrated in Figure 8.
Choosing the right sensor and configuring it
In addition to helping users protect their privacy, sensor-
access widgets can also solve an existing usability prob-
lem: specifying which sensor of a given type should be
used. For example, many users find it challenging to
change the microphone to be used by audio- and video-
conferencing software. A user may have a microphone
in her laptop, built into her USB webcam, and on her
bluetooth headset. If the wrong one is chosen by default,
users are forced to search through application-specific
interfaces or to change the default device for the full sys-
tem. Sensor-access widgets can solve this problem by
including the option to switch to another sensor of the
same type from within the widget. Applications would
no longer need to provide a custom selection interface in
an unfamiliar menu. Users would benefit from a uniform
experience for changing devices. The widget could even
provide a unified interface for managing the amplitude
of the input signal.

Application access to camera

Allow Deny

Select camera

Notification

Display the camera image whenever 
the application requests or collects it.

Always hide the camera image. 
(You can still configure the camera 
from your control panel.)

Built-in USB

Figure 8: This sensor-access widget is also a control
point: a context menu lets the user grant or deny ac-
cess, select alternate sensors of the same type, or hide
the widget.

Using the same widget to both handle sensor pri-
vacy and configuration is complementary: Configuration
tasks help users understand and familiarize themselves
with the sensor-access widget, and policy-setting activ-
ities remind the user of where to go to configure their
sensors.

Further complementary uses include replacing the
self-image widget in videoconferencing applications
with a user-resizable sensor-access widget for the cam-
era. Applications could grow the widget within their
space, such as to create a viewfinder, and then return it
to its prior user-selected size. Similar widgets could also
be created for outputs (e.g. speakers), though these wid-
gets might have less strict rules about when they appear
and when they can be hidden.

4 Widget policies
Sensor-access widgets support the same per-session or
indefinite allow or deny choices that today’s access man-
agement interfaces provide. However, pairing these poli-
cies with widgets’ perpetual disclosure makes the effec-
tive policy and the mechanisms for changing policy more
visible. This visibility is by analogy to the mute button
on a conference room telephone: it is a control point
that lets room users quickly shut off the audio stream for
a private conversation; its colored light makes it quick to
find and perpetually discloses mute status.

Show Widget Allow (SWA)
When sensor data is requested, the widget must ap-
pear within the screen real estate associated with the
requesting application. Sensor data flows to the ap-
plication so long as display of the widget is entirely
unobstructed.



Show Widget Deny (SWD)
When sensor data is requested, the widget must ap-
pear within the screen real estate associated with the
requesting application. Sensor data may not flow to
the application without a user-initiated policy change.

Alas, adding disclosure to existing allow and deny
policies does not remove the tension between usability
and privacy when choosing a default. When an applica-
tion requests access to a sensor, a default-allow policy
(such as SWA) will allow data to be collected without
first checking if this use instance is appropriate. Thus,
a default allow policy would allow a video-chat appli-
cation to turn on the user’s camera in the middle of the
night. On the other hand, default-deny policies hassle
the user for authority every time an application requires
access to one or more sensors.

4.1 SWAAID

The sensor-access widget goes beyond improving exist-
ing policies: It enables a new default policy that pro-
vides privacy without sacrificing usability. We call this
policy Show Widget and Allow After Input and Delay
(SWAAID). SWAAID is designed to protect against un-
wanted sensor access without requiring user interaction
to grant user-desired access. SWAAID aims to make
passive input devices (sensors) work similarly to active
input devices (keyboards, mice, touchscreens), wherein
an application cannot receive sensitive data without the
user deliberately directing input at the application.

Show Widget, Allow After Input and Delay
(SWAAID)

Visibility The widget appears unobstructed within the
screen real estate associated with the requesting appli-
cation. If the widget becomes obstructed the flow of
data immediately stops and all requirements for turn-
ing the flow back on are reset.

Active input The runtime environment has received
an active user input event (key press, mouse move-
ment, or screen touch) directed toward the application
since the visibility requirement was met.

Waiting period A waiting period (e.g. a five-second
delay) has passed since both the visibility and active
input requirements were met. The user may choose
to terminate the waiting period to start sending sensor
data earlier (e.g. by left-clicking on the widget).

During the waiting period the widget may overlay its
animation with a countdown of the time until the appli-
cation will have access, as illustrated in Figure 2. So
long as the user doesn’t take action to deny access, the
application gains real-time access to sensor data when
the waiting period expires.

The visibility requirement, shared with Show Widget
and Allow, ensures that grant of access to the sensor
data is disclosed to the user. The waiting period require-
ment is intended to give the user sufficient time to no-
tice that pending sensor data access to be granted and, if
she deems this undesirable, sufficient time to turn it off.
The combination of the active input and waiting period
requirements ensures that an application cannot obtain
access to a sensor unless there is some indication that
the user is paying attention to the application (the active
input) and has had sufficient time to decline the access
request. These requirements close the input/output loop
to make passive input devices (sensors) work more like
active input devices. They protect against attempts to ac-
cess sensors when the user is absent or her attention is
outside of the application. For example, these require-
ments prevent a mobile phone application from request-
ing new sensor access while the phone is pressed against
the user’s ear or in the user’s pocket.

A well-behaved application might willingly release
access to a sensor, such as releasing the microphone af-
ter a VoIP call ends. Under the SWAAID policy, such
an application would need to re-establish permission for
the next call, but the application builds user trust by us-
ing the sensor only when required.

A malicious application might simultaneously request
access to more sensors than a user can decline during
the waiting period. One way to address this threat is to
provide a disable-all-sensors option when the user sets
an individual policy. Alternatively, when the countdown
periods for two or more widgets overlap, their individual
countdown periods can be set to the sum of their original
periods.

A malicious application might try to occlude the wid-
get to prevent the user from noticing its appearance
or continued presence. For example, it might cause
an apparently-unrelated pop-up advertisement to appear
conveniently over the widget part of its primary display.
This is the reason the visibility requirement specifies that
the widget must “remain unobstructed”: as soon as such
a dialog even partially obscures the widget, the applica-
tion ceases receiving the data stream. Since you can’t
see the data stream, ‘they’ shouldn’t be able to get it.



4.2 Additional policy options

We recommend systems use a default policy of Show
Widget and Allow After Input and Delay (SWAAID)
offering users easily-accessible knobs to reduce access
down to Show Widget and Deny (SWD) or up to Show
Widget and Allow (SWA) for a given application.

Those users who prefer a more conservative policy
can opt for a default of Show Widget and Deny (SWD).
SWD policy is similar to that of Internet Explorer’s yel-
low “information bar”, introduced in March 2004 [20],
which appears when a pop-up, software installation, or
other likely-undesirable action is prevented. Internet ex-
plorer applies the safe policy (denying access) by default
and the information bar provides a non-modal notifica-
tion to the user and a mechanism through which the user
can override the default policy to allow the action. Un-
like the information bar, combining a default-off policy
with widgets gives the user a more concrete view of the
consequences of changing policy; she can see a repre-
sentation of the stream of data that will be revealed if
the policy is changed.

Less common policies on the outer edges of the pol-
icy spectrum (see Figure 9) can be applied by users on
an as-needed basis to cover such cases as benign back-
ground applications or useful applications that overzeal-
ously request sensor access. For background applica-
tions that the user trusts with sensor data at all times,
the Hide Widget and Allow (HWA) policy is suitable.
For example, a user may prefer to run a life-blogging
application in the background, with persistent, invisible
access to the camera and microphone. Broadly, we ar-
gue that SWAAID is the best initial policy; permanent
permission (HWA) should be rare, applied for those few
applications that require it. Devices that support use by
non-owners who may not have set policy, and who may
have personal data at risk (e.g. students using school-
provided laptops) should make it easy to discover that
sensor-access widgets have been hidden.

At the other extreme, a user may find a text chat ap-
plication useful despite its annoying requests for access
to the user’s camera access on every invocation. Here, a
policy of Hide Widget and Deny (HWD) allows the user
to permanently deny camera access while still taking ad-
vantage of the text chatting feature.

One way to make users more comfortable with looser
access policies is to combine them with proxies that re-
duce data sensitivity before it reaches the application.
For example, a proxy reads accelerometer data and de-
grades it to just the level required so the application can
decide whether to present a portrait or landscape UI.

Hide Widget and Allow (HWA)

Show Widget and Allow (SWA)

Show Widget, Allow after Input and Delay (SWAAID)

Show Widget and Deny (SWD)

Hide Widget and Deny (HWD)

complete trust

utter distrust

data accessible 
without user 
veto

access requires 
hassling user

Figure 9: The SWAAID policy allows users of partially-
trusted applications to allow sensor access by default,
yet veto inappropriate accesses before sensor data is ex-
posed to the application.

5 Evaluation proposal
Access control solutions should be evaluated on both
their impact both to security and to usability.

Potential usability impacts of sensor-access widgets
include loss of screen real-estate, user distraction, user
annoyance, time and effort required to interact with the
UI, and the delayed or denied access to sensor data when
access was desired. The loss of screen real-estate can be
measured concretely in terms of pixels. Conventional
user studies can help quantify such usability factors as
distraction, annoyance, time, effort, and access delays
or denials.

We posit that users will not find sensor-access wid-
gets distracting in the cases where sensor access is de-
sired, because the data will simply mirror the environ-
ment around them. Telephone users tune out sidetone,
the redundant sound of their own voice [16], and in fact
modulate their voices based on the sidetone cue. Video-
conferencing users tune out the small images of them-
selves that allow them to ensure they remain within the
view of their conversation partners.

For application access to sensors, we would want to
measure the likelihood that an application could obtain
access to a sensor in an instance that the user deemed
undesirable either ex-ante (before the event) or ex-post
(after the event). Sensor-access widgets attempt to bring
users’ ex-ante beliefs of whether access is desirable
closer to their ex-post beliefs by illustrating to users
what it is they will be exposing should access be granted.
However, sensor-access widgets cannot tell users how
applications may use (or misuse) data. Furthermore,
failings in an access control mechanism may allow an
application to gain access to sensor data even if a user’s
ex-ante preference is to deny access. Access control fail-
ures may occur when an application issues a new request
for access, or when an application continues receiving
access after the user no longer deemed access desirable.

When users ex-ante preferences are to deny an appli-
cation access to a sensor, the security of sensor-access



widgets with the Show Widget and Allow After Input
and Delay (SWAAID) policy rests on the hypothesis that
users will notice sensor-access widgets when the appli-
cation’s use is inappropriate, and do so with sufficient
time to take action. Prior work by Egelman et al. warns
of the risks of habituation on user’s attention to warn-
ings they should find alarming [6]. It is thus important
to test whether habituation to sensor-access widgets un-
der legitimate circumstances will lead users to ignore
them in illegitimate ones. Increased exposure to sensor-
access widgets may have security benefits as well as
costs. Increased familiarity may help users understand
how and when sensor data is flowing to applications,
potentially increasing the likelihood that users will ex-
perience alarm when an undesired access is imminent.
The fact that sensor-access widgets indicate the presence
of risk makes them more likely to receive users’ atten-
tion than those that indicate the absence of risk, such
as the poorly-understood and heeded browser padlock
icon [5, 19].

Testing our security hypothesis poses two challenges.
First, we must ensure participants are fully habituated
to widgets from sufficient use in cases where they deem
sensor access desirable. Second, we must construct a
test environment in which participants believe they have
something to lose. Prior research has illustrated the loss
of ecological validity that results when participants in
security studies do not have as much to lose as their
real-world counterparts, such as studies with designs
that use role-playing [19]. Habituation concerns would
seem to rule out a single-session study. Ethics prevent
researchers from requiring laboratory participants to en-
gage in the types of behavior that would yield the great-
est concerns for sharing sensor data outside a laboratory
environment. One possible study design would be to de-
ploy the feature to a subset of users along with a test
infrastructure. The test infrastructure would, after a suf-
ficient habituation period, insert fake requests for sensor-
access and gauge the user response. It might then reveal
that the request was purely for research purposes and ask
users to explain the choices they made.

Such a study might include:

1. a control group (using an existing allow/deny all
interface),

2. a sensor-access widget interface that forces the user
to make a decision, then hides the widget (differing
from the control group only in the interface mecha-
nism),

3. a sensor-access widget interface with a default
Show Widget and Deny (SWD) policy, and

4. a sensor-access widget implementing Show Widget,
Allow After Input and Delay (SWAAID).

For an in-the-wild deployment enabling a large num-
ber of participants, the treatment groups could be fur-
ther subdivided by sensor type: camera, microphone, ac-
celerometer, geolocation, and thermometer. They could
also be subdivided by type of attacks: a request for ac-
cess from an application that should not need access to
a sensor (such as camera access for a news site) versus
access by an application when semantics no longer de-
mand it (microphone access after a phone call).

6 Limitations and future work
The sensor access widgets we have described are in-
tended to help users understand what information is
passing from sensors to applications, but do not help
users understand why this information may be danger-
ous to disclose. For example, two individuals who asso-
ciate with each other in secret may not understand that
revealing accelerometer data will allow a third party to
determine that they are in the same vehicle. Finding
ways to communicate the risks of disclosing sensor data,
especially when these risks are not intuitive to users, is
an important area for future work.

Sensor access widgets may also fail to represent sen-
sor data well enough to expose its sensitivity. For exam-
ple, a camera access widget may show a near-black im-
age of a dark room, while an attacker may be able to pro-
cess the image to reveal objects not seen in the widget.
Image processing techniques may mitigate but not elim-
inate these limitations. For example, a low-resolution
widget may not convey just how many details of the
environment are exposed by the camera. Similarly, a
microphone-access widget that shows little activity due
to the absence of high-amplitude sounds may lead a user
to believe no data is being collected, when in fact low-
amplitude sounds such as keystrokes may be collected.
Careful design is required to ensure that the data repre-
sentation in the widget automatically scales with average
amplitude.

It may be difficult to pack many sensor access widgets
into a small display, for applications that use several at
once. Enumeration of real applications may indicate that
this is not a common case, or further work may suggest
how to display naturally group or prioritize sensor access
widget displays.

If devices are prone to accidental user input, malicious
applications may be able to subvert SWAAID, and other
policies conditioned on active input, by requesting sen-
sor access at times when accidental input is likely. For
example, phones left in pockets or that treat ear contact
as input may allow applications to gain access to sensor
data when the user is not paying attention. As acciden-
tal input causes myriad other problems when it reaches
applications, this is an important UI problem to solve
independent of its security implications.



Finally, applications may be able to spoof sensor ac-
cess widgets. An malicious application could create fake
sensor access widgets, though without access to the right
sensors it might be not create a believable match with the
user’s environment. However, the utility of fake sensor
access widgets is limited as they would not actually be
able to grant access to sensors. The application could
present a flood of sensor access widgets to desensitize
the user to them when real ones appear. It could create
fake sensor access widgets at the same time a real one
appears in order to make it hard for the user to find the
right one to turn off during the waiting period. However,
both these attacks send strong signals that the applica-
tion is malicious and might inspire the user to quit the
application altogether rather than try to turn of individ-
ual sensor access requests.

More realistically, a malicious application might cre-
ate a fake sensor access widget in order to convince the
user that the portion of the screen containing the fake
widget is controlled by the OS. The application might
then created a spoofed interface in which the sensor ac-
cess widget asks the user to install a new application or
change a system configuration. For example, it might
justify the need for the user to perform these actions by
claiming the sensor driver needed. One might attempt to
address such attacks, which are endemic to all OS con-
trol mechanisms, by ensuring that controls only appear
in platform-only screen real estate (e.g. the ‘chrome’ in
browser platforms). We have chosen not to make this
a requirement for sensor access widgets because studies
have shown that few users actually understand the con-
cept of chrome [5].

7 Conclusion
We introduce the sensor-access widget which provides
perpetual disclosure of sensor data, communicates the
effective policy regulating applications’ access to that
data, and provides an easily-discoverable control point
for changing this policy.

The sensor-access widget also enables a sensor access
control new policy, Show Widget and Allow After Input
and Delay. SWAAID provides interaction-free access
to well-behaved applications, while still preventing dis-
closure to misbehaving applications. SWAAID makes
passive input sensors act more like active input devices,
such as keyboards and mice, requiring the user to direct
input at an application before the application can receive
sensitive sensor data.

8 Acknowledgments
The authors would like to thank John Douceur, Jeremy
Elson, David Molnar, Alex Moshchuck, and Helen
Wang for comments on drafts. We thank Jaeyeon Jung
(Intel Labs) for comments and screen images.

References
[1] Adobe Systems Incorporated. Flash player help:

Privacy settings. Archived on March 15, 2010.
http://macromedia.com/support/documentation/en/

flashplayer/help/help09.html.

[2] Android Development Team. Manifest.permission,
July 2009. Archived on March 16, 2010.
http://developer.android.com/reference/android/

Manifest.permission.html.

[3] Apple Inc. iPhone OS reference library: UIIm-
agePickerController class reference. Archived on
March 22, 2010.
http://developer.apple.com/iphone/

library/documentation/UIKit/Reference/

UIImagePickerController_Class/

UIImagePickerController/UIImagePickerController.

html#//apple_ref/occ/cl/UIImagePickerController.

[4] Crispin Cowan, Steve Beattie, Calton Pu, Perry
Wagle, and Virgil Gligor. SubDomain: Parsimo-
nious security for server appliances. In Proceed-
ings of the 14th USENIX System Administration
Conference (LISA 2000), 2000.

[5] Rachna Dhamija, J. Doug Tygar, and Marti Hearst.
Why phishing works. In Proceedings of the 24th
SIGCHI Conference on Human Factors in Com-
puting Systems (CHI 2006), pages 581–590, New
York, NY, USA, 2006. ACM.

[6] Serge Egelman, Lorrie Faith Cranor, and Jason
Hong. You’ve been warned: an empirical study
of the effectiveness of web browser phishing warn-
ings. In Proceedings of the 26th SIGCHI Con-
ference on Human Factors in Computing Systems
(CHI 2008), pages 1065–1074, New York, NY,
USA, 2008. ACM.

[7] Engadget. Live from Apple’s iPhone OS 4
event! http://www.engadget.com/2010/04/08/

live-from-apples-iphone-os-4-event/.

[8] Elizabeth Fiedler. Student sues over alleged web-
cam spying. All Things Considered, National Pub-
lic Radio, February 24 2010. http://www.npr.org/

templates/story/story.php?storyId=124043452.

[9] Ian Goldberg, David Wagner, Randi Thomas, and
Eric A. Brewer. A secure environment for un-
trusted helper applications: Confining the wily
hacker. In Proceedings of the 6th Usenix Security
Symposium, 1996.

[10] James Gosling and Henry McGilton. The Java lan-
guage environment: A white paper. Sun Microsys-
tems, May 1995, http://java.sun.com/docs/white/

langenv/.



[11] Ian Hickson. HTML Device: An addition to
HTML. W3C Editor’s Draft dated March 5 2010,
http://dev.w3.org/html5/html-device/.

[12] Microsoft Corporation. MSDN: Silverlight devel-
oper center: Silverlight 4 rc: Security. Archived on
March 16, 2010.
http://msdn.microsoft.com/en-us/library/

cc972657(VS.96).aspx.

[13] Microsoft Corporation. Understanding and con-
figuring user account control in Windows Vista.
Archived on March 16, 2010.
http://technet.microsoft.com/en-us/library/

cc709628(WS.10).aspx.

[14] Microsoft Corporation (UAC, Kernel, and Security
program managers). Engineering Windows 7:
User Account Control (UAC) – quick update,
January 15 2009. Archived on March 16, 2010.
http://blogs.msdn.com/e7/archive/2009/01/15/

user-account-control-uac-quick-update.aspx.

[15] OpenAjax Alliance. Mobile device APIs
style guide. http://www.openajax.org/member/wiki/

Mobile_Device_APIs_Style_Guide.

[16] Naotoshi Osaka, Kazuhiko Kakehi, Satori Iai, and
Nobuhiko Kitawaki. A model for evaluating talker
echo and sidetone in a telephone transmission net-
work. IEEE Transactions on Communications,
40(11), November 1992.

[17] Niels Provos. Improving host security with system
call policies. In Proceedings of the 12th Usenix
Security Symposium, pages 257–272, August 4–8
2003.

[18] Robert W. Reeder, Lujo Bauer, Lorrie Faith Cra-
nor, Michael K. Reiter, Kelli Bacon, Keisha How,
and Heather Strong. Expandable grids for visu-
alizing and authoring computer security policies.
In Proceedings of the 26th SIGCHI Conference on
Human Factors in Computing Systems (CHI 2008),
pages 1473–1482, New York, NY, USA, 2008.
ACM.

[19] Stuart E. Schechter, Rachna Dhamija, Andy Oz-
ment, and Ian Fischer. The emperor’s new security
indicators: An evaluation of website authentication
and the effect of role playing on usability studies.
In Proceedings of the 2007 IEEE Symposium on
Security and Privacy, pages 51–65, Washington,
DC, USA, May 2007. IEEE Computer Society.

[20] Tony Schreiner. IE in XP SP2 (part 2): Informa-
tion Bar - Stopping the modal dialog madness,
March 21 2004. Archived March 17 2010.
http://blogs.msdn.com/tonyschr/archive/2004/03/

21/93551.aspx.

[21] Joseph Tanfani. Two Lower Merion school dis-
trict IT workers placed on leave. The Philadel-
phia Inquirer, March 4 2010. http://www.philly.

com/philly/news/breaking/86444922.html.


