
A Browser-Based Approach to Smart Card Connectivity
Kapil Sachdeva, H. Karen Lu, and Ksheerabdhi Krishna

Gemalto, Inc., Technology & Innovation
9442 Capital of Texas Highway, Suite 400, Austin, TX 78759

{kapil.sachdeva, karen.lu, ksheerabdhi.krishna}@gemalto.com

ABSTRACT
Smart cards have provided security services for a wide range of
applications including telecommunication, banking, and citizen
identification. Connecting web applications with smart cards is a
natural step forward to address some of the security issues in
today’s Web. The traditional approach for smart card based web
applications provides security, but has the drawbacks of usability
and flexibility. This paper presents a new browser-based approach
utilizing web technologies. This approach focuses on
communications and allows web applications to fully utilize smart
card capabilities. The solution consists of two parts: a web
browser extension that connects to the standard smart card
communication layer; and a library that uses the browser
extension and provides an API for web applications. This new
approach departs from the traditional route, is much more natural
for web applications, and presents several advantages.

Keywords: smart card, web application, security, web browser

1. Introduction
Security is a major concern for Web users as well as
service providers. A promising way to enhance web
security is to use smart cards. A smart card contains a
secure and tamper-resistant microprocessor chip. It has
secure memories, serves cryptographic functions, and is
portable. Smart cards have provided security services for a
wide range of domains. Extending smart cards to web
applications is a natural step forward. To achieve this,
smart cards must be able to connect to web applications.

A smart card connects and communicates with a personal
computer or a cell phone to provide services such as secure
storage of private keys, encryption, and digital signature.
Personal computers implement an industry wide standard
known as PC/SC for accessing smart cards and writing card
reader drivers [1]. An implementation of the PC/SC
standard is available in all major personal computer
operating systems (OS). Operating systems also offer a
device independent cryptographic API to insulate
developers from different ways of obtaining cryptographic
services. For smart cards this cryptographic API is aided by
a card specific service provider implementation (Figure 1).

Web browsers can access smart cards through the
aforementioned cryptographic API. However, the
introduction of new web browsers and variations of
cryptographic APIs across OSs give rise to a myriad set of
browser, operating system, and cryptographic API
combinations, which presents challenges, such as cross

browser availability, development, distribution, and
usability, for web applications using smart cards.

Smart Card Application

Service Providers

Smart Card Resource Manager

IFD Handler IFD Handler IFD Handler

Card Reader #1 Card Reader #1Card Reader #1
IFD: Interface Device. Here they are smart card readers.

PC/SC
Layer

Figure 1. PC/SC architecture

These challenges necessitate a new approach for web
applications to use smart cards. This paper proposes a new
browser-based approach that utilizes web technologies.
This new approach focuses on communications and allows
web applications to fully utilize smart card capabilities. The
solution consists of two parts. The first part is a web
browser extension that connects to the PC/SC layer and
hence enables the browser to communicate with a smart
card. The second part is a library that uses the browser
extension and provides an API for web applications. With
this setup, web applications can use the library to access
smart cards. This solution departs from the traditional
approach and is much more natural for web applications.

Our approach addresses major issues faced by smart card
access via browsers and has several advantages. First, web
applications can fully utilize smart card capabilities without
being limited to the OS specific cryptographic API.
Secondly, smart card specific modules are delivered on-
demand from the server, eliminating the complexity of
software update on PCs. Thirdly, our browser independent
library enables web applications to offer a consistent user
experience. Finally, our approach enables a trusted web
server and a smart card to establish a secure channel with
no operating system specific intermediaries. We call the
implementation of our approach SConnect.

2. Traditional Approach
Applications traditionally access smart card functionality
through a device independent cryptographic service API
provided by the host operating system. Microsoft’s
Cryptographic API (CAPI) [2] natively integrated in
Windows, Apple’s CSSM API of the Common Data
Security Architecture (CDSA) implementation natively
integrated in OS X [3], and the PKCS#11 (Public-Key
Cryptography Standards) API implementing RSA
Laboratories’ PKCS#11 Specification [4] available across
major operating systems are the three cryptographic service
APIs in use today. Although the PKCS#11 API is
considered interoperable across operating systems, native
integration of OS specific cryptographic APIs offer
advantages such as updates, better application integration,
and platform consistent usage experiences.

While cryptographic APIs offers benefits they also pose
drawbacks:

1. Functionality. The cryptographic API defines a
specific set of functionalities, mostly supporting
Public Key Infrastructure (PKI) [5]. Other smart card
services or emerging standards must either be
accommodated via non-standard means or wait for
updates from OS vendors.

2. Card modules. Due to differences in smart cards, card
manufactures (or third parties) write and deploy card
specific modules. These modules must be installed on
users’ computers. Installation and updates are
inconvenient for end users.

3. Application Programming Interface. CAPI,
PKCS#11, and CDSA have different non-
interoperable APIs. Web developers have to write
browser-dependent code in order to use the
appropriate API or architect a complex abstraction of
their own.

4. User experience. User interfaces for various devices
and cryptographic operations differ across operating
systems, which present different user experiences
across browsers and operating systems yielding
confusion.

5. Secret keys. Off-card applications establishing a
secure communication channel with smart cards use
embedded keys making them vulnerable to
decompilation.

These issues have hindered widespread deployment of
smart card solutions for web applications (and in some
cases for client applications).

3. A Browser-based Approach
A web application typically consists of two major parts,
one executes on a server and the other in a browser. The
server part of the application implements server side
business logic, interacts with backend systems, and
generates dynamic HTML content to serve the client. The
browser part of the application renders content, implements
client side logic, interacts with the user, and executes
scripts, typically JavaScript.

Card Reader #3Card Reader #2Card Reader #1

PC/SC Software / Hardware

SConnect Extension
(ActiveX)

SConnect Extension
(XPCOM)

Internet Explorer
Browser

Firefox
Browser

Internet

PC

SConnect Library

Smart-Card-based Web Application

Card Modules

Server

Figure 2. SConnect-based web application architecture.

A smart card connects to a user’s computer. To access
smart card functionality, a web application must
communicate with the smart card. SConnect enables such
communication. It consists of two parts, a web browser
extension and a JavaScript library. The browser extension
extends the PC/SC layer, which enables programs or scripts
in the web browser to communicate with smart cards. The
SConnect library provides a JavaScript API for developers
to write web applications that connect to and access smart
cards. The library uses the browser extension to
communicate with smart cards. Figure 2 illustrates the
architecture of a SConnect-based web application.
Typically client side JavaScript code in the web application
resides on a web server and runs in a web browser on
demand.

Conceptually SConnect behaves similar to the
XMLHttpRequest object. While XMLHttpRequest
provides connectivity between JavaScript and the server,
SConnect provides connectivity between JavaScript and

the smart card. The browser extension provides a wrapper
to the PC/SC stack and enables JavaScript running in a
browser to access smart cards through PC/SC (Figure 3).

e available for all major browsers across all PC

an authorization mechanism called

fidence in users by validating

eb server for the web

have

nd the user at a malicious website or

he user’s

cess in order to obtain a

; expiration

s successful. Otherwise, the connection

approach in

1.

2.

Figure 3. Components of SConnect.

To ease development, SConnect hides browser dependent
complexities from web application developers. The
SConnect library provides utility functions that handle
extension detection, installation, and update. The SConnect
extension is less than 500KB and is currently available for
IE and Firefox (Windows, OS X and Linux). It will
eventually b
platforms.

Accessing the smart card environment over the Web poses
security risks and challenges. To mitigate these risks,
SConnect deploys a set of security mechanisms to protect
end users. These measures include digital signature of the
browser extension, enforcing HTTPS, user consent, server
validation, and
Connection Key.

Digital Signature: The browser extension is digitally
signed using a code signing key issued by VeriSign. A
signed extension instills con
the source of the extension.

Enforce HTTPS: To ensure secure communications with
the remote web server and to prevent Man-in-the-middle
attacks (MITM), SConnect requires HTTPS connections
between a browser and a remote w
application to access the smart card.

User Consent: The first time a user visits a SConnect-
enabled website, SConnect presents a warning dialog
informing that the website is trying to access the smart
card. The user must examine the warning and make a
conscious decision to allow a website to access the smart
card. The user can allow or deny the access, and
SConnect remember his decision for future visits.

Server Validation: During SSL handshaking, the browser
receives and examines the website’s SSL certificate. When
the browser determines that certificate is invalid, it presents
a warning to the user. Many users ignore the warning and
continue, which may la
fall victim to MITM.

To mitigate this risk, SConnect does additional server SSL
certificate validation when a web application tries to access

a smart card. The validation includes verifying the
signatures of the certificate chain, ensuring that the root
CA is trusted by the browser, checking the validity period,
and matching the Common Name in the certificate with the
URL of the website. If SConnect determines that the
certificate is invalid, it will not allow any connection
between the website and the smart card, even if the user has
accepted the browser connection. SConnect considers self-
issued SSL certificates invalid. Server validation prevents
malicious w

sconnect.js

<script accessing smart card>.js SConnect library
available to web scripts

SConnect browser
extension as a wrapper

ebsites or MITM attackers to access t
smart card.

Connection Key: While HTTPS ensures a certain level of
protection to users, companies issuing SSL certificates do
not always employ consistent issuance practices. To add
another layer of protection, SConnect employs Connection
Key, which uniquely binds the website deploying the
SConnect-based application with the web browser
extension. The issuer (Gemalto) of the browser extension
uses its private key Kpriv to sign Connection Key. The
corresponding issuer public key, Kpub, is encoded within
the browser extension. The owner of a website must go
through a strict vetting pro
SConnect Connection Key.

The Connection Key does not contain any secret. It
includes a set of attributes namely, Common Name (the
website domain name); issuer name; issue date
date; and digital signature signed by the issuer.

When establishing a SConnect session, a website must
present its Connection Key. SConnect validates the key by
checking the validity of its attributes: the Common Name
must match the website’s domain name; the expiration date
must be at or beyond the current date; and the signature
must pass verification using the issuer public key Kpub. A
connection is allowed only if the validation of the
Connection Key i
request is denied.

4. Analysis and Related Work
We now see how the SConnect-based approach compares
with the traditional (cryptographic API)
addressing the drawbacks listed in Section 2.

Functionality. SConnect-based web applications can
fully utilize smart card capabilities instead of being
limited to PKI functions, because the SConnect
extension is a wrapper over the PC/SC layer.

Card modules. SConnect-based web applications move
card specific modules from individual PCs to the
server. The modules are delivered on demand.
Applications are updated at the server eliminating the
complexity of pushing updates to individual PCs. The
small footprint of the browser extension makes it quick

Smart Card Resource Manager to SCard.

and easy to install and update using browser-based
methods.

Application Programming Interface. The SConnect
library presents a browser-independent Ja

3.
vaScript API.

4.
les building web applications

5. -based web applications

ances of cross-platform Java development.

revious work on protecting high-security

 resist

card.

 all resources imported or used
hould use HTTPS explicitly or obtain

dministration,
n ns in emerging identity

Readers can find more

owledgements
lly acknowledge the feedback received

the

[1]

Web application developers can have the same smart
card access code work across browsers.

User experience. SConnect’s browser independent
application interface enab
that provide a consistent user experience across
browsers and platforms.

Secret keys. SConnect
manipulate secret keys only on the server. This limits
key exposure and access.

Another approach to provide smart card services for web
applications is to use the Java Applet [6]. This approach
suffers from the drawback of requiring an install of a Java
Runtime Environment (JRE), and the burden of having to
deal with the nu
The JRE is not lightweight and not preferred in some
environments.

SConnect enforcing HTTPS and a valid server certificate is
similar to p
websites [7]. SConnect extends this to controlling access to
smart cards.

The Connection Key adds another layer of defense. For
example, a Phishing website www.go0d.com, which has a
valid SSL certificate, may mislead the user who intends to
go to www.good.com. But since www.go0d.com does not
have a valid Connection Key the connection from
www.go0d.com to a smart card is rejected. While
SConnect cannot defend against all attacks [8], it can
some classical MITM, Phishing, and Pharming attacks by
demanding HTTPS and validity of server certificate.

SConnect enables a secure connection from a legitimate
website to a smart card and contains mechanisms to prevent
a malicious website from accessing the smart
However, SConnect does not address browser
vulnerabilities or provide protection against malware.

SConnect and its built in security mechanisms do not
absolve web applications from following web development
security best practices [9]. For example, to prevent
imported libraries, such as sconnect.js, and scripts from
being replaced by attackers,
by the web page s
them via relative path [10].

5. Conclusion
The new approach for smart card connectivity presented in
this paper extends PC/SC to web applications and bridges
the gap between smart cards and the Web. It shifts the
complexities of card dependencies, services and updates

from the PC to the server. It is easier to update, and more
user friendly than the traditional approach. The resulting
application architecture can be used in contexts ranging
from traditional smart card use to card a
ma agement and applicatio
management frameworks.
information from http://www.sconnect.com.

6. Ackn
The authors gratefu
from Guillaume Huysmans, John-Philip Wilson and
referees.

7. References
PC/SC Workgroup, Specifications, http://www.pcscwork
group.com, V 2.01.3, Jan. 2006.

[2] Microsoft, Cryptographic Service Providers,
http://msdn.microsoft.com/en-us/library/ms953432.aspx

[3] Apple, Mac OS X Security Framework,
[4] RSA Laboratories, PKCS#11: Cryptographic Token

Interface Standard,
http://www.rsa.com/rsalabs/node.asp?id=2133.

eployment Considerations, Addison-

[6] ov, Java Applet for Signing with a Smart Card,

[5] C. Adams and S. Lloyd, Understanding PKI: Concepts,
Standards, and D
Wesley Professional; 2nd edition, Nov. 2002.
Svetlin Nak
developer.com,
https://www.developer.com/java/other/article.php/3587361,

[8]
ing Attacks and Locked Same-origin Policies for Web

ia, Virginia,

[9]
http://www.owasp.org/index.php/Main_Page

Apr. 2006.
[7] C. Jackson and A. Barth, ForceHTTPS: Protecting High-

Security Web Sites from Network Attacks, Proceedings of
WWW 2008, Apr. 2008, Beijing, China.
C. Karlof, J.D. Tygar, D. Wagner, and U. Shankar, Dynamic
Pharm
Browsers, 14th ACM Conference on Computer and
Communications Security, Oct. 2007, Alexandr
USA.
Open Web Application Security Project (OWASP),

.
[10] C. Jackson and A. Barth, Beware of Finer-Grained Origins,

Proceedings of Web 2.0 Security and Privacy, May 2008.

http://www.rsa.com/rsalabs/node.asp?id=2133
http://www.rsa.com/rsalabs/node.asp?id=2133

	1. Introduction
	2. Traditional Approach
	3. A Browser-based Approach
	4. Analysis and Related Work
	5. Conclusion
	6. Acknowledgements
	7. References

