
Attacks on JavaScript Mashup Communication

Adam Barth
UC Berkeley

Collin Jackson
Stanford University

William Li
UC Berkeley

Abstract

In a mashup, two principals wish to communicate with-
out ceding complete control to each other. In this paper, we
analyze whether existing and proposed JavaScript mashup
communication mechanisms have this security property. We
show that a failure to account for details of JavaScript often
lets one communicant completely compromise the other. We
illustrate these vulnerabilities with proof-of-concept priv-
ilege escalation attacks. Based on our analysis, we rec-
ommend that mashup communication mechanisms prevent
privilege escalation by using lexical authorization across
a specified interface that enforces type checks and allows
the communicants to exchange only primitive values. We
observe that we can implement such a mechanism in to-
day’s browsers using postMessage as a primitive. We
demonstrate our approach by implementing a version of the
Google Maps gadget that can be used without ceding com-
plete control to Google.

1 Introduction

Browsers typically isolate different Web sites from each
other. In a mashup scenario, an integrator seeks to over-
come this restriction and communicate with another Web
site (often called a gadget) to produce a richer user ex-
perience. However, the integrator does not wish to en-
trust the third-party Web site with its full authority. To
address this problem, a number of researchers have pro-
posed a dizzying array of new communication mecha-
nisms [21, 10, 16, 4, 6, 11, 7, 5, 13, 3] that aim to provide
this controlled interaction. In creating these mashup com-
munication mechanisms, researchers must make a num-
ber of design decisions that impact whether their schemes
achieve this security goal. In this paper, we analyze the se-
curity of these schemes and find a number of vulnerabilities.

The first decision in designing a mashup communica-
tion mechanism is whether to use the browser to enforce
access control or to follow an object-capability discipline.
Although a number of mashup communication mechanisms
(e.g., Caja [16], ADsafe [4], and FBJS [6]) have had suc-

cess with an object-capability approach, we focus on mech-
anisms based on access control in this paper. After choosing
access control, we are faced with a series of further design
decisions:

1. Lexical vs. Dynamic. When the browser performs
an access control check, the browser must determine
the currently active principal. Different browsers use
different algorithms for computing the active princi-
pal [10]. Some browsers use lexical authorization,
which selects the principal that defined the most recent
callee, and others use dynamic authorization, which
selects the principal that defined the first caller. Dy-
namic authorization is problematic when the integra-
tor directly calls a gadget method because the gadget’s
method can act with the integrator’s authority.

2. Interfaces vs. Asymmetry. A mashup communica-
tion mechanism can either treat the integrator and the
gadget as two mutually distrusting principals that com-
municate over a defined interface, or the mechanism
can replace the symmetric same-origin policy with an
asymmetric policy that lets the integrator access the
gadget but not vice-versa. The asymmetric paradigm
leads to security problems because the gadget can fool
the integrator by replacing built-in browser APIs with
malicious functions. Often the gadget can completely
compromise the integrator, even under lexical autho-
rization, by abusing various JavaScript pointers leaked
during the function call.

3. Typed vs. Untyped. Even when communication is re-
stricted to an interface between two mutually distrust-
ing principals, one principal has many opportunities
for attacking another principal because JavaScript is
an untyped language. By passing unexpected param-
eters through the interface, the caller can mislead the
callee into being a confused deputy [8]. For example,
the caller can pass the callee its own global window ob-
ject, which the callee might mistakenly operate upon.
These attacks can be largely mitigated by using a typed
interface that blocks these unexpected parameters.

4. Values vs. Objects. Even a typed interface can
be dangerous if one principal leaks a JavaScript

1

object to another principal. By following vari-
ous implicit pointers, such as __proto__, a mali-
cious principal can corrupt sensitive objects, such as
Object.prototype, of the honest principal. After
corrupting the Object.prototype object, the at-
tacker can use various techniques to hijack the honest
principal’s control flow and trick the honest principal
into being a confused deputy.

We illustrate these security pitfalls with concrete examples
using publicly available implementations of mashup com-
munication mechanisms. In most cases, these pitfalls lead
to a complete compromise of the honest principal under
mild assumptions.

Following this chain of reasoning, we recommend that
mashup communication mechanisms use lexical authoriza-
tion over a typed interface between mutually distrusting
principals that permits only JavaScript values (i.e., not ob-
jects) to be exchanged. Fortunately, we can implement
such a mashup communication mechanism in the current
generation of browsers using postMessage [9], which
lets mutually distrusting frames exchange primitive strings.
We demonstrate this approach by creating a version of the
Google Maps gadget that does not require the integrator to
trust Google. Our implementation of the GMap2 interface
uses a design analogous to DCOM [15] and forwards inter-
face calls (via postMessage) to an iframe on an untrusted
domain that actually displays the map.

Organization. Section 2 details the security implications
of four decisions in designing a mashup communication
mechanism. Section 3 presents a secure mashup design
that uses postMessage as the underlying communication
primitive. Section 4 discusses alternative solutions to these
security issues. Section 5 concludes.

2 Design Decisions

In this section, we analyze four design decisions in
mashup communication mechanisms. Although various
mashup designs have made different design decisions, we
find that these decisions lead to security issues, which we
demonstrate with concrete proof-of-concept attacks. Ex-
amining these design decisions largely forces our hand in
designing a mashup communication mechanism.

2.1 Lexical vs. Dynamic

Whenever the browser performs an access control check
to decide whether to authorize a given action, the browser
must determine which principal is requesting to perform
the action. Popular browsers use one of two common al-
gorithms for determining the active principal [10]:

• Lexical Authorization. Under lexical authorization,
the browser computes the active principal based on
the security origin of the document that contains the
source code of the last JavaScript function invoked by
the JavaScript engine. This is analogous to the lexical
scoping rules used to look up global variables at the
current program point.

• Dynamic Authorization. Under dynamic authoriza-
tion, the browser computes the active principal based
on the security origin of the document that contains
the source code of the first JavaScript function invoked
by the JavaScript engine. This is analogous to the dy-
namic scoping rules used to look up exception handlers
at the current program point.

Internet Explorer 7 and Firefox 3 use lexical authorization
of principals, but Safari 3, Chrome 1, and Opera 9.26 use
dynamic authorization.

Unfortunately, dynamic authorization is problematic
for mashups. Imagine that a gadget exposes a
getPublicInterface method that is called by an in-
tegrator.

var i = frames[0].getPublicInterface();

Under dynamic authorization, the getPublicInterface
method runs with the caller’s authority. Thus, if the gad-
get is malicious, the gadget can abuse the caller’s authority
to hijack the privileges of the caller:

function getPublicInterface() {
top.setTimeout("... attack code ...",

0);
}

We recommend that browsers adopt lexical authorization to
avoid these privilege hijacking vulnerabilities. We have col-
laborated with Apple and Google to implement lexical au-
thorization in Safari 4 and Chrome 2. We proposed lexical
authorization to the HTML 5 working group, and the cur-
rent HTML 5 draft specification now requires lexical autho-
rization.

2.2 Interfaces vs. Asymmetry

One paradigm for letting different principals interact is
to replace the usual symmetric same-origin policy with an
asymmetric access policy that lets a “more trusted” princi-
pal access a “less trusted” principal (but not vice-versa). For
example, the OpenSandbox [21] proposal lets content out-
side of the sandbox access content inside the sandbox but
aims to prevent content inside the sandbox from escaping.
The Web Inspector, a developer tool found in Safari and
Chrome, also uses an asymmetric access policy to interact
with the inspected page.

2

Asymmetric access policies are useful in several scenar-
ios. For example, a library author might publish their code
for all to use and have no expectation of confidentiality or
integrity. Also, asymmetry does not require the “gadget” to
opt in to the mashup explicitly, which often facilitates use-
ful opportunistic applications beyond the scope of what the
content author planned. For this reason, asymmetric access
policies are used by Web developer tools to poke around at
the internals of an oblivious Web page.

Because no public implementation of OpenSandbox is
available as yet, we illustrate the potential challenges of
asymmetry using the Web Inspector. The Web Inspector
is implemented in HTML and JavaScript and is allowed to
access any document (in order to debug the frame), but no
documents are allowed to access the Web Inspector. This
asymmetric access policy creates security challenges for the
Web Inspector. In particular, we discovered the Web Inspec-
tor contains the following line of code,

var result = doc.querySelectorAll(query);

which calls the querySelectorAll method (from the
Selectors API [20]) of the untrusted document being in-
spected, a pointer to which is stored in the variable doc.

The Web Inspector believes that this line of code calls the
browser’s built-in querySelectorAll method. How-
ever, this might not be the case because browsers let Web
pages alter the built-in APIs to facilitate interoperability.
For example, a Web page can simulate Internet Explorer’s
attachEvent API for registering an event handler us-
ing Firefox’s addEventListener API. By overriding
its own querySelectorAll method, the attacker can
hijack control and abuse the fact that not all browser APIs
perform access checks to inject arbitrary script into the Web
Inspector, even in browsers that use lexical authorization.

function evilFunc() {
var obj = evilFunc.caller;
while (obj.arguments.length == 0 ||

!obj.arguments[0].target) {
obj = obj.caller;

}
var victimDocument = obj.

arguments[0].target.
ownerDocument;

victimDocument.body.innerHTML =
"";

}

document.querySelectorAll = evilFunc;

Once the Web Inspector calls the attacker’s function, the
attacker can abuse a number of rarely used pointers, such
as caller and arguments, to obtain a JavaScript

pointer to the Web Inspector’s document object. The at-
tacker’s function uses caller to walk to the runtime stack,
arguments to reach the event that generated the call stack
(in this case a keyboard event), and ownerDocument
to move from the event object to the Web Inspector’s
document object. The browser does not enforce access
control checks for the document object because the ob-
ject is not normally visible to other principals. The attacker
can use the unchecked innerHTML API to inject arbitrary
script into the Web Inspector’s document. The injected
script runs with the Web Inspector’s universal privileges.

We reported this vulnerability to webkit.org on
November 15, 2007. Apple patched this security vulnera-
bility in Safari 3.1 by changing the vulnerable line of code
as follows:

var result = Document.prototype.
querySelectorAll.
call(doc, query);

Instead of calling the querySelectorAllmethod of the
untrusted doc object, which might have been overridden by
the attacker, the fixed code calls the Web Inspector’s own
querySelectorAll method on the untrusted doc ob-
ject. This approach secures this line of code but is difficult
to apply systematically to the entire Web Inspector.

2.3 Typed vs. Untyped

Because JavaScript is an untyped language, functions ac-
cept arguments of any type. This behavior lets develop-
ers create simple programs quickly by eliminating unneces-
sary type annotations. However, when a malicious principal
calls another principal’s function with arguments of an un-
expected type, the function can behave in ways not intended
by its author. The function’s author can manually check the
type of each argument using JavaScript’s reflection facili-
ties, but the practice of manually type checking JavaScript
arguments is relatively rare and error prone.

If a function does not check the type of its arguments,
a malicious caller can often escalate his or her privileges
by calling the function with unexpected arguments. Opera-
tions that are harmless on arguments of one type might be
dangerous on arguments of another type. By passing an un-
expected argument, the caller can often trick the callee into
misusing its authority to perform an operation that the caller
cannot perform itself, an attack known as a confused deputy
attack [8]. In this case, the deputy is the privileged function,
which is fooled by its caller into misusing the authority of
the document that defined it.

Consider a utility function deref that is designed to
look up an index in an array:

3

function deref(arr, index) {
return arr[index];

}

If exposed to an attacker, deref can leak confidential in-
formation because the attacker can use deref to read prop-
erties of objects that would normally throw a security ex-
ception if the attacker attempted to read them directly. For
example, the window object is available across origins, but
most properties of the window object are protected by ac-
cess control checks. However, the attacker can use deref
to bypass these checks:

var doc = deref(frames[0], "document");
var cookie = deref(doc, "cookie");

Because of lexical authorization, deref runs with the au-
thority of its author (in this case frames[0]) and passes
the access control checks.

Of course, deref is not the only function that an at-
tacker can confuse. There are a number of other functions
that are devastating if leaked to an attacker:

• Indirect assignment. If the attacker obtains a function
that performs an indirect write, such as

function assign(a,b,c) { a[b] = c; }

then the attacker can inject arbitrary script into the vic-
tim’s security context by setting the victim’s window
location to a javascript: URL:

assign(frames[0],
"location",
"javascript:// attack code");

• Substitution. A commonly used method of strings
in JavaScript is replace, which performs regu-
lar expression substitution. Coincidentally, a win-
dow’s location object also has a method called
replace, which is access checked and can be used
to execute arbitrary script via javascript: URLs.
If the gadget exposes a function like

function replace(a,b) {
a.replace(b, ’’);

}

then the attacker can pass in window.location
(which is visible across origins) as the first argument
and a malicious javascript: URL as the second
argument.

• Indirect call. If the attacker obtains a func-
tion that calls functions stored in an array, such
as function(a,b,c) { a[b](c); }, the at-
tacker can invoke setTimeout by passing the vic-
tim’s window object as the first parameter.

• Prototype. The Prototype JavaScript library [19] aug-
ments built-in browser interfaces with a variety of
other methods that can be used as confused deputies.
For example, Prototype augments array objects with
an invoke method that behaves like the indirect call
function above. If the victim uses the Prototype li-
brary, the victim must avoid exposing functions that
return hashes, strings, or arrays because these types of
objects leak functions that evaluate arbitrary script.

Stronger typing of arguments can mitigate these confused
deputy attacks because, in most cases, the attacker will not
be able to confuse the functions by passing the victim’s win-
dow object as an argument. Rather than requiring that ev-
ery implementation manually check the types of its argu-
ments, we recommend using a typed Interface Description
Language (IDL) [12] to describe the interface. In particu-
lar, we recommend WebIDL [14], which is an IDL used to
specify the behavior of the web platform.

2.4 Values vs. Objects

Unlike objects in languages like Java, each JavaScript
object contains a number of pointers to other objects. For
example, each object contains a pointer to its prototype
object, from which the object inherits many of its proper-
ties and methods. Current browser implement access con-
trol checks only when a script calls a Document Object
Model (DOM) API. Actions within the JavaScript engine
are not constrained by a reference monitor. These lax ac-
cess control checks and proliferation of JavaScript pointers
are problematic for passing objects between trust domains.
Consider the following gadget that exposes a minimal inter-
face with no methods:

function getPublicInterface() { }

Elsewhere in the gadget, the gadget defines this private util-
ity function:

function store(x,y,z) {
if (y != "")
x[y] = z;

}

This function would be vulnerable to confused deputy at-
tacks if it were exposed as an interface, using the attacks
described in Section 2.3. However, the integrator can abuse
this function even though it is not in the gadget’s interface:

function evilValueOf() {
var args = evilValueOf.caller.arguments;
args[0] = top.location;
args[1] = "href";
args[2] = "javascript:/*attack code*/";

}

4

frames[0].getPublicInterface
.__proto__.__proto__
.valueOf = evilValueOf;

The attack proceeds in 5 stages:

1. From the getPublicInterface function object
itself, the attacker uses __proto__ to obtain a ref-
erence to the gadget’s Object.prototype object.

2. The attacker installs a method named valueOf the
gadget’s Object prototype. The JavaScript language
contains many implicit calls to valueOf, such as
when using the == operator.

3. When the gadget utility function compares y to "",
JavaScript interpreter invokes evilValueOf, trans-
ferring control to the attacker.

4. The attacker can use the Function.caller API to
modify the arguments of its caller (the store func-
tion).

5. When control returns to the gadget, the store func-
tion becomes a confused deputy and launches the at-
tacker’s code by navigating the window to a malicious
javascript: URL.

The toString method can also be used to hijack control.
Imagine that our gadget uses the jQuery library [17] and
calls alert($(’body’)). The attacker could replace
the gadget’s Object.prototype.toString method
with a malicious function that abuses the privileged this
pointer:

function evilToString() {
this.append("<img src=’’ \

onerror=’...’>");
}
frames[0].getPublicInterface

.__proto__.__proto__

.toString = evilToString;

Once an untrusted frame has a JavaScript pointer to a trusted
object, there are a number of other exploit techniques, such
as hijacking global variables [2]. Although meticulous de-
velopers might be able to implement a gadget that sidesteps
these attacks, for example by avoiding == and global vari-
ables, implementing such a gadget by hand would be highly
error prone. (Automated tools might be of some help, how-
ever.) Instead of sharing objects between trust domains, we
recommend sharing values, which do not leak pointers.

3 PostMash

Fortunately, a value-based mechanism for com-
munication between trust boundaries already exists:
postMessage. This API has been specified in HTML 5
and implemented in Internet Explorer 8, Firefox 3, Safari 4,
Chrome 2, and Opera 10. The postMessage API
provides a confidential, authenticated channel [1] between
two mutually distrusting frames (provided the sender
specifies a targetOrigin and the receiver validates the
origin property of the message). Instead of introducing
an asymmetric access policy, postMessage lets two
security origins exchange primitive strings by specifying
whom can receive the string and from whom the string was
received.

We can use postMessage to solve many of the same
problems that motivate others to introduce asymmetric ac-
cess policies. For example, we can use postMessage to
simulate an access policy akin to OpenSandbox [21], which
allows the integrator complete access to the gadget, using
postMessage:

addEventListener("message", function(e){
if (e.origin === "http://example.com")
eval(e.data);

}, false);

By sending only primitive strings, postMessage avoids
the challenges of direct object accesses between mutually
distrusting frames.

We can also use postMessage to simulate the
getPublicInterface API of OMash [3]. Instead of
directly exposing an object with methods, the gadget listens
for messages sent with postMessage. To call a method,
the integrator sends a JSON string via postMessage that de-
scribes which method to call and contains serializations of
the method’s arguments.

3.1 Design

We suggest a postMessage-based mashup design
analogous to DCOM [15], which we call PostMash. To in-
teract with a gadget, the integrator uses a small stub library
that exposes the gadget’s interface. To implement the in-
terface, the stub library creates an iframe to an untrusted
origin, such as http://s24601.dfjaofije.com,
which then includes the gadget implementation. Whenever
the integrator calls a method in the stub library, the library
serializes the method call to a string and sends the string to
the untrusted frame using postMessage.

In a PostMash mashup, the stub library can be written
either by the integrator or by the gadget author. In some
cases, an integrator can create an “opportunistic mashup”
using PostMash by writing a stub library and loading an

5

unsafe gadget (like Google Maps) in an untrusted iframe.
When the gadget author provides the stub library, the library
can be re-used by many different integrator, but each inte-
grator much audit the stub library for security because the
library runs in the integrator’s security context. However,
because the stub library simply proxies interface calls to the
untrusted frame, the library is much less complex than the
full gadget and can more easily be verified by static analysis
techniques (such as Caja [16] or ADSafe [4]).

3.2 Case Study: Google Maps

To evaluate the feasibility of the PostMash design, we
used PostMash to republish a less privileged version of
the widely used Google Maps gadget. To use the stan-
dard Google Maps gadget, the integrator must run a script
from http://maps.google.com, requiring the inte-
grator to trust Google. This requirement is problematic for
competing Web sites, such as Yelp, that might wish to use
the gadget without trusting Google.

We were able to create a stub library that largely mim-
icked the GMap2 API, making it easy for sites to port their
existing uses of the unsafe Maps gadget to our safe version.
For example, the API for opening an “info window” is iden-
tical:

map.openInfoWindow(
new GLatLng(37.4419, -122.1419),
"Hello, world");

The stub library serializes the method call to the following
JSON string:

{
"method": "openInfoWindow",
"point": {

"lat":37.4419,
"lng":-122.1419

},
"elements": "Hello, world"

}

One limitation of this approach is that some parts of the
GMap2 API are synchronous, but postMessage enables
only asynchronous communication with the gadget. For ex-
ample, the getCenter API synchronously returns the lat-
itude and longitude of the center of the map. Instead of
returning the result synchronously, our stub library returns
the result via an asynchronous callback:

map.getCenter(function(center){
map.openInfoWindow(

center, "Hello, world");
});

774.2 774.2 774.2

460.6 460.6

234.4

396.8

0
200
400
600
800
1000
1200
1400
1600
1800
2000

Reference Op4mized
postMessage

Unop4mized
postMessage

M
ill
is
ec
on

ds

JSON2

No batching

postMessage

Reference

Figure 2. Adding 100 markers (Firefox 3.5)

Because postMessage cannot transmit object references,
we serialize object references using opaque handles, which
we implement concretely using integers. The gadget main-
tains a table mapping handles to objects and replaces han-
dles with the appropriate objects when deserializing mes-
sages. For example, when the integrator creates a map
marker, the actual GMarker object is stored in the gadget,
and the integrator is given an opaque handle to the marker.
If the integrator later wishes to move the marker, the inte-
grator specifies which marker to move by its handle.

3.3 Performance

We evaluated the performance of the PostMash imple-
mentation of Google Maps using a simple benchmark that
creates a map and adds 100 markers to the map. For each
observation, we ran the benchmark 10 times in Firefox 3.1
Beta 3 (the latest version available at the time). Before opti-
mizing performance, we observed a 100% slowdown com-
pared to the unsafe Google Maps gadget.

• Batching. Because every PostMash method call is
asynchronous, we can batch together method calls to
reduce the number of messages exchanged between the
integrator and the gadget. To batch method calls, the
stub library appends new method calls to a buffer and
flushes the buffer every 50 milliseconds. Batching im-
proved performance by approximately 20%.

• Native JSON. Some newer browsers (including Fire-
fox 3.5 and Internet Explorer 8) have native support for
serializing and deserializing JSON. Using the native
JSON parser instead of the JavaScript-based json2
library improved our benchmark score by approxi-
mately 27%. We encourage browser vendors that do
not currently provide native JSON support to include
native JSON support in future releases.

6

Figure 1. Demonstration of a page using the PostMash approach to embed Google Maps.

After implementing these performance optimizations, we
reduced the slowdown due to PostMash to 60%.

4 Alternatives

Native Wrappers. Firefox’s XPCNativeWrappers [22]
use an alternative approach to securing asymmetric access
policies. Instead of giving the integrator’s scripts access to
the gadget’s JavaScript environment, XPCNativeWrappers
give the integrator a direct view of the gadget’s “native”
Document Object Model, ignoring the gadget’s JavaScript
environment entirely. This prevents the gadget from usurp-
ing the integrator’s privileges using the techniques in Sec-
tion 2.2 because the integrator is immune to the gadget’s
modification of the built-in APIs. Native wrappers are ap-
propriate when the integrator desires only access to the gad-
get’s document but preclude the integrator from calling any
JavaScript functions defined by the gadget. In the Google
Maps Gadget example, the integrator could directly manip-
ulate the HTML elements that comprise the map, but the
integrator would be unable to call the setCenter API to
scroll the map.

File URLs in Firefox. For the Firefox 3 release, the Fire-
fox developers wanted to mitigate attacks from local HTML
files by granting a file access only to other files in its
own directory and in subdirectories. This access policy is
similar to an asymmetric mashup communication mecha-
nism because file:///foo/alpha can access file:
///foo/bar/beta but not vice-versa. Firefox 3 shipped
with this policy for network access, such as XMLHttpRe-
quest, but used a different policy for accessing objects in
memory [18] that embraces the difficulties in securing an
asymmetric access policy: whenever a “more trusted” file
interacts with a “less trusted” file, the “less trusted” file is
explicitly granted the privileges of the “more trusted” file.
This design achieves the security goal of the file URL re-
strictions (preventing downloaded HTML files from easily
reading /etc/passwd) but provides insufficient isolation
for mashups.

7

5 Conclusions

Over the last few years, researchers and browser vendors
have added new communication mechanisms between sites
in the hopes of enabling new and compelling mashup appli-
cations. A key security requirement for these mechanisms
is that one principal can communicate with another without
becoming completely compromised. In this paper, we dis-
cussed four design decisions that affect whether the com-
munication mechanism achieves this goal: lexical vs. dy-
namic, interfaces vs. asymmetry, typed vs. untyped, and val-
ues vs. objects. We illustrate the security consequences of
these decisions with concrete privilege escalation attacks.

Analyzing the mashup design space according to these
decisions leads us to recommend a mashup communi-
cation mechanism that uses lexical authorization and a
typed interface that lets mutually distrusting parties ex-
changed JavaScript values but does not let them exchange
JavaScript objects. We observe that we can implement this
mashup communication mechanism in today’s browsers
using postMessage as the underlying communication
mechanism. We demonstrate this technique by creating a
less privileged version of the Google Maps gadget.

References

[1] Adam Barth, Collin Jackson, and John C. Mitchell.
Securing frame communication in browsers. In Pro-
ceedings of the 17th USENIX Security Symposium,
2008.

[2] Adam Barth, Joel Weinberger, and Dawn Song. Cross-
origin JavaScript capability leaks: Detection, exploita-
tion, and defense. In Proceedings of the 18th USENIX
Security Symposium, 2009.

[3] Steven Crites, Francis Hsu, and Hao Chen. OMash:
enabling secure web mashups via object abstractions.
In Proc. of the 15th ACM conference on Computer and
Communications Security (CCS), 2008.

[4] Douglas Crockford. ADsafe. http://adsafe.
org/.

[5] Douglas Crockford. The <module> tag, 2006.
http://www.json.org/module.html.

[6] Facebook. FBJS, 2008. http://wiki.
developers.facebook.com/index.php/
FBJS.

[7] Rui Guo, Bin B. Zhu, Min Feng, Aimin Pan, and
Bosheng Zhou. Compoweb: a component-oriented
web architecture. In Proceedings of the 17th Inter-
national World Wide Web Conference, 2008.

[8] Norm Hardy. The confused deputy: (or why capabil-
ities might have been invented). SIGOPS Oper. Syst.
Rev., 22(4):36–38, 1988.

[9] Ian Hickson et al. Cross-document messaging,
2009. http://www.whatwg.org/specs/
web-apps/current-work/multipage/
comms.html#crossDocumentMessages.

[10] Collin Jackson and Helen J. Wang. Subspace: Secure
cross-domain communication for web mashups. In
Proc. of the 16th International World Wide Web Con-
ference. (WWW 2007).

[11] Frederik De Keukelaere, Sumeer Bhola, Michael
Steiner, Suresh Chari, and Sachiko Yoshihama.
SMash: secure component model for cross-domain
mashups on unmodified browsers, 2008.

[12] David Alex Lamb. IDL: sharing intermediate rep-
resentations. ACM Trans. Program. Lang. Syst.,
9(3):297–318, 1987.

[13] Anthony Lieuallen, Aaron Boodman, and Johan
Sundström. Greasemonkey. https://addons.
mozilla.org/en-US/firefox/addon/748.

[14] Cameron McCormack et al. Web IDL, 2008. http:
//www.w3.org/TR/WebIDL/.

[15] Microsoft. Distributed component object
model (DCOM) remote protocol specification.
http://msdn.microsoft.com/en-us/
library/cc201989.aspx.

[16] Mark Miller. Caja, 2007. http://code.google.
com/p/google-caja/.

[17] John Resig and the jQuery Team. jQuery. http:
//jquery.com/.

[18] Eric Shepherd and Boris Zbarsky. Same-origin policy
for file: URIs, 2009. https://developer.
mozilla.org/En/Same-origin_policy_
for_file:_URIs.

[19] Prototype Core Team. Prototype JavaScript frame-
work. http://www.prototypejs.org/.

[20] Anne van Kesteren et al. Selectors API, 2008. http:
//www.w3.org/TR/selectors-api/.

[21] Helen J. Wang, Xiaofeng Fan, Jon Howell, and Collin
Jackson. Protection and Communication Abstractions
for Web Browsers in MashupOS. In 21st ACM Sympo-
sium on Operating Systems Principles (SOSP), 2007.

[22] Boris Zbarsky et al. XPCNativeWrapper.
https://developer.mozilla.org/en/
XPCNativeWrapper.

8

