MEASURING PRIVACY RISK IN ONLINE SOCIAL NETWORKS

Justin Becker, Hao Chen UC Davis May 2009

Motivating example

College admission

- Kaplan surveyed 320 admissions offices in 2008
- 1 in 10 admissions officers viewed applicants' online profiles
- 38% said they had "negative impact" on applicants

If only we could measure privacy risk

Scale of Facebook

- 200 million active users
- 100 million users log on once a day
- 1 billion pieces of content shared each week
- More than 20 million users update their status daily

http://www.facebook.com/press/info.php?statistics

Will users take action?

Online survey using a simple tool

- Calculated privacy risk
 - Information revealed to third party applications
- Reported score to participant
- Results
 - 105 participants
 - 65% said they would change privacy settings

Demographics

- 47 men and 24 women
- The average age was 23.89 with
 - standard deviation of 6.1 and a range of 14-44.

• 12 different countries

 Canada, China, Ecuador, Egypt, Iran, Malaysia, New Zealand, Pakistan, Singapore, South Africa, United Kingdom, United States

PrivAware

- A tool to
 - measure privacy risks
 - suggest user actions to **alleviate** privacy risks
- Developed using Facebook API
 - Can query user and direct friends profile information
 - Measures privacy risk attributed to social contacts

Threat model

- Let **user** *t* be the inference target.
- Let F be the set of direct friends.
- Infer the attributes of t from F.

Threat model

Example

Can we derive a user affiliation from their friends?

facebook	Home	Profile	Friends	Inbox 4	Justin Becker Settings	Logout
Found one pe	ople mate	ch.				
	Na Ne	ime: tworks:	Mark Zu Facebook Harvard Al San Franci	ckerberg um sco, CA	Send a Message View Friends	

Example

tacebook ^{Ho}	me Profile	Friends	Inbox (4)	Justin Becker Settings	Logou
Found one people	match.				
1.2.0	Name:	Mark Zuckerberg		Send a Message	
	Networks:	Friend	ls of Mark Zuckerberg	View Friends	
		Everyo	ne Mutual Friends Browse	Q	
			Arnoldo Avalos Facebook	Add as Friend	
୍ଦ୍ତ୍ର ୍ଦ୍ତ୍ର Searc	ch by compa	m)	Lea Redmond Averbuck Facebook	Add as Friend	0
Name: School:	mark zucker	be	Simon Axten Facebook	Add as Friend	l
Company	Search	Ω	Jin Baek Harvard	Add as Friend	
			Mary Ann Bailey Facebook	Add as Friend	ŀ
		1	E. Ross Baird UVA	Add as Friend	A V
				Close	

Example

Affiliation	Frequency
Facebook	32
Harvard	17
San Francisco	8
Silicon Valley	4
Berkeley	2
Google	2
Stanford	2

PrivAware implementation

- A user must agree to install PrivAware
- Due to Facebook's liberal privacy policy PrivAware can
 - Access the user's profile
 - Access the profiles of all the user's direct friends

Threats

- 1) Friend threat
 - Derive private attributes via mutual friends
- 2) Non-friend threat
 - Derive private attributes via friends public attributes
 - Derive private attributes via mutual friends
- 3) Malicious applications
 - Derive private attributes via friends public attributes

Inferring attributes

Algorithm: select the most frequent attribute value among the user's friends

Friend attributes	
Education	[UC Davis:7, Stanford:2, UCLA:4]
Employer	[Google:10, LLNL:8, Microsoft:2]
Relationship	[Married:9, Single:5, In a relationship:7]
Inferred values	
Education	UC Davis
Employer	Google
Relationship	Married

Evaluation metrics

- 1) Inferable attributes
 - Attribute can be inferred
- 2) Verifiable inferences
 - Inferred attributes can be validated against profile
- 3) Correct inferences
 - Verifiable inferences equals profile attribute

Validation example

Classification	Score
Inferred attributes	3
Verifiable inferences	2
Correct inferences	1

Inferred values

EducationUC DavisEmployerGoogleRelationship statusMarried

Actual values

Education Employer UC Davis LLNL

Data disambiguation

Decide if different attribute values are **semantically equal**

Variants for University of California, Berkeley

- UC Berkeley
- Berkeley
- Cal

Approaches for Disambiguation

- Dictionary lookup
 - Keywords and synonyms
- Edit distance
 - Levenstein algorithm
- Named entity recognition

Social contacts

Total people	93
Total social contacts	12,523
Average social contacts / person	134

Inference results

Total inferred attributes	1,673
Total verifiable inferences	918
Total attributes correctly inferred	546
Correctly inferred	60%

Percentages for attributes correctly inferred

21

Inference prevention

- Goals
 - Minimize the number of inferable attributes
 - Maximize the number of friends
- Approaches
 - Move risky friends into private groups
 - Delete risky friends

Inference prevention

- Optimal solution
 - Derive privacy scores for each permutation of friends, select permutation with the lowest score
 - Runtime complexity: O(2ⁿ)

Inference prevention

- Heuristic approaches
 - Remove friends randomly
 - Remove friends with most attributes
 - Remove friends with most common friends

Related work

- To join or not to join: The illusion of privacy in social networks... [www2009]
- On the need for user-defined fine-grained access control...[CIKM 2008]
- Link privacy in social networks [SOSOC 2008]
- Privacy Protection for Social Networking Platforms [W2SP 2008]

Future work

- Improve existing algorithms
 - NLP techniques
 - Data mining applications
- Include additional threat models
 - User updates
 - Friends tagging content
 - Fan pages
- Expand into domains other than social networks
 - Email
 - Search

Conclusion

- Measure privacy risks caused by friends
- Improve privacy by identifying risky friends

On average, using the common friend heuristic, users need to delete or group **19 less users**, to meet their desired privacy level, **than randomly deleting** friends