
Is it too late for PAKE?

John Engler
UC Berkeley

Chris Karlof
Usable Security Systems

Elaine Shi
PARC

Dawn Song∗
UC Berkeley

1 Introduction
The most common web authentication technique in use to-
day is password authentication via an HTML form, where
a user types her password directly into a web page from
the site to which she wishes to authenticate herself. The
problem with this approach is that it relies on the user to
determine when it is safe to enter her password. To re-
sist phishing and other social engineering attacks, a user
must rely on the browser’s security indicators and warning
messages, e.g., the URL bar and the site’s SSL certificate,
to authenticate the website and determine when it is safe
to enter her password. Unfortunately, studies suggest that
many users habitually click through SSL certificate warn-
ings [7, 18] and misunderstand or ignore browser security
indicators [5, 9, 17].

We revisit the idea of applying Password Authenticated
Key Exchange (PAKE) [1, 2, 3, 4, 10, 12, 13] protocols to
web authentication. A PAKE protocol is a cryptographic
protocol that allows two parties who share knowledge of a
password to mutually authenticate each other and establish
a shared key, without explicitly revealing the password in
the process.

One hope of using PAKE protocols for web authentica-
tion is to help make it easier for users to authenticate web-
sites and reduce the attack surface of social engineering at-
tacks against their accounts. With a PAKE protocol, if a user
mistakenly attempts to authenticate herself to a phisher, the
protocol will fail, but the user’s password will remain safe.
Since the phisher does not know the user’s password, the
phisher will not be able to successfully complete the proto-
col, and the browser can alert the user of the failure.
Goals and contributions. In this paper, we perform a sys-
tematic investigation of various practical issues and chal-
lenges in deploying PAKE for web authentication. Al-
though many PAKE protocols have been proposed, there is
little momentum for integrating PAKE protocols into web
authentication. We investigate two categories of issues: 1)
security issues related to user interface (UI) design, and
2) deployment and integration hurdles. The primary threat
model we consider is an attacker who uses phishing or other

∗This material is based upon work partially supported by the Na-
tional Science Foundation under Grants No. 0311808, No. 0448452, No.
0627511, and CCF-0424422, and by the Air Force Office of Scientific Re-
search under MURI Grant No. 22178970-4170. Any opinions, findings,
and conclusions or recommendations expressed in this material are those
of the author(s) and do not necessarily reflect the views of the Air Force
Office of Scientific Research, or the National Science Foundation.

Figure 1: PAKE-based web authentication.

social engineering techniques to steal a user’s password.
We hope our investigation will help raise understanding and
awareness of the issues inhibiting the widespread adoption
of PAKE, and stimulate further discussion in this area.

2 Security Issues Related to UI Design
To effectively integrate PAKE into browsers, we must care-
fully consider the UI provided for entering passwords. Oth-
erwise, an attacker may be able to exploit weaknesses in the
UI to fool or confuse users and steal their passwords.

UI Challenge 1 (Trusted paths). How can we design a UI
that minimizes the chances of human error during attacks?

One straightforward solution to the UI problem is
to introduce a new input type for HTML forms, e.g.,
<input type="pake">. Unfortunately, this approach
is dangerous. Honest sites may use the new input type, but
malicious pages can continue to use legacy input types or
employ JavaScript to steal users’ passwords.

Therefore, it is desirable to use a trusted path for entering
passwords. Two previously proposed trusted path mecha-
nisms for web browsers are: 1) an in-chrome password box,
and 2) a trusted keystroke sequence. The in-chrome pass-
word box approach places a protected password input (ac-
cessible only to the browser) inside the bordering frame of
the browser, i.e., the “chrome”. Since untrusted web pages
cannot directly alter the appearance of chrome elements,
there is hope that an in-chrome password interface would
be harder for an attacker to spoof or hide.

An important design decision for an in-chrome password
box is when to display it. For example, one approach is to
display the password box only when the browser detects
a login page or when a user requests to log in. A sim-
ilar approach was taken by Wu et al. with a sidebar lo-
gin box called Web Wallet [21]. However, their user study
of Web Wallet suggests that this approach is vulnerable to

1



a mimicry attack where an attacker spoofs the trusted in-
chrome interface within the web page.

An alternative option is to always display the in-chrome
password input. This method helps resist the chrome-
imitation attack discussed above but requires dedicated
space in the browser’s chrome to always display it, which
may be unsightly, cumbersome, or annoying. Unfortu-
nately, the Web Wallet study suggests that the “always
display” approach may also be vulnerable to spoofing at-
tacks. Wu’s study simulated an attack with a web page
that mimicked the trusted interface, and when the real in-
terface appeared, some users interpreted the two instances
of the trusted interface as a browser error, and responded
by closing the real interface. One potential defense against
these attacks is to have users customize the background
of the in-chrome login bar, e.g., with a personalized im-
age [6, 17, 21, 23].

In the trusted keystroke sequence [16] approach, a user
presses a special keyboard key or keystroke sequence (anal-
ogous to ctrl+alt+del) to notify the browser when she
wishes to log in and enter her password. When the key
sequence is pressed, the browser intercepts all text entry
for the page or displays a trusted login box until the user
has finished entering her password, protecting it from any
malicious JavaScript on the page. Although this approach
is promising, trusted keystroke sequences are vulnerable to
“omission errors” where a user forgets to activate or inten-
tionally omits the trusted sequence before entering the pass-
word. For usability reasons, trusted keystroke sequences of-
ten employ a feedback mechanism to indicate when the se-
quence has been entered correctly. If an attacker can spoof
this feedback mechanism, he may be able to trick a user into
believing the trusted sequence has already been activated
and it is safe to enter her password. The Web Wallet study
suggests that tricking users into committing these types of
omission errors may be an effective attack vector.

Researchers have also proposed using trusted computing
technology to build trusted paths, e.g., Bumpy, by McCune
et al. [14]. This is a promising approach, but for space rea-
sons, we do not discuss it in detail.

UI Challenge 2 (User education). How do we transition
users to use a trusted path for entering their passwords?

Many users are accustomed to entering passwords in web
pages, and transitioning them to use a trusted path presents a
significant challenge. In the early stages of adoption, to sup-
port legacy browsers and ease potential usability problems,
we anticipate that web sites may provide both a trusted
path login option (using PAKE) and the in-page login op-
tion (using traditional HTTPS). Websites could encourage
users with supported browsers to start using the trusted path
for higher security, and forecast that the in-page password
form will be eliminated in the future. Unfortunately, some
legacy browsers (e.g., IE 6) tend to have long lifetimes. If a
user uses multiple browsers to access the same site, e.g., a
legacy version of IE at work and a PAKE-enabled browser

at home, it may not be obvious to users the circumstances
under which to use the in-page login vs. the trusted path.
This confusion may create opportunities for attack. We em-
phasize that only when the option of entering passwords in-
page is completely eliminated, can we engage the user’s at-
tention with certainty. This relates to a lesson learned from
security indicators: despite efforts at user education, secu-
rity indicators prove to be ineffective, partly due to the fact
that they fail to engage the users’ attention [5, 9, 17].

A more challenging problem is the fact that many web
sites will probably never transition to PAKE and continue
to use in-page logins indefinitely. This will likely hinder
user training for PAKE trusted paths. One potential solution
is to allow users to use the trusted path for non-PAKE lo-
gins as well. However, this integration presents many chal-
lenges, including reliably detecting in-page forms, which
may use Flash or JavaScript, and effectively signaling to
users whether a particular login uses PAKE or not.

UI Challenge 3 (Error messages and warnings). How can
we effectively communicate with the user when failures oc-
cur, so that they do not fall back to using insecure methods?

Users may have the temptation to fall back to traditional
in-page logins when logging in with the trusted path fails.
Failures could result from a variety of problems, including:
1) a network or server failure; 2) wrong username and pass-
word; 3) a fraudulent website; 4) trying to use the trusted
path at a non-PAKE web site.

Ideally, messaging for PAKE should draw on lessons
learned from users studies on the effectiveness of browser
security warnings and error messages, e.g., for phishing de-
tection and SSL [8, 11]. We must avoid habituating “click-
through” PAKE related warnings, and design warnings that
engage users’ attention, make useful suggestions on how to
proceed, and clearly convey security risks. However, while
it is easy to distinguish a network failure (e.g., the under-
lying TCP connection fails) from a login failure (e.g., the
PAKE protocol fails), it may be more difficult to distin-
guish between a wrong username/password and a fraudu-
lent website. One potential solution is to remember a hash
of the username/password for each PAKE-enabled website
and check this after a login failure. However, to avoid of-
fline dictionary attacks in case of device capture, only a few
bits of the hash should be stored. In addition, PAKE error
messaging could incorporate other trustworthiness indica-
tors, e.g., SSL certificate information from distributed rep-
utation systems, such as Perspectives [20].

3 Deployment Challenges
Deployment Challenge 1 (Web Application Architecture).
What is the appropriate layer in the networking stack to in-
tegrate PAKE protocols?

To examine this issue, we analyze and compare two
existing proposals for PAKE-based web authentication:
TLS-SRP [19], which operates at the transport layer, and
HTTPS-PAKE [15], which operates at the application layer.

2



TLS-SRP. Since PAKE may be needed by multiple applica-
tions, it would be desirable to implement it below the appli-
cation layer. This removes the trouble of having to develop
and implement a unique PAKE standard for each applica-
tion, thereby encouraging the use of PAKE by multiple ap-
plications. This is the approach taken by TLS-SRP, which
integrates the Secure Remote Password Protocol (SRP) [22]
into the Transport Layer Security (TLS) suite. The TLS
suite and its predecessor, the Secure Sockets Layer (SSL),
are transport layer cryptographic protocols for establishing
end-to-end secure channels for Internet traffic.

To create a TLS connection, a user’s computer and a
server must first negotiate a cipher suite. A cipher suite
typically specifies the key negotiation method (e.g., Diffie-
Hellman with RSA) and how the parties will use the nego-
tiated key to create a secure channel (e.g., AES-CBC with
HMAC-SHA-1). TLS-SRP extends TLS by supporting ad-
ditional cipher suites that use SRP for the key negotiation
phase. To employ TLS-SRP, the user’s computer and the
server first use SRP to interactively derive a symmetric key
based on the user’s password, and then create a secure chan-
nel using the cipher suite and derived key.

Arguably, one reason why TLS has been so successful is
that it is largely transparent to applications that use it. For
example, after some initial configuration, many websites
can typically just “turn on” TLS in their server software to
enjoy many of its benefits. One advantage of this design is
that websites can develop HTTPS applications that are in-
dependent from the choice of server hardware and software.

With TLS-SRP, this benefit of transparency may be lost.
Since web applications typically manage users’ identities
and authentication credentials, TLS-SRP will require an
inter-layer communication mechanism between application
software and the TLS software to create and manage TLS-
SRP sessions. For example, if a user’s browser attempts to
initiate a TLS-SRP session, the TLS software must com-
municate with the web application to obtain the user’s au-
thentication credentials. It would also be desirable for the
application to know if a login succeeds and when the TLS-
SRP connection closes.

This problem is exacerbated in site architectures that em-
ploy load balancing HTTPS front-ends. A common site ar-
chitecture is to deploy dedicated load balancing machines
that terminate TLS connections. These machines service
TLS connections and route the underlying HTTP requests to
the appropriate web servers, which may run on separate ma-
chines. Deploying TLS-SRP in this type of architecture will
require new network protocols to manage user sessions be-
tween HTTPS front-ends and back-end application servers.

Another problem with TLS-SRP is that it does not cleanly
support authentication to multiple realms within a single do-
main. For example, Google Apps provides “software-as-a-
service” for email, document management, and information
sharing. The appearance is that each Google Apps customer
gets a separate site hosted at google.com with unique
user names and authentication credentials for each of their

users. Supporting TLS-SRP authentication in this context is
problematic. Current browser implementations of TLS will
re-use the same TLS connection for all HTTPS requests to
a particular domain. However, authenticating to different
realms hosted at the same domain requires browsers to ini-
tiate separate TLS-SRP connections for each realm, further
complicating matters.
PAKE over HTTPS. To address the drawbacks of TLS-
SRP, Oiwa et al. propose to implement PAKE at the appli-
cation layer, over HTTPS [15]. We refer to their approach
as HTTPS-PAKE. HTTPS-PAKE is inspired by HTTP Di-
gest Authentication, which authenticates users within the
HTTP protocol. HTTPS-PAKE works by tunneling the
PAKE protocol messages over HTTP, in additional HTTP
headers. This approach gives the application layer control
over authentication policies without any interaction with
TLS. However, HTTPS-PAKE still relies on TLS to pro-
vide a secure channel between browsers and servers. With
HTTPS-PAKE authentication, a user’s browser first estab-
lishes a TLS connection with the server. Then, over the
encrypted TLS session, the browser and the server perform
a PAKE handshake and derive a PAKE key derived from the
user’s password.

In contrast to TLS-SRP, HTTPS-PAKE does not use the
PAKE derived key to authenticate messages between the
user’s browser and server directly, but rather includes an
“authentication value” derived from it in the HTTP head-
ers. To address phishing attacks that forward messages be-
tween a user’s browser and a server to impersonate the user,
HTTPS-PAKE binds the user’s password to authentication
realms in way that resists these types of attacks.

One drawback of HTTPS-PAKE is that by integrating
at the application layer, it is vulnerable to stronger threats,
such as pharmers and network attackers. For example, sup-
pose a user attempts to authenticate herself to bank.com
with HTTPS-PAKE and a pharmer has hijacked DNS for
bank.com. When the user connects to bank.com, she
will reach the adversary. Assuming the adversary is unable
to obtain a valid certificate for bank.com, the user will see
a certificate warning, but studies suggest many users ignore
these warnings. If a user ignores the certificate warning and
attempts to authenticate herself with HTTPS-PAKE, the at-
tacker can man-in-the-middle the PAKE protocol. The au-
thentication will appear to succeed from the perspective of
the user’s browser and the server, but the session has been
compromised by the attacker.

In contrast, TLS-SRP does not rely on users to detect
pharmers and network attackers. If an adversary does not
know the user’s password, he cannot successfully complete
the protocol, and the connection will fail. One potential so-
lution to this problem for HTTPS-PAKE is to leverage the
PKI infrastructure and disallow PAKE authentication over
HTTPS connections with an invalid certificate. A draw-
back of this solution is that sites with self-signed certificates
would not be able to use HTTPS-PAKE.

3



Deployment Challenge 2 (Website branding and cus-
tomization of the login UI). Can we provide a secure user
interface while allowing websites to customize and brand
the user login experience?

Since the login page can contribute to a site’s branding,
some sites may be hesitant to adopt PAKE if they lose some
control over users’ login experience. Although it might be
possible to allow websites the option of limited branding
within the trusted path mechanism, this may enable new
kinds of spoofing attacks against trusted sites, e.g., spoofing
well-known brand images in the trusted path mechanism.

Websites may want to customize messaging for login fail-
ures as well. However, this raises additional security issues.
An attacker may try to exploit this feature and convince
users to enter their passwords in a conventional in-page lo-
gin form on the attacker’s page. It remains an open problem
how to balance sites’ customization requirements with ef-
fective defenses against these attacks.

4 Conclusion
Although PAKE-based web authentication offers some
clear advantages over conventional in-page password au-
thentication, it remains unclear whether these advantages
are sufficient to overcome the hurdles it faces. The primary
benefit of PAKE is that it offers a new, intuitive mechanism
to authenticate web sites – if a login succeeds, it is probably
the right web site; otherwise, it is probably not.

Unfortunately, the challenges facing widespread adop-
tion and deployment of PAKE are non-trivial. If the trusted
path mechanism for PAKE password entry in browsers is
hard to use or restricts sites’ branding and messaging capa-
bilities, sites may be reluctant to adopt PAKE. Likewise, if
PAKE does not integrate well with existing site architec-
tures, sites may be reluctant to pay the cost of adopting
and upgrading their infrastructure to support PAKE. Also,
PAKE does not solve all the problems with password-based
authentication, such as cross-site password reuse problems,
weak passwords, and password reset/recovery vulnerabil-
ities. Perhaps the most challenging aspect of deploying
PAKE is the user re-education problem. Many users have
become accustomed to entering passwords directly into web
pages, and it may be a hard habit to break. However, at the
very least, PAKE may offer security-aware users an easier
way to authenticate web sites.

Acknowledgments. We thank Philip MacKenzie, Adam Barth,
Serge Egelman, Markus Jakobsson, Chris Li, and the anonymous
reviewers for their helpful comments.

References
[1] Mihir Bellare, David Pointcheval, and Phillip Rogaway. Authenti-

cated key exchange secure against dictionary attacks. In Eurocrypt,
2000.

[2] Steven M. Bellovin and Michael Merritt. Augmented encrypted key
exchange: A password-based protocol secure against dictionary at-
tacks and password file compromise. In CCS, 1993.

[3] Victor Boyko, Philip MacKenzie, and Sarvar Patel. Provably secure

password-authenticated key exchange using Diffie-Hellman. In Eu-
rocrypt, 2000.

[4] Emmanuel Bresson, Olivier Chevassut, and David Pointcheval. Se-
curity proofs for an efficient password-based key exchange. In CCS,
2003.

[5] R. Dhamija, JD Tygar, and M. Hearst. Why phishing works. In CHI,
2006.

[6] Rachna Dhamija and J. D. Tygar. The battle against phishing: Dy-
namic security skins. In SOUPS, 2005.

[7] E-Soft. Ssl server survey. http://www.securityspace.
com/s_survey/sdata/200701/certca.html, 2007.

[8] Serge Egelman, Lorrie Faith Cranor, and Jason I. Hong. You’ve
been warned: An empirical study of the effectiveness of web browser
phishing warnings. In CHI, 2008.

[9] Batya Friedman, David Hurley, Daniel C. Howe, Helen Nissenbaum,
and Edward Felten. Users’ conceptions of risks and harms on the
web: A comparative study. In CHI, 2002.

[10] Craig Gentry, Philip Mackenzie, and Zulfikar Ramzan. A method
for making password-based key exchange resilient to server compro-
mise. In CRYPTO, 2006.

[11] P. Gutmann. Security Usability Fundamentals (Draft).
[12] Jonathan Katz, Rafail Ostrovsky, and Moti Yung. Efficient password-

authenticated key exchange using human-memorable passwords. In
EUROCRYPT, 2001.

[13] Philip D. MacKenzie, Sarvar Patel, and Ram Swaminathan.
Password-authenticated key exchange based on rsa. In ASIACRYPT,
2000.

[14] Jonathan M. McCune, Adrian Perrig, and Michael K. Reiter. Safe
passage for passwords and other sensitive data. In Proceedings of the
Symposium on Network and Distributed Systems Security (NDSS),
February 2009.

[15] Yutaka Oiwa, Hiromitsu Takagi, Hajime Watanabe, and Hideki Imai.
PAKE-based mutual HTTP authentication for preventing phishing at-
tacks (extended abstract). In eCrime, 2007.

[16] Blake Ross, Collin Jackson, Nick Miyake, Dan Boneh, and John C.
Mitchell. Stronger password authentication using browser exten-
sions. In USENIX, 2005.

[17] Stuart E. Schechter, Rachna Dhamija, Andy Ozment, and Ian Fis-
cher. Emperor’s new security indicators: An evaluation of website
authentication and the effect of role playing on usability studies. In
Proceedings of the IEEE Symposium on Security and Privacy, 2007.

[18] Joshua Sunshine, Serge Egelman, Hazim Almuhimedi, Neha Atri,
and Lorrie Faith Cranor. Crying wolf: An empirical study of ssl
warning effectiveness. manuscript, 2008.

[19] D. Taylor, T. Wu, N. Mavrogiannopoulos, and T. Perrin. Using the
Secure Remote Password (SRP) protocol for TLS authentication.
Technical report, RFC 5054, Nov. 2007. http://www.ietf.
org/rfc/rfc5054.txt.

[20] Dan Wendlandt, David Andersen, and Adrian Perrig. Perspectives:
Improving SSH-style host authentication with multi-path probing. In
USENIX, 2008.

[21] Min Wu, Robert C. Miller, and Greg Little. Web Wallet: Preventing
phishing attacks by revealing user intentions. In SOUPS, 2006.

[22] Thomas Wu. SRP-6: Improvements and refinements to the Secure
Remote Password protocol. 2002.

[23] Ka-Ping Yee and Kragen Sitaker. Passpet: Convenient Password
Management and Phishing Protection. In Proceedings of the Sym-
posium on Usable Privacy and Security (SOUPS), pages 32–43, July
2006.

4


