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ABSTRACT
We focus on using evidence for making access control deci-
sions in ubiquitous computing environments. These environ-
ments create new interaction scenarios that traditional access
control approaches handle poorly. Our approach views ac-
cess control as the filtering of messages between communi-
cating services. Services are known only by name, and each
service makes access control decisions based on local poli-
cies and evidence it gathers about other services. We imple-
ment our evidence-based approach with a mechanism anal-
ogous to a network firewall, filtering messages going to and
from a service. Our evidence-based firewall is responsible
for managing evidence, laying a foundation for extensions
to it that gather, trade, and evolve evidence over time. This
organization leads to an ecosystem of evidence providers
that evolve as technology and markets develop. We describe
the design of our evidence-based access model, discuss us-
age scenarios, and present preliminary results. The results
suggest that this approach is flexible enough to accommo-
date interesting ubiquitous computing scenarios and efficient
enough to implement on small devices.1

1. INTRODUCTION
Ubiquitous computing environments present new op-

portunities for technology to improve our lives. We
want devices, (e.g., cell phones, music players, GPS
units, robots, temperature sensor, etc.) in these en-
vironments to interoperate transparently and make it
easy for us to communicate and share with others. This
paper considers the problem of providing access control
in such an environment.

One approach to access control is based on authenti-
cating users (see Figure 1a, adapted from [26]). In this
model, users are authenticated by providing a password
to a central authority. Once they have established their
identity, they cross the trust boundary and are granted
credentials that then allow them to access resources.
This approach is sometimes called the onion model be-
cause you are either inside or outside some level of pos-

1This paper appears in W2SP 2008: Web 2.0 Security and
Privacy 2008 Workshop, May 2008, Oakland, CA.

sibly nested trust domains. The onion model becomes
problematic when users belong to more than one orga-
nization or resources need to be shared across organi-
zations.

Ubiquitous computing environments often cannot use
a centralized model because the users requesting re-
sources and the resources themselves are not known a
priori. As a result, alternative approaches have been
proposed [4, 5, 7, 12, 14, 22]. Making access control
decisions in a distributed environment is the basis for
much ongoing research and issues such as delegation,
roles, distributed authentication, and key distribution
have been considered extensively. Approaches that at-
tempt to mimic how trust develops between humans,
involving reputation and past behavior, have been pro-
posed [13, 17, 21, 30].

In this paper, we present an access control model that
emphasizes the formation, evolution, and evaluation of
evidence in making access control decisions. Figure 1b
illustrates our approach. In that figure, we see a service
requesting access to a resource protected by another
service by sending it a message. The resource service
decides to allow access by evaluating its access control
policy using the evidence it currently has about the re-
questing service. By evidence, we mean any knowledge
that relates to the requesting or responding service, po-
tentially including reputation [21], recommendations,
passwords, HIPs [9], CAPTCHAs [27, 28], client puz-
zles [10, 11, 29], biometrics [24], proximity [19], peer
rating [25], credit reports, and quizzes. Evidence can
conceivably be gathered, accumulated, and evolved as
necessary over time. If a service needs more evidence,
it can challenge the requesting service directly (e.g., by
requesting a password), or it can request evidence about
the requesting service from another service, an evidence
provider.

Our model captures identity in the body of collected
evidence about other services that each service gathers.
Access decisions are based on evidence and policies held
locally by each service. Each service can have different
evidence for the same requesting service, and the lo-
cal evidence can be thought of as a partial view of the
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Figure 1: Alternate Models for Access Control

identity of the requesting service. Our evidence-based
access model is motivated by the following beliefs:

• Secure and convenient communication is needed
between parties in different administrative domains
and in cases where there are no pre-existing do-
mains.

• Most data requires convenient, lightweight access
control. Data ranges in value across a spectrum:
crucial, interesting, boring, annoying (e.g., spam
or pop-ups), dangerous (e.g., contains a virus). 2

Traditional access control approaches focus on main-
taining the integrity of crucial data and preventing
dangerous data from reaching us. When the cost
of an incorrect access control decision is high, effec-
tive but inconvenient security approaches are war-
ranted. However, most of the world’s data fall into
the middle categories. Access control approaches
that balance convenience against risk need to evolve
to protect these data.

• Forms of evidence are evolving and the commercial
ecosystem of evidence providers, which already ex-
ists, will grow. Evidence is central to our model
because the business value of evidence in its many
forms is just starting to be realized, and the kinds
of evidence used in access control decisions are ex-
ploding.

In this paper, we define a model for access control
between services in a ubiquitous computing environ-
ment that filters messages between services with an

2While dangerous data can masquerade as benign data, we
do not address the problem of detecting such data.
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Figure 2: Evidence-based Firewall

evidence-based firewall (EBF)3. The evidence-based fire-
wall manages the interaction between services and reg-
ulates what services have access to what resources. Fig-
ure 2 illustrates our approach, showing two communi-
cating services that each have an EBF processing mes-
sages sent between the services. Based on access con-
trol policies and known evidence about the sender and
receiver of the message, the EBF determines whether
the message is allowed to be sent or received. Access
control policies allow the EBF to make access control
decisions based on a variety of sources, including the
sender, receiver, and contents of the message.

We base our framework on the firewall concept be-
cause it is well understood, widely used, and effective.
Firewalls limit both incoming and outgoing messages,
necessary to prevent access and maintain privacy in
ubiquitous computing environments. Furthermore, fire-
walls are also used to filter data that we classify as bor-
ing or annoying.
3We use the firewall analogy instead of the traditional refer-
ence monitor [2] because we model the two entities, requester
and requestee, as peers, and assume that message flow will
be filtered in both directions. While our firewalls are more
intrusive than traditional network firewalls, we retain the
name because it is familiar to a broad audience.
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The contributions of this paper include:

• We define a set of goals based on the beliefs out-
lined above and describe an evidence-based access
model intended to meet those goals.

• We show how the model addresses access-control
issues raised by important ubiquitous computing
scenarios.

• We describe a prototype implementation of our ac-
cess model based on embedded web services and
evaluate our prototype’s performance.

2. EVIDENCE-BASED ACCESS MODEL
In this section, we introduce the high-level goals of

our design and provide an overview of the concepts.
The goals of our model are to:

1. Support communication between parties in differ-
ent trust domains or in cases where no pre-existing
trust domains exist. This goal requires that parties
can name each other securely and that the model
interoperates with existing access models.

2. Allow evidence associated with parties to be se-
curely collected and evaluated for the purpose of
allowing access to resources. In particular, access
decisions should be based on policies that are ca-
pable of balancing security with convenience.

3. Create an ecosystem in which evidence providers
can flourish. This goal requires a system for cre-
ating evidence, associating evidence with parties,
and trading evidence between parties. New forms
of evidence and new policies must be allowed to
be introduced freely.

In our work, we separate unique identifiers from the
information used to make decisions about access con-
trol. We call the identifiers entities to highlight the
fact that they do not necessarily represent a user, but
can uniquely name any available service. We assume
that entities are uniquely defined and can provide cryp-
tographic signatures that are sufficiently strong for the
task they are being used for based on existing technol-
ogy, such as a public key infrastructure.

With the traditional concept of user, identity and
trust are tightly coupled. Users verify their identity
by providing a password, after which, the user and the
capabilities of the user are co-mingled. In our model
there is no preconceived relationship between entities.
The relationship emerges locally at every service based
on available evidence.

While entities can be uniquely named and addressed,
their names are difficult to remember, communicate,
etc. To support a more convenient way to address en-
tities and their related services, we use URIs (uniform

resource identifiers), and we call an entity/URI pair a
port. Messages are sent to and from ports.

A message identifies the port it comes from, the port
it is being sent to, and contains the structured contents
of the message. We assume that messages contain a
distinguished field called action, which we interpret as
the verb of the message.

Arbitrary services can communicate with each other
via messages as long as they know the appropriate port
to send messages to. We assume that message integrity
is maintained cryptographically and that existing op-
timization approaches, such as session keys, etc. are
used.

We choose not to pre-specify action types (e.g., read,
write, etc.) to allow for a rich ecosystem of interac-
tions. For example, on a wiki page, there might be a
“verified write” operation that would require the wiki
administrator to verify the update.

In our model, a service is a container of state, with
zero or more ports, that is the sender or receiver of a
message, named by a port, whose behavior upon receiv-
ing a message depends on the message and the state of
the service. Upon receiving a message, a service can
change its state and/or send zero or more messages.
Services can spontaneously send messages. Messages
sent to and from services are first processed by the
service’s firewall. We take a data-centric approach to
services, defining them in terms of the state that they
maintain and the ports that they respond to. Services
also contain behavior, represented by the actions that
messages invoke.

A resource is a part of a service’s state that can
be serialized and sent through a port in a message. A
document is a resource that has been serialized, for
example, into XML. We call the sender of a message
requesting access to a resource a client.

A firewall is a processor, associated with a service,
that processes all messages that are sent to or from the
ports of the service. A service’s firewall may access all
the service’s state. For every message sent or received,
the firewall implements the function f(message, state)
that produces one of the following results: 1) the mes-
sage, in whole or in part4, is delivered to or from the
port, 2) the message is discarded and an error message
is returned, 3) the message is silently discarded. If an
error message is returned, it may contain additional in-
formation, such as the port of an evidence provider.
Firewalls manage the information needed to make ac-
cess control decisions and execute the policies that de-
termine the decisions.

Evidence is any state in a service that its firewall
accesses in making an access control decision. Poli-

4Depending on policies, one possible outcome might be that,
for example, sensitive data is removed from a message before
it is sent.
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cies are the procedures whose evaluation results in ac-
cess control decisions. While one can make the case
that there is a duality between policies and evidence,
for simplicity we consider only cases where policies are
procedural and fixed by the entity that a firewall pro-
tects and evidence is data that is accumulated on a
per-requesting-service basis. An evidence provider is
a service that interacts with the environment and other
services and provides data that are pertinent to firewall
decisions.

Evidence-based access control can be used to achieve
traditional centralized access control if desired. Each
user would be an entity and all the resources protected
by a domain would require the same evidence, for exam-
ple, that a user knows a password. Nothing in our model
prevents multiple services from synchronizing their poli-
cies and evidence if desired.

We would like our approach to allow an evolving
ecosystem of evidence technology (Goal 3). For exam-
ple, if sensors that measure facial expressions are devel-
oped, firewalls could incorporate policies that use evi-
dence, creating a market for providers of such evidence.
Beyond providing new evidence, evidence providers might
also provide evidence management services, including
caching, replicating, summarizing, and/or distilling it
into higher order evidence.

boolean Access?(port sender, port receiver, action, body) {
boolean decision, error;
policy p;
evidence e;

if (sender == me) {
p = LookupPolicy(me, "out");
e = LookupEvidence(receiver);

} else {
p = LookupPolicy(me, "in");
e = LookupEvidence(sender);

}

(decision, error) = p(e, action, body);
if (error) {

if (protocol_requires_response)
Send(receiver, sender, error);

return false;
}
return decision;

}

Figure 3: Access Decision Procedure

There are many ways that an access control decision
can be made based on the sender, receiver, the message
itself, and available evidence. We present pseudocode
for a simple access control algorithm in Figure 3, which
illustrates an algorithm with separate “in” and “out”
policies, and uses evidence associated with the sender
while making “in” decisions, and uses evidence associ-
ated with the receiver while making “out” decisions. We
use such a policy organization in the scenarios that fol-
low. While this figure depicts a Boolean policy, nothing
prevents us from providing a more complex policy that
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Figure 4: Scenario 1: Sensor Service with Re-
quest/Response

allows more subtle access distinctions. For example,
combining a non-Boolean policy with partial messages
might allow a user with less privilege to make updates
to some parts of a wiki while updates to other parts
were discarded.

With any access control system, bootstrapping must
be considered. While ubiquitous web services present
some interesting challenges, we believe that as an ini-
tial solution, we can rely on existing approaches. For
example, every device can have an initial, local evidence
provider with a simple default policy, such as providing
a password. Device manufacturers can also provide de-
fault remote evidence providers (proven to the initial
local EP) as a means of bootstrapping the process of
finding additional evidence providers. While this ap-
proach constrains the scenarios in which a device can
be initialized (e.g., when the default remote evidence
provider is unavailable), we will consider lifting this lim-
itation in future work.

3. SCENARIOS
Ubiquitous computing has many compelling and in-

teresting usage scenarios. We describe several such sce-
narios, including casually sharing soccer photos at a
coffee shop, in a workshop paper that motivates this
work [20]. Here, we present two scenarios, both of
which we have implemented in our embedded web ser-
vices framework, that illustrate the functionality and
flexibility of our approach.

Scenario 1: Sensor Service Our first scenario in-
volves a sensor service, where the sensor has public data
(X) available to other services and private data that
should never be sent (Z) (see Figure 4). We assume that
the service has separate policies for filtering incoming
and outgoing messages (as illustrated in Figure 3), and
maintains evidence for each client. The incoming re-
quest policy (Policy-in) requires that the sender know
a password and solves a CAPTCHA (e.g., asking the
user to recognize a squished sequence of letters and
numbers), while the outgoing policy (Policy-out) rejects
messages sent with private data.

4
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Figure 5: Scenario 2: Sensor Subscription

In the example, client C1 issues a read request for sen-
sor data X. The EBF processes the message, applying
Policy-in to the evidence it has about C1, and deter-
mines if the read request should be allowed. Assuming
it is, the sensor service sends a return message to C1
containing the current value of X. Before that message
is sent, the EBF processes it, applying the policy that
checks the message content for private data before al-
lowing the send. We discuss the case where the read
request fails due to insufficient evidence when we de-
scribe our implementation below.

Scenario 2: Sensor Subscription Our second sce-
nario involves a client subscribing to a service that pub-
lishes a sensor value (Figure 5). In this scenario, the
subscription is initiated with a message from the client
containing an additional argument specifying a thresh-
old. The intent of the subscription is that as long as
the client remains subscribed, messages containing sen-
sor values are sent to the client at regular intervals if
the value of X is greater than threshold. The sensor
service maintains state associated with C1’s subscrip-
tion, including the threshold value specified C1 when
the subscription was created.

In this example, the input policy is exactly the same
as in the previous example—the client can only sub-
scribe to the sensor if it knows the appropriate pass-
word and has solved a CAPTCHA. The output policy
is client-specific and is controlled by the client-specified
threshold value. This policy prevents outgoing sensor
value messages from being sent when the value is be-
low the specified threshold. From the service’s point of
view, the threshold data is just client-specific evidence
that it manages.

4. IMPLEMENTATION
Our EBF implementation is based on an Embedded

Web Services framework [18] implemented as part of the
Invisible Computing project at Microsoft Research [15].
Figure 6 illustrates the architectural details of that in-
frastructure.

Our framework implements service interactions as SOAP
messages sent between published web service endpoints.
SOAP is a way of turning XML documents, such as se-
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Figure 6: Embedded Web Services Framework

rialized method calls, into messages. A SOAP message
consists of an envelope that contains a number of head-
ers, such as the intended recipient, and a body with the
payload data. The core of the architecture is a data-
centric object manager that has been implemented on
a wide range of devices including very small ones. The
framework allows SOAP to be used directly over hard-
ware, such as serial lines, over UDP or TCP, or wrapped
in HTTP. It interoperates with WS-Management, WS-
Device Profile including WS-Discovery, and the Distrib-
uted Software Services Protocol (DSSP) that is used in
the Microsoft Robotics Studio. The interoperation has
been tested with a large number of other implementa-
tions in several interop workshops. The hardware re-
quirements start from 4 Kbytes of ROM and 128 bytes
of RAM on an AVR with a fixed functionality system
that understands a couple of messages to a fully exten-
sible system that includes all the protocol layers and
the EBF, running in roughly 256 Kbytes of ROM and
32 Kbytes of RAM on, among others, an ARM7.

After the incoming SOAP messages are handled by
the network and HTTP stack, the resulting XML is
passed to a converter that translates the XML into the
native representation of the service’s runtime, e.g. C
structs, so that the program can access the data di-
rectly. The converter automates the process of mar-
shaling messages and is driven by an interface descrip-
tion, which itself can be viewed as the program that the
converter interprets. The action field of the message is
treated as the method of a method call. The method
call is natively represented as a thunk, an executable
stack frame. The resulting thunk is passed to the ob-
ject manager, which executes it to call the appropriate
method on one of its objects. Outgoing messages follow
a similar path in the reverse direction.

In the process of creating the thunk, the converter
generates the Current Request Struct, containing all
the information necessary for the evidence-based fire-
wall to make the appropriate access control decisions.
The EBF is implemented in the object manager as an
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Figure 7: Message Pattern in Scenario 1

interposition that runs just before the service method
is called, or, on outgoing messages, just before any mes-
sage is created and sent, such as just after the service
method returns. When the EBF examines a message,
it either allows the message to be sent, or discards it.
When the message is discarded an error message is gen-
erated when one is expected by the protocol. We use a
unified naming scheme for services and data, embedding
the names into URL prefixes that create a hierarchy (see
details below).

4.1 Scenario 1 Implementation
We use Scenario 1 to describe our implementation

more concretely. As illustrated in Figure 7, we re-
quire the client to both know a password and demon-
strate their humanity by solving a CAPTCHA. In this
example, the initial request (M1) to read the sensor
fails because the CAPTCHA evidence is not present,
and an error message (M2) redirects the client to a
CAPTCHA service (at port-EP). The client provides
CAPTCHA evidence to the service (M3), also provid-
ing a port to the service that requires the evidence
(port-S). The CAPTCHA service updates the client ev-
idence (M4) using port-S-EP, which it derives from the
client’s port, port-S, to indicate that the CAPTCHA
has been solved. The original request (M1) can then be
retried and will succeed (providing the re-request oc-
curs within a time frame during which the CAPTCHA
evidence is considered valid). Note that the interaction
between the CAPTCHA service updating the client evi-
dence (M4) is itself a service request, which also must be
validated through the EBF, requiring the CAPTCHA
service message to be evaluated in the context of an
input policy specific to updating evidence.

We capture the recursive nature of request process-
ing through the EBF in the object-manager’s naming
system. Figure 8 illustrates how the object manager
namespace is organized in Scenario 1. The figure shows
that the namespace is organized into subtrees, where
resource specific data is accessible directly based on the
URL of the resource (e.g., /Sensor1) , while the evi-
dence related to the resources and clients are accessed
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Figure 8: Resource Hierarchy in Scenario 1

within a separate Evidence subtree based on the port
(URL+entity) of the client. A separate Policy subtree
stores the related policies. In our example, we assume
only two policies are needed to filter incoming and out-
going messages.

The tree is populated in the process of creating it.
Initially, the resource Sensor1 is installed at the root
of the object manager namespace. The message that
creates the resource contains the necessary parameters,
such as the type of the new resource. This binds the
resource to program code (a class) that knows about
the particulars of the resource, such as how to fetch the
current reading from the physical sensor. The type is
also used by the converter in automatically serializing
and deserializing the resource into a document that can
be sent in a SOAP message.

Before the new resource can be used, access control
policies are installed in the Policies subtree tree in a lo-
cation that mirrors the actual resource’s location in the
main tree. The hierarchical namespace allows policies
that are specific to a particular client or resource. By
default, if no such specific policies are present, the de-
fault policy installed in the Policies root is used (as in
the example).

Later, the client attempts to read Sensor1 by send-
ing it a “read” message. For the purpose of illustra-
tion, assume the client has already provided a pass-
word to a service that verifies the password against the
correct one, essentially performing a login. The login
service can either be on the same device or somewhere
else. The login service is an evidence provider (possibly
local) that sets the knows-password field in the Evi-
dence/Client1 resource. When the client now sends the
“read” message the EBF protecting the sensor looks up
the client evidence in Evidence/Client1 based on the
sender port. It looks up the resource policy in Poli-
cies/Policy(In). It then applies the policies to the ev-
idence producing TRUE, the message is delivered, or
FALSE, the message is discarded. When a message is
discarded, an optional information field (e.g., contain-
ing the port of the CAPTCHA evidence provider) will

6
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Figure 9: Execution Overhead of Evidence-
based Firewall on Three Platforms. Values are
relative to Get (no check) = 1 on each platform.

be sent to the client (assuming the protocol state ex-
pects a response).

5. RESULTS
As a preliminary evaulation of EBF performance, we

implemented Scenario 1 and measured the execution
time on three platforms: x86 running Vista; Giano,
an embedded systems simulator [16]; and on a 25MHz
ARM (see Figure 9). The results do not include any
cryptographic signing, etc. We also do not perform any
optimizations such as caching the result of access checks
or precompiling the security policy expressions (which
are now textually parsed and interpreted each time they
are evaluated).

Figure 9 shows the relative cost of several operations,
all normalized to the cost of a resource Get operation
without any access checks (requesting and receiving a
32-bit sensor value). The first bar in each group shows
the cost of an access check alone, assuming the check
does not access any additional resources (e.g., read-
ing a password, etc); the second bar is the cost of an
unchecked Get; the third bar is the cost of a Get with an
access check that accesses one additional resource and
fails; and the fourth bar is the cost of Get with two ac-
cess checks, one on the incoming and one on the outgo-
ing message, both of which access an additional resource
before returning the requesting value. For these results,
we measured each operation 1000 times and computed
the average. The mean time for a Get with no access
control was 0.038 milliseconds (i386), 0.68 milliseconds
(Giano), and 4.3 milliseconds (ARM) per call.

From the figure, we see that depending on the case,
the overhead of Get with access checks can be several

times slower than Get with no checks. Because access
checks in our unoptimized implementation themselves
require the equivalent of one or more Get operations,
the observed slowdowns are expected. We anticipate
that with precompiled policies and access check caching,
the peformance can be significantly improved.

In order to show that an EBF can be used in practice,
we demonstrated Scenario 1 (a simple sensor service)
and Scenario 2 (a sensor service providing subscrip-
tions) with our implementation at the 2007 Microsoft
Faculty Summit [1]. The first demo implemented Sce-
nario 1 using the Vista WinRM command line utility to
speak the WS-Management protocol between the client
and server. A second demo (Scenario 2) showed how Mi-
crosoft Robotics Studio (MSRS) could subscribe to an
ARM7 based medical sensor using the DSSP protocol.
For this scenario, the sensor was an accelerometer em-
bedded in a walking stick for the purpose of detecting its
user falling over. The client service, in this case MSRS,
subscribes to the accelerometer receiving updates every
five seconds.

6. RELATED WORK
There is a large body of work on the general issue

of access control in a distributed environment, while
less work focuses on the problems specific to ubiquitous
computing environments. While some prior work has
considered a general framework using evidence for ac-
cess control, much of the previous work assumes a small,
fixed set of evidence sources.

The work most closely related to our evidence-based
access model is the dynamic trust model proposed by
Xiu and Liu [30]. They also propose a service that
collects trust evidence about its clients. They argue
that the diversity of ubiquitous computing scenarios de-
mands support for various forms of evidence. In subse-
quent work, they consider automated trust negotiation
for such environments based on agents [23]. Their work
differs from ours in that we separate naming from evi-
dence, model access control as a message firewall, and
emphasize creating an ecosystem for evidence services.

Ashri et al. describe an approach to making security
decisions in a Grid computing environment based on se-
curity policies and information [3]. They describe the
implementation of their model as a semantic firewall,
which, like our evidence-based firewall, reasons about
access control based on evidence and policies. Unlike
our firewall, they do not anticipate an ecosystem of
evolving forms of evidence. Also, because their firewall
is embedded into a Grid services infrastructure, they
focus on specifying tasks and the related workflow au-
thenticated by site-specific access control policies, while
we dissociate user identity from organizational bound-
aries and focus on the firewall mechanism to provide
both access control and filtering.
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English et al. consider the issue of dynamic trust in
a global computing environment [13]. They choose to
define trust as an estimation of likely behavior and fo-
cus on an E-purse scenario. Their approach differs from
ours in that they look at combining various trust values
to make decisions, while we focus on the entire lifecycle
of evidence, including who manages it. Further, we dis-
sociate names from evidence, allowing partial identities
to emerge locally.

Haque and Ahamed consider properties of trust in a
system where trust is based on recommendation [17].
They consider formal properties of trust and how to
reason indirectly about trust through chains of recom-
mendation. Our work focuses more on the sources of
evidence and the model that allows evidence to be cre-
ated, collected, and evolved. We can incorporate their
results in how we choose to combine evidence in make
a particular access control decision.

Microsoft CardSpace (also called InfoCard) has goals
that are similar in spirit to ours [6]. Their approach,
influenced by Cameron’s Seven Laws of Identity [8] is
an identity metasystem that allows the creation and
management of multiple identities by a user that rep-
resent different facets that the user wants to present to
third parties, depending on how much the user trusts
them (e.g., an anonymous identity, a “verified” identity,
etc.) CardSpace focuses on issues related to a human
user, such as identity selection, and while it can sup-
port a variety of forms of evidence, this is not the main
theme. With our EBF approach, the main focus is on
the evidence itself. With this focus, we hope to stimu-
late research in ways to evolve, manage, combine, and
generate new evidence.

7. SUMMARY
We describe an evidence-based access model that as-

sumes no centralized domain, focuses on access control
to non-critical data, and encourages a robust ecosystem
of new evidence and policy providers. Our model binds
names to evidence locally, so that every service has a
potentially different view of the credentials of client ser-
vices. We enforce access control by interposing a fire-
wall on every incoming and outgoing message, allowing
message filtering based on the sender, receiver, and the
contents of the message. Because much data is neither
dangerous or critical, relatively benign message filtering
is an important part of any access control system. We
illustrate how our model works for two ubiquitous com-
puting scenarios, describe our prototype implementa-
tion based on embedded web services, and evaluate its
performance. Preliminary results show that the over-
head of filtering messages using an evidence-based fire-
wall is not prohibitive for the applications considered,
even without possible optimizations.
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