
Analysis of Hypertext Isolation Techniques
for Cross-site Scripting Prevention

Mike Ter Louw Prithvi Bisht V.N. Venkatakrishnan



Outline

Motivation

Hypertext isolation

Design challenges

Conclusion



Quote

“Cross-site scripting (XSS) attacks would always fail if
the browser could know for absolute certain which scripts
were legitimate and which were malicious.”

Gervase Markham
Mozilla Foundation
http://www.gerv.net/security/
content-restrictions/

http://www.gerv.net/security/content-restrictions/
http://www.gerv.net/security/content-restrictions/


Many web users invest a large degree of trust into sites
they visit.

People expect web applications to:

preserve data confidentiality
provide accurate information
protect authentication credentials

Lack of assurances forces trust model upon us



Modern websites blend code and data from many sources
into a single execution environment.

Content types commonly found in a web application:

First-party user-generated content

Second-party web services and information

Third-party advertisements

Peer-authored content



Ex: Facebook.com aggregates content from many sources.

Image from http://blog.cocomment.com/wp/wp-content/facebook.gif

Ads

User

Apps

Peers

Facebook

http://blog.cocomment.com/wp/wp-content/facebook.gif


Ex: Facebook.com aggregates content from many sources.

Image from http://blog.cocomment.com/wp/wp-content/facebook.gif

Ads

User

Apps

Peers

Facebook

http://blog.cocomment.com/wp/wp-content/facebook.gif


Ex: Facebook.com aggregates content from many sources.

Image from http://blog.cocomment.com/wp/wp-content/facebook.gif

Ads

User

Apps

Peers

Facebook

http://blog.cocomment.com/wp/wp-content/facebook.gif


Ex: Facebook.com aggregates content from many sources.

Image from http://blog.cocomment.com/wp/wp-content/facebook.gif

Ads

User

Apps

Peers

Facebook

http://blog.cocomment.com/wp/wp-content/facebook.gif


Ex: Facebook.com aggregates content from many sources.

Image from http://blog.cocomment.com/wp/wp-content/facebook.gif

Ads

User

Apps

Peers

Facebook

http://blog.cocomment.com/wp/wp-content/facebook.gif


Ex: Facebook.com aggregates content from many sources.

Image from http://blog.cocomment.com/wp/wp-content/facebook.gif

Ads

User

Apps

Peers

Facebook

http://blog.cocomment.com/wp/wp-content/facebook.gif


Web application authors endeavor to confine code and
data into protection domains.

Important for web app to enforce these constraints:

Limit capabilities within a protection domain

Limit inter-domain data flows



Cross-site scripting is a general class of attack to breach
domain protection measures.

Abstract view of cross-site scripting (XSS):

1. Attack code input to web application

Type 0 DOM level zero reflection
Type 1 Request reflection
Type 2 Stored/persistent

2. Web app does not sufficiently filter or sanitize input

3. Attack succeeds

→ domain protections breached
→ trust violated



Detection and suppression of malicious web content are
challenging tasks for a web app.

Standard protection measures (i.e., same-origin policy) too
crude to be useful

Web apps must “roll own” fine-grained security policy
enforcement mechanism

Content parsing performed inconsistently across browsers

Identification of potentially harmful script code is hard
No robust way to distinguish active “code” from passive
“data” [Hansen, 2008]



Web apps are better positioned to define policy rules
(rather than enforce them).

App developers have better knowledge of:

origins of all emitted content
capabilities that are (in)appropriate for outsourced content
(un)desirable interactions between protection domains



A key insight is made by Jim, Swamy and Hicks in BEEP.

Observation ([Jim et al., 2007])

To safely embed unknown, untrusted content:

Web applications should define policy-based constraints.

Web browsers should enforce these policies.

Note: We already rely on browser to enforce same-origin policy.



Content restrictions are well justified.

In summary,

modern web applications integrate content from variety of
sources

level of trust varies by content source and use context

web apps well suited to define protection domain policies

browsers best suited to enforce policies



Outline

Motivation

Hypertext isolation

Design challenges

Conclusion



Quote

“In talking with the browser companies there seems
to be more and more interest in content restrictions.

. . . The obvious answer [is] use an iframe to isolate it.
That, unfortunately, has all sorts of user experience
issues.

. . . So the best alternative is to create something that
tells the browser, ‘If you trust me, trust me to tell you to
not trust me.’ ”

Robert Hansen (a.k.a. “RSnake”)
Author, XSS Cheat Sheet
http://ha.ckers.org/blog/20070811/
content-restrictions-a-call-for-input/

http://ha.ckers.org/blog/20070811/content-restrictions-a-call-for-input/
http://ha.ckers.org/blog/20070811/content-restrictions-a-call-for-input/


How might content restrictions work?

1. Web app breaks document down into logical regions:

contents of HTML element
e.g., <div>...</div>
value of HTML element attribute
e.g., href="..."

2. Web app declares policy-based constraints per region:

Inline
e.g., <div policy="...">...</div>
Remote
e.g., HTTP header targeting region

3. Browser associates policies with regions

4. Browser composes constraints for nested regions

Most restrictive constraint applies

5. Browser enforces composite constraints



Policy-based constraints are weak without robust policy
targeting.

Sometimes, intended 6= actual policy enforcement region

Spurious close tags

Intended <div policy="..."></div><script...></div>

Actual <div policy="..."> </div><script...></div>

Implied “omitted” close tags (i.e., malformed HTML)

Intended <table><div policy="...">

</table><script...></div></table>

Actual <table><div policy="...">

</table><script...></div></table>



Policy-based constraints are weak without robust policy
targeting.

Sometimes, intended 6= actual policy enforcement region

Spurious close tags

Intended <div policy="..."></div><script...></div>

Actual <div policy="..."> </div><script...></div>

Implied “omitted” close tags (i.e., malformed HTML)

Intended <table><div policy="...">

</table><script...></div></table>

Actual <table><div policy="...">

</table><script...></div></table>



Policy-based constraints are weak without robust policy
targeting.

Sometimes, intended 6= actual policy enforcement region

Spurious close tags

Intended <div policy="..."></div><script...></div>

Actual <div policy="..."> </div><script...></div>

Implied “omitted” close tags (i.e., malformed HTML)

Intended <table><div policy="...">

</table><script...></div></table>

Actual <table><div policy="...">

</table><script...></div></table>



Policy-based constraints are weak without robust policy
targeting.

Sometimes, intended 6= actual policy enforcement region

Spurious close tags

Intended <div policy="..."></div><script...></div>

Actual <div policy="..."> </div><script...></div>

Implied “omitted” close tags (i.e., malformed HTML)

Intended <table><div policy="...">

</table><script...></div></table>

Actual <table><div policy="...">

</table><script...></div></table>



Policy-based constraints are weak without robust policy
targeting.

Sometimes, intended 6= actual policy enforcement region

Spurious close tags

Intended <div policy="..."></div><script...></div>

Actual <div policy="..."> </div><script...></div>

Implied “omitted” close tags (i.e., malformed HTML)

Intended <table><div policy="...">

</table><script...></div></table>

Actual <table><div policy="...">

</table><script...></div></table>



Content restrictions require isolation of hypertext.

Observation

Effective content restriction requires accurate targeting of
policy-based constraints to web content regions.

To accurately target, policy declarations must robustly convey
the targeted region’s precise textual extent to the policy
enforcement mechanism.

We term this need hypertext isolation.



Outline

Motivation

Hypertext isolation

Design challenges

Conclusion



Hypertext isolation mechanisms compromise on several
properties.

Ideal hypertext isolation mechanism. . .

1. increases utility of content restrictions

2. degrades well in today’s browsers

3. has no regression from existing methods

4. maximizes usability

Six proposed techniques for hypertext isolation were analyzed.
Each fell short in one or more of these areas.



Evaluated techniques fell into six categories.

1. Document separation

<iframe src="..."></iframe>

2. Request separation

<div src="..."></div>

3. Response partitioning

MIME Multipart/Related (MHTML)

4. Element content encoding

<div src="data:..."></div>

5. Tag matching

<div tag="unique">...</div tag="unique">

6. Character range encoding

<?isolate src="data:...">



Transitioning to a new feature requires legacy browser
support.

Observed failure modes in non-supported browsers:

poor No content rendered

graceful At least trusted document regions are rendered

safe At most trusted document regions are rendered

best Trusted fallback content rendered in place of
untrusted content



Ideally, hypertext isolation should not make matters
worse.

Some evaluated techniques had drawbacks over existing methods.

Additional rendering delays
e.g., appending untrusted content

Additional, intensive HTTP request operations
e.g., <div src="...">

Unreadable (to humans) hypertext
e.g., base64 encoding



Hypertext isolation should enable usable content
restrictions.

Some interesting applications benefit from the ability to:

1. isolate any type of document region

HTML element contents
element attribute values
JavaScript tokens

2. use same syntax in all contexts (i.e., context-free)

Retrofitting existing web apps



Although necessary, hypertext isolation is hard to get
right.

In summary,

Hypertext isolation is required for policy-based capability
restriction of web content

Many outstanding proposals provide isolation

Isolation techniques differ on key design compromises



Outline

Motivation

Hypertext isolation

Design challenges

Conclusion



Conclusion

To conclude,

It is vitally important to the security of web apps that
hypertext isolation be standardized and universally supported.

Careful compromises should be made to obtain a sound
framework for web content restrictions.

This will help web apps continue to evolve while minding
security.



References

Hansen, R. (2008).
XSS cheat sheet.
http://ha.ckers.org/xss.html.
Retrieved on May 22, 2008.

Jim, T., Swamy, N., and Hicks, M. (2007).
Defeating script injection attacks with browser-enforced
embedded policies.
In 16th International World Wide Web Conference, Banff, AB,
Canada.

http://ha.ckers.org/xss.html
http://ha.ckers.org/xss.html


Q & A

Thanks for your attention!

Questions?



HTML standards community takes action!

Ian Hickson, editor for Web Hypertext Application Technology
Working Group (WHATWG), yesterday added to HTML 5
proposed standard:

1. sandbox attribute of <iframe> element
Allows specification of (default-deny) policies:

allow-same-origin
allow-forms
allow-scripts

<iframe> can not open modal dialogs or alerts
all plugins disabled within <iframe>
navigation restrictions

2. seamless attribute of <iframe> element

Layout of <iframe> flows seamlessly into surrounding
document (similar to <div>)
CSS style rules cascade into <iframe>

www.whatwg.org/specs/web-apps/current-work/#sandbox

www.whatwg.org/specs/web-apps/current-work/#sandbox

	Motivation
	Hypertext isolation
	Design challenges
	Conclusion

