
Web-key: Mashing with Permission
Tyler Close

Hewlett-Packard Labs, Palo Alto

tyler.close@hp.com

ABSTRACT
Mashups, web applications that interact with other web
applications, are receiving increasing developer interest and
providing users with valuable new functionality. When one or
more of the interacting applications have access control
requirements, many design challenges arise. Failure to meet these
challenges brings unnecessary risk to the user. Addressing the
challenges using a poorly suited technique can add significant
complexity to both the application code and the user interface, all
while not reducing risk to the user. In addition to examining and
explaining these failings, this paper introduces a solution, the
web-key, an https URL convention for representing a transferable
permission in a web application. Using web-keys, access control
challenges can be effectively solved using existing development
tools for web applications deployed to existing web browsers.

Categories and Subject Descriptors
C.2.2 [Computer-Communications Networks]: Network
Protocols – applications (HTTP). D.4.6 [Operating Systems]:
Security and Protection – access controls. H.3.5 [Information
Storage and Retrieval]: Online Information Services – web-
based services.

General Terms
Design, Security, Human Factors

Keywords
HTTP, mashup, REST, web-key

1. INTRODUCTION
The World Wide Web uses relatively simple technologies

with sufficient scalability, efficiency and utility that they have
resulted in a remarkable information space of interrelated
resources, growing across languages, cultures, and media1; but not
access control boundaries. Core to these simple technologies is
the URI, which is used for both identification and interaction: a
document can link to a discussed resource using a URI and a web
agent can interact with a resource by directing a request using a
URI. As elucidated in the W3C's Architecture of the World Wide
Web, Volume (webarch) [1], the URI provides a powerful
architectural base upon which to build an information space. This
information space includes the wikis, blogs, search engines, e-
commerce sites and web applications that so permeate our daily
lives. So long as there are no permissions required, an interaction
across this information space is successfully enabled through the
use of URIs. The proliferation of mashups which integrate
information from publicly accessible sites like Google Maps and
Craigslist is testament to the flexibility and utility of the Web's
architecture. However, by convention, and official decrees, a URI

1 borrowed from the abstract webarch [1]

is not typically used to transfer permission in a Web interaction.
Consequently, a mashup developer seeking to integrate data from
a non-public source, such as a user's web-mail account, must
augment the architectural base provided by the URI with some
other mechanism for handling permissions. These architectural
additions have not exhibited the same scalability and utility
properties, as evidenced by the dearth of mashups involving non-
public information. Typically, non-public information is made
available to a web agent within a walled garden protected by a
username/password. Within this walled garden, Web interactions
take place as before, but are accompanied by proof of knowledge
of the username/password. To interact with a resource in the
walled garden, a web agent must possess this proof.
Consequently, a mashup application targeted at resources in this
walled garden typically must be given the corresponding
username/password. This condition holds even if the mashup
application only needs access to a small subset of the resources in
the walled garden. For example, the web-mail mashup may only
need read permission on a particular email folder and not
permission to send email as the user. Unfortunately, this user
password model does not enable expression of such a restriction.
For mashups of non-public information to flourish, fine grained
access to information must be as easy and scalable as it currently
is for public information.

In addition to discouraging and complicating Web
interactions, augmenting the architectural base provided by the
URI with user passwords does not provide the protection
commonly claimed and expected. Under some circumstances, user
passwords may help a server protect itself from a malicious client,
but this mechanism alone does not help a client protect its server-
side resources from other clients. So the discussed web-mail
application may be able to prevent an interaction from a non-user
by requiring a password, but this requirement does not help a
legitimate user protect his permission to use the web-mail
application from other users. Using a technique popularized under
the name Cross Site Request Forgery (XSRF), an attacker can
abuse a legitimate user's permission, and so use server-side
resources according to his wishes and the victim's responsibility.
Passwords also bring multiple usability problems, notably a user
interaction highly susceptible to phishing.

This paper discusses the problems with current approaches to
access control on the Web and presents the web-key, an https
URL 2 convention for implementing transferable permission on
the Web. This convention enables solution of access control
challenges within the architectural model provided by the URI,
thus enabling non-public resources to also benefit from the
advantages coming from the principles identified by the W3C in
webarch. This compatibility also means that the web-key
technique can be applied using existing web development tools to
create web applications deployed to existing web browsers.

2 In this paper, the term URI or URL is used to match the

terminology used in the discussed reference. Any difference
between the two terms is not germane to this paper.

The web-key technique has been implemented in the
Waterken server [10], an Open Source web application server.
Web applications developed on this server have been successfully
tested in many mainstream web browsers, including Internet
Explorer, Firefox, Safari and Opera. Many applications have been
created on this platform, including an access controlled wiki, a toy
stock market and a two man year personal collaboration project
currently underway at HP Labs.

Section 2 of this paper examines the difficulties created by
the walled garden approach to access control currently popular on
the Web. Section 3 explains the implementation of a web-key, the
proposed alternate approach to access control. Section 4 shows
how the web-key proposal addresses the previously discussed
problems with access control on the Web. Section 5 addresses
previously raised concerns with pursuing an approach like the
web-key. Section 6 discusses related work.

2. THE WALLED GARDEN
The most popular mechanism for implementing access

control over private resources on the Web, and the one
recommended by the W3C [4], is the username/password. These
tokens are typically transmitted using either HTTP Auth, or HTTP
Cookies. This section examines the impact of this access control
mechanism on the Web.

2.1 Broken web architecture
The importance of the URI to Web architecture is most

clearly expressed by the following quote from webarch:
“One goal of the Web, since its inception, has been to build a

global community in which any party can share information with
any other party. To achieve this goal, the Web makes use of a
single global identification system: the URI. URIs are a
cornerstone of Web architecture, providing identification that is
common across the Web.”

This identification is only common across the Web for things
that have been assigned a URI. Most often, permission to access a
private resource is not assigned a URI; instead, a URI plus a
separate username/password is used. Augmenting the
identification system in this way undermines core architectural
principles of the Web.

2.1.1 Loss of global identification
Quoting again from webarch:
“It is a strength of Web Architecture that links can be made

and shared; a user who has found an interesting part of the Web
can share this experience just by republishing a URI.”

When access to a resource is protected by a
username/password, even the most basic operation of
dereferencing the URI requires presentation of these additional
identifiers. Consequently, a user cannot share access with another
just by passing a URI. For example, a user of the described web-
mail application may have access to a resource which stores the
current contact information of a friend. Rather than maintain this
state on behalf of the friend, the user may wish to directly delegate
access to the contact resource to the friend, so that it may be
updated directly when contact information changes. If the web
application is protected by a username/password, the user cannot
share access to the contact resource simply by sending their friend
the URI. Instead, sharing access to the contact resource may
require sharing full control over the web-mail account by giving
the user's username/password to the friend. Alternatively, the web
application may support some process whereby the friend may be
given their own username/password, and an access control list

updated by the user to give the friend access to the contact
resource. Some may think this latter scenario plausible, others not,
but it is certainly different from the interaction for sharing access
to a publicly accessible resource and so cannot be assumed to
have the same architectural properties. If the single global
identification system provided by the URI is as crucial as the
W3C states, then the publicly accessible Web would never have
been built under the regime currently in place for private
resources. The dearth of mashups involving private resources may
be seen as evidence for this position.

2.1.2 Loss of orthogonality
Since the URI alone is insufficient to direct a web agent to a

private resource protected by a username/password, the additional
identifiers must be transmitted somehow. The only other option in
web architecture is the representation, so the data format for the
representation must be designed to accommodate these additional
identifiers. This additional responsibility breaks the Web's
orthogonality principle webarch:

“Identification, interaction, and representation are orthogonal
concepts, meaning that technologies used for identification,
interaction, and representation may evolve independently.”

To accommodate private resource access, each representation
format would have to provide its own conventions for encoding
access permission and evolve in lockstep with this identification
technology. The task of representing a link is no longer fully
delegated to the URI. The alternative to this requirement is loss of
global scope, which occurs when only part of the access identifier
is represented..

2.1.3 Loss of global scope
Loss of orthogonality is awkward and so many data formats,

such as HTML, don't augment their hyperlink encoding with user
credential information and instead assume this information is held
in the ambient environment provided by the user agent. For each
web interaction, the user agent automatically augments the request
with the user's credentials. But this practice is not always safe. For
example, left unrestricted, this practice would allow a visited web
page to read and modify any resource the user can access. If the
source hyperlink for an interaction included the credentials to be
used, these could be safely included in the outgoing request.
However, since the data format does not support encoding of this
information, and the ambient credential information cannot be
safely used, the communication must be banned 3 . This
communication ban is known as the Same Origin Policy: a visited
web page can only read representations produced by the web
page's own host. This policy stands in stark contrast to the stated
goal of enabling a "global community in which any party can
share information with any other party". Within the web browser,
this sharing is prohibited, as a consequence of failing to
implement global identification for private resource access; a
visited web page is unable to specify its permission to access a
private resource.

2.2 Poor usability
In theory, a user's password protects their private resources

in a web application from abuse by other web applications. In

3 Some web sites also treat the client’s IP address as a kind of

password, granting greater access to a client behind a firewall.
In this case, the URI + client IP address is the global identifier
for private resource access.

practice, there is no such barrier. Remembering an unguessable
password is a difficult burden for a human. Remembering dozens
of them is not feasible. To cope with the burden that has been
foisted upon them, many users reuse passwords across multiple
web applications [6]. In this case, there is no protection barrier
between web applications: each has complete access to the other.
This reality is not a failing of the user, but of the user interaction
design, which is predicated upon the user doing the impractical.

2.3 Phishing
In addition to remembering an unguessable password, the

user is also asked to determine the source of a presented login
prompt and only reveal the password if the source can be
authenticated as being the intended recipient. In user testing, this
burden has proven to be too great [7] [8]. Part of the problem
arises from the similarity between a legitimate interaction and an
attack. Consider the following interaction, presented by the W3C
as a textbook use of access control on the Web [1]:

“Nadia sends to Dirk the URI of the current article she is
reading. With his browser, Dirk follows the hypertext link and is
asked to enter his subscriber username and password. Since Dirk
is also a subscriber to services provided by
‘weather.example.com,’ he can access the same information as
Nadia.”

From Dirk's perspective, this scenario is also a textbook
example of phishing in the case where Nadia is the phisher and
the URI sent to Dirk refers to the phishing site created by Nadia.

2.4 Cross Site Request Forgery (XSRF)
Unless a web application has taken additional precautions,

stealing the user's password using a phishing attack is unnecessary
since the user's web browser will readily employ the user's
credentials under the attacker's directions.

For example, the discussed web-mail application may have a
feature to setup a forwarding address. When in use, this feature
automatically forwards a copy of incoming email to a specified
email address, in addition to keeping a copy for use within the
web-mail application. The resource to setup this feature may be
located at: https://mail.example.com/user123/forward. A POST
request sent to this resource provides the forwarded to email
address and starts email forwarding. Normally, the user activates
this feature from an HTML page served by the web-mail
application, but this need not be the case. In an attack scenario,
another web site could serve an HTML page that contains an
identical form, pre-populated with the attacker's email address.
Using Javascript, this form can be automatically submitted on
page load. Assuming the user has already logged into the web-
mail application in the current browsing session, the user's
browser will send the POST request to the web-mail application
and include any cookies, or HTTP authentication credentials,
setup with the web-mail application. The web-mail application
receives a POST request containing exactly the same Request-
URI, entity body and cookies as in the normal case. The user may
see nothing out of the ordinary in the web browser's presentation.
Though not directly possessing the user's credentials, the attacker
can nonetheless use them as desired. The walls of this walled
garden only keep out the well intentioned, not intruders.

The attack described above is not enabled by a peculiarity of
the Web, but rather is endemic to applications that treat client

authentication as an access control mechanism 4 . Client
authentication only establishes that a particular request was sent
by a particular client; it does not establish which of the client's
permissions the client intends to exercise with the request. The
latter is required to effectively implement access control 5. When a
request is produced by the client without communication with
others, it may be the case that the server can assume that the client
permissions to be exercised are the ones that must be exercised in
order to service the request. However, this unstated assumption is
readily violated when a client communicates with other parties. In
the described attack, the client request was produced in
collaboration with the attacker and so included a private resource
identifier specified by the attacker:
https://mail.example.com/user123/forward. The server's
assumption that the client intended to apply its email forwarding
permission to the current request was therefore invalid, thus
enabling the attack. The user only intended to view a web page,
not apply any permission to any request generated by the page.

This attack can be defended against by eliminating the
assumption about which of the client's permissions should be
exercised by a request, instead making this selection explicit and
unforgeable. A popular way to express this intent involves
reifying the permission as an unguessable secret [9]. For example,
when browsing the https://mail.example.com/user123/forward
resource, the HTML form in the returned web page includes a
hidden field containing a randomly generated secret. When the
form is submitted, the resource checks that the received request
includes the expected secret; if so, the request is processed and
not otherwise. The Same Origin Policy prevents the attacker from
reading a secret produced by the web-mail application and so the
attacker is unable to generate an HTML form that includes a valid
secret for the email forwarding resource.

The above defense protects a POST request from abuse by an
attacker, but does not protect a GET request. For example,
consider a user with access to a confidential report on company
finances at: https://portal.example.com/audit/summary.html. An
attacker could direct the user to a blog post which claimed
knowledge of the report. Since the URL for the report summary is
guessable, the attacker can guess it and reference it from an
IFRAME in the blog post. This IFRAME may have no visible
border, and so to the user, the blog post appears to contain a copy
of the report summary. When rendering the IFRAME, the user's
browser submits a GET request for the report to the portal along
with any cookies setup for the user. The blog post asks: "Do you
wish to make any statements before I go public with this
information?" It appears the blogger already has access to the
confidential report, and so the victim may engage in a
conversation that reveals the confidential information. As in the
previous example, the user only intended to view a web page, not
enable inclusion of confidential information in the web page's
presentation.

The discussed defense for the POST request can be extended
to also cover GET requests, and other HTTP methods, by putting

4 This kind of attack was first described in the context of an

operating system in “The Confused Deputy” [5].
5 It is unclear why this attack is referred to as a forgery attack,

since nothing is being forged. For example, no cryptographic
signature, or other proof, is forged. There simply is no
protection in place; client authentication does not provide
access control.

the explicit permission secret in the URL for the identified
resource. In addition to protecting against XSRF, this approach
also enables a solution to the architectural and usability problems
created by passwords. The detailed design is explained in the
following section.

3. WEB-KEY IMPLEMENTATION
This section presents the web-key https URL convention for

representing transferable permission and describes the resulting
web browser interactions.

3.1 How to represent permission?
According to RFC 3986 [3], one of the main design

considerations for the URI is transmission between users via
transcription. Preserving this feature in a URI that conveys
permission creates a number of design constraints. Transcription
is an offline process, meaning that delegation of permission from
one user to another must also be an offline process. The act of
transcription must also be sufficient to complete the delegation, as
no other data is exchanged. Transcription can be a manual task for
the user, such as when using pencil and paper, so the URI should
be kept short.

These design constraints can be met by binding each
permission issued from the web application to a randomly
generated bit string, of sufficient length to frustrate a brute force
online search. An encoded representation of the bit string is
included in the https URL for the permission. An attacker is
limited to an online search, since only the web application can
determine whether or not a particular bit string corresponds to an
issued permission, or is just random garbage.

For many applications, a bit string of length 64 provides
sufficient protection against brute force search. Assuming the web
application issues fewer than a million unique permissions and
has a maximum throughput of one HTTP request per millisecond,
an attacker would have to saturate the web application for 292
years before having even a 50% chance of guessing even a single
valid bit string. When base32 encoded, a bit string of length 64 is
13 characters long. For example, such a character string looks
like: “mhbqcmmva5ja3”.

3.2 Where does the key go?
An https URL consists of multiple components, each of

which could conceivably house the key; however, details of the
HTTP protocol [2] eliminate almost all the available options.

HTTP defines an optional Referer header which is
enthusiastically implemented by web browsers. When following a
hyperlink, the Referer header is automatically generated by the
browser and specifies the URL of the page containing the
hyperlink. 6 To see why this feature is potentially a problem when
using a permission bearing URL, consider the following example.
A user dereferences a URL which provides access to an email in
their web-mail application. The identified email contains a link to
a web page discussed in the email. The user clicks on the

6 In an analogy to programming languages, the Referer header

makes the HTTP protocol like a dynamically scoped language,
where the callee gets access to the caller’s scope, rather than
like a lexically scoped language which implements an
encapsulation boundary between callee and caller. In the web-
key design, this necessary encapsulation boundary is salvaged
by exploiting a quirk in HTTP’s implementation of dynamic
scoping.

hyperlink, whereupon the browser sends a GET request to the
identified server with a Referer header specifying the URL for the
email. The operator of the server referred to by the hyperlink now
has the URL for the email and so can fetch the contents of the
possibly private email. A more Web 2.0 style web-mail
application might have only a single top level web page from
which all interactions take place. In this case, the permission
bearing URL leaked via the Referer header would provide access
to the user's entire email account.

This leakage of a permission bearing URL via the Referer
header is only a problem in practice if the target host of a
hyperlink is different from the source host, and so potentially
malicious. RFC 2616 foresaw the danger of such leakage of
information and so provided security guidance in section 15.1.3:

“Because the source of a link might be private information
or might reveal an otherwise private information source, …
Clients SHOULD NOT include a Referer header field in a (non-
secure) HTTP request if the referring page was transferred with a
secure protocol.”

Unfortunately, clients have implemented this guidance to the
letter, meaning the Referer header is sent if both the referring page
and the destination page use HTTPS, but are served by different
hosts.

This enthusiastic use of the Referer header would present a
significant barrier to implementation of the web-key concept were
it not for one unrelated, but rather fortunate, requirement placed
on use of the Referer header. Section 14.36 of RFC 2616, which
governs use of the Referer header, states that: "The URI MUST
NOT include a fragment." Testing of deployed web browsers has
shown this requirement is commonly implemented.

Putting the unguessable permission key in the fragment
segment produces an https URL that looks like:
https://www.example.com/app/#mhbqcmmva5ja3.

3.3 Fetching a representation
Placing the key in the URL fragment component prevents

leakage via the Referer header but also complicates the
dereference operation, since the fragment is also not sent in the
Request-URI of an HTTP request. This complication is overcome
using the two cornerstones of Web 2.0: JavaScript and
XMLHttpRequest.

For some set of resources, all issued web-keys use the same
path and differ only in the fragment. The representation served for
the corresponding Request-URI is a skeleton HTML page
specifying an onload event handler. When invoked, the onload
handler extracts the key from the document.location provided by
the DOM API. The handler then constructs a new https URL that
includes the key as a query string argument. This new URL is
made the target of a GET request sent using the XMLHttpRequest
API. The response to this request is a representation of the
referenced resource. The onload handler uses this representation
to dynamically update the skeleton HTML page to depict the
representation information. The complete interaction is depicted
in Figure 1.

Figure 1: On the initial visit to the web application two HTTP
requests are needed to fetch a representation. The first request
fetches a skeleton page which can be cached forever. The
second HTTP request, initiated using XMLHttpRequest,
fetches the resource representation to be dynamically added to
the skeleton page.

Since the skeleton HTML page is the same for every web-
key, the HTTP server can mark it as cacheable. Consequently, the
initial GET is only sent to the server on the very first visit to the
web application. On subsequent web-key dereference operations,
only the GET generated via XMLHttpRequest is sent. This
optimized interaction is depicted in Figure 2.

Figure 2: On a subsequent visit to the web application only a
single HTTP request is needed to fetch a representation, the
same number as for a traditional web page.

In the GET request that fetches the actual resource
representation, the key is placed in the query, as opposed to the
path, to protect it from a security feature of modern browsers.

Many modern browsers include an option to report each visited
URL to a central phishing detection service. The IE7
implementation of this feature first truncates the URL to omit the
query string. The IEblog indicates this approach was taken to
protect user privacy and security [11]. Unfortunately, this
precaution is not taken in other browsers. Users of these other
browsers who enable online phishing detection must trust that
confidentiality is adequately maintained by the remote service.
Automatically extracting data from an end-to-end encrypted
communications channel and transmitting it to a third party
defeats the intent of the encryption. Hopefully this iatrogenic
security flaw 7 can be fixed in future releases of these other
browsers.

3.4 Subsequent requests
After the initial representation fetch completes, the initialized

skeleton page may make subsequent requests using web-keys
contained in the resource representation. For these requests, the
URL transformation done by the onload handler is done right
away by the caller and the request sent out using the
XMLHttpRequest API.

4. DEEP LINKING IN A FREE WORLD
This section shows how the web-key proposal addresses the

previously discussed problems with access control on the Web,
supports safe cooperation between web applications and enables a
Web free from the restraints of the Same Origin Policy.

4.1 Good web architecture
By providing a convention for representing a permission as a

URL, the web-key brings permissions into the architectural model
created by the URI. Using the web-key convention, a URL
provides global identification for private resource access.
Consequently, no remaining responsibilities are left to the
representation data format. Orthogonality between resource
identification and representation is restored. Restoration of
orthogonality means the web-key can be used with existing
representation formats, such as HTML. Since a web-key carries
all the permission identification needed to make a request, such
requests need not be augmented with user credentials taken from
the ambient environment of the user agent. Consequently, global
scope is restored.

4.2 Simpler interaction
A web application using web-keys in effect generates

passwords on behalf of the user and provides them in a form that
can be managed using existing user agent features, such as
bookmarks. Each generated password is much stronger than
anything a user could be expected to generate and is unique to the
corresponding permission, instead of being shared across multiple
web applications, each of which encompasses multiple
permissions. A typical application may have a single top-level
resource, whose web-key is bookmarked by the user. Other
resources are then accessed by traversing the hypermedia web
rooted at the top-level resource. From the user's perspective, it's
all just clicking on hyperlinks, a few of which are bookmarks. The
user is never required to generate, nor remember, any secrets. The
login prompt can be a thing of the past.

7 The term “iatrogenic” refers to a condition resulting from the

action of the doctor. Thanks to Mark Miller for the term
“iatrogenic security flaw”.

4.3 Phishing resistant
When a user clicks on a web-key, the web user agent uses the

hostname provided by the authority component of the https URL
to authenticate the remote party. Only if this authentication
attempt succeeds is the GET request carrying the permission key
sent to the remote party. This entire interaction is automatically
handled by the user agent software, without requiring user
intervention. Essentially, a web-key binds a shared secret to the
authentication credentials for the party the secret is shared with.

This interaction for exchange of a shared secret is much
different than that for a username/password. In a traditional login
scenario, it is the user's responsibility to determine whether or not
the login form was securely presented by the party the password is
shared with. A phishing attack preys upon the user's difficulty
fulfilling this responsibility. By eliminating this user task, a web-
key eliminates one vector for phishing.

4.4 Solves XSRF
An XSRF attack depends upon the attacker's ability to

specify an HTTP request that the attacker is unable to directly
produce, but that the victim can. When permission to access a
resource is reified as a web-key, the attacker is unable to specify
an HTTP request that uses that permission. For example, in the
previously discussed XSRF attack, the abused permission was
identified by the URL https://mail.example.com/user123/forward
in combination with the user's username/password. When using
web-keys, such a permission is solely identified by a web-key
like: https://mail.example.com/user123/#mhbqcmmva5ja3. Where
previously the attacker could produce an HTML form whose
action attribute specified the required URL, now the attacker is
unable to do so. Since the attacker does not have permission to
access the target resource, he does not possess the user's web-key
and so cannot produce an HTML form that generates a request to
the target resource.

4.5 Does not depend on Same Origin Policy
Notice that the XSRF defense mounted by a web-key does

not depend upon enforcement of the Same Origin Policy. In the
discussed popular defense to XSRF, a GET request to
https://mail.example.com/user123/forward produced the secret to
be added to the POST request. Consequently, an attacker's web
page must be prohibited from reading the response to such a GET
request, a restriction which is enforced by the Same Origin Policy.
In the web-key solution, there is no resource identified by a well-
known URL that will produce the corresponding web-key for a
protected permission. Consequently, there is no need to prevent
an attacker's web page, or anyone else's, from reading the
response to a GET request it has issued.

Recently, there have been proposals for APIs that relax the
Same Origin Policy enforcement in the web browser [12][13].
The web-key continues to provide an effective solution to the
XSRF attack, and other access control challenges, in this more
open environment. Should these proposals be widely adopted, a
new Web where any party really can share information with any
other party will be possible, using web-keys for access control. In
the meantime, the web-key provides more flexible access control
for web agents not confined by the Same Origin Policy, such as
the server-side code of a mashup application.

4.6 Fine-grained access control
In a web-key application, each distinct permission is

assigned a distinct web-key. Consequently, authority over a
restricted set of resources in a web application can be readily

delegated to another web agent, such as a mashup. The web-mail
mashup discussed in the introduction to this paper can be enabled
by having the user pass the web-key for an email folder to the
mashup application. The mashup application can then create a
presentation that merges this email information with information
from other sources, but is unable to abuse other permissions in the
web-mail application, such as permission to send email as the
user. Similarly, management of the previously discussed contact
information resource can be delegated to the corresponding
friend, simply by sending that friend a web-key for the contact
resource.

5. WHAT, ME WORRY?8

This section examines the convention, and decrees, against
including private data in a URI. Some confusion is cleared up and
some important safety tips are discussed.
5.1 Webarch on access control

The W3C's webarch, which is frequently cited by this paper,
also includes a short section on "Linking and access control". This
section does not declare any principles, constraints, or good
practice notes. The purpose of the section is further obscured by
the conflation of two issues: deep linking to publicly accessible
resources and access control over private resources. The text
seems to be mostly motivated by the deep linking issue, where the
W3C's position is that a web site should use technology, rather
than public policy, to express constraints on deep links.
Unfortunately, this position is expressed using an analogy to
access control measures in the physical world:

“The owners of a building might have a policy that the public
may only enter the building via the main front door, and only
during business hours. People who work in the building and who
make deliveries to it might use other doors as appropriate. Such a
policy would be enforced by a combination of security personnel
and mechanical devices such as locks and pass-cards. One would
not enforce this policy by hiding some of the building entrances,
nor by requesting legislation requiring the use of the front door
and forbidding anyone to reveal the fact that there are other doors
to the building.”

The analogy seems to be that a web application is like a
physical building and that a door is like a URI. In this analogy,
the deep linking issue is about controlling which of multiple
public entrances a member of the public uses, since the URI in
question leads to a publicly accessible resource. This constraint is
distinct from one which prevents unauthorized use of a private
resource, one which has not been made accessible to the public.
The analogy conflates the two, ending with a statement about the
futility of attempting to control the dissemination of publicly
known information. But a URI providing access to a private
resource need not be publicly known and restricting knowledge of
it may be practical, whereas restricting knowledge of the doors to
a physical building is impractical.

The laws of physics for a web application are much different
than the laws of physics for a brick-and-mortar building. It's
feasible for a would-be intruder to walk around a physical
building to discover all the doors. As discussed in the
implementation section of this paper, it's cheap to construct a URI
namespace that an intruder cannot feasibly enumerate, nor even
discover a single member of. In the physical world, it's feasible for

8 When the three most important Web standards all say “don’t go
there”, it takes a certain amount of irreverence to press on. Thanks
to Alfred E. Neuman.

an intruder to discover a way into a building by watching as
authorized users enter. On the Internet, invisibility cloaks are
cheap and widely available. Using SSL, an authorized user can
interact with a web application without being observed by others
on the network. While hiding may seem tricky or impractical for a
physical object, it's down to a science for bit strings. Using
encryption, the contents of a communication are hidden by
controlling distribution of a corresponding decryption key. Access
to a private web resource can similarly be restricted by controlling
distribution of a corresponding web-key. An SSL session provides
a safe communications channel over which to exchange such
secrets.

The webarch document also expresses a concern that
everyone be able to refer to a resource, even if they are unable to
access it. Reifying access to a resource as a web-key does not
preclude use of a separate well-known URI to identify the
resource itself. Such a well-known URI may well be part of the
representation produced when a web-key is dereferenced.
Permission to access a resource is distinct from the resource itself,
so identifying these distinct things by distinct URIs is in keeping
with the principles of Web architecture.

5.2 RFCs 2616, 3986 on sensitive information
Both RFC 2616 on HTTP/1.1 [2] and RFC 3986 on the URI

[3] provide security guidance advising against the inclusion of
sensitive information in a URI. The text from Section 7.5 of RFC
3986 provides a good summary of the arguments presented:

“URI producers should not provide a URI that contains a
username or password that is intended to be secret. URIs are
frequently displayed by browsers, stored in clear text bookmarks,
and logged by user agent history and intermediary applications
(proxies).”

5.2.1 Proxies
A web-key is a convention for construction of an https URL.

When dereferencing such a URL, the HTTP protocol is run over
an SSL connection that tunnels through proxies. The proxy server
sees only the encrypted SSL data and not the HTTP requests, nor
any contained web-keys.

5.2.2 Server logs
When deploying a web application that uses web-keys, it is

expected that the developer will have the ability to choose, or
appropriately configure, the server. Configuring the server to not
make logs available to unauthorized third parties is an important
step to take. The web-key https URL convention presented in this
paper also makes it easy to write a program that sanitizes a server
log of any contained keys.

5.2.3 Inclusion of a username/password
Inclusion of a username/password in a URL is not safe and is

not what a web-key does. A username/password provides
authority over an entire user account; whereas a web-key only
provides permission to access the identified resource. For
example, in a web-mail application a particular web-key may
provide read permission on a specific email. Passing this web-key
to another user only grants the recipient read permission on the
specified email. In a non-web-key design, a URL identifying a
specific email but also containing the user's password, provides
the recipient full authority over the web-mail account. This excess
grant of authority may be very surprising for the user, and so lead
to unanticipated and detrimental consequences.

5.2.4 Shoulder surfing
When directly viewing a page identified by a web-key in a

stock browser, the key may be displayed in the browser's address
bar. Many stock browsers can be easily configured to not show
the address bar; however, in many situations, this precaution is
unnecessary. When manipulating private web resources, the user
is frequently in a setting where shoulder surfing is not a concern.
For example, the user may be at home, in a private office or cube,
or using a small handheld device whose display is not easily seen
by onlookers.

The web application developer can also take measures to
prevent shoulder surfing. The top level page for a web application
may be identified by a URL containing no sensitive information.
This page first puts the user through a traditional login ceremony
using a password. A successful login yields the user's web-keys,
which are manipulated by code running inside the top level page.
From the web browser's perspective, the web application consists
of a single page, identified by an innocuous URL, similar to many
Web 2.0 applications.

5.2.5 Browser cache
Even before web-keys, the browser's cache contained much

sensitive information. Protecting this sensitive information has
long received some attention and is recently receiving more. For
example, Internet Explorer has long supported the option: "Do not
save encrypted pages to disk". Many browsers now support an
option to empty the cache when the browser is closed.
Independent of web-keys, measures such as these to protect the
browser cache are important. These measures are also sufficient
for protection of web-keys in the browser cache.

5.2.6 Clear text bookmarks
The web-key is specifically designed to support bookmarks.

Bookmarks are part of the user interface that has made the
publicly accessible Web usable, and are needed to bring the same
usability to private Web resources. Doing so does mean that more
care should be taken in storing them. Mainstream operating
systems provide options to mark a particular file, or even an entire
user directory, or file system, as one which should be stored
encrypted on disk. Browser implementers and users should avail
themselves of these features.

Without any configuration, many users' bookmarks also
acquire a level of protection by virtue of the fact that their
computer is personal and so not shared with others, against whose
prying eyes encryption must be used.

6. RELATED WORK
The first version of the Waterken server was released on

September 27th of 1999, in an announcement on the e-lang [14]
mailing list. Using a precursor of the design presented in this
paper, this software aimed to provide the security features of E's
distributed object-capability protocol, CapTP, within the HTTPS
protocol. To this end, the web-key design represents the
permission provided by a capability as an unguessable secret, a
technique also used by Amoeba [15]. Unlike Amoeba, the web-
key design does not define an algorithm for determining the secret
bits, instead leaving this server-side implementation choice
opaque to the client. In addition to preserving implementation
choice and simplicity, this design decision also reflects current
best practice for design of secure interfaces in the object-
capability paradigm. In Amoeba, a client can derive an attenuated
capability that is good for only a subset of the operations
permitted by another capability. Either capability can then be used

to invoke any of the operations in the subset. In practice, this
feature creates a class of difficult to detect security bugs where a
client should delegate the attenuated capability but, through
programmer error, delegates the more powerful capability. Since
an honest recipient of the delegated capability only expects to
receive access to the subset, the excess grant of permission may
go undetected until the recipient is an attacker. To prevent such
undetected security bugs, it is considered poor practice to define a
capability that is polymorphic with a less powerful capability.

The literature on capability systems includes many other
designs for delegation of a capability in a distributed protocol, of
which the DCCS protocol is an early example [17]. The design
constraints established in section 3.1 preclude use of these other
techniques in bringing capability security to the Web.

Other applications on the Web also use capability URLs,
some of which are known to be directly, or indirectly, inspired by
the Waterken server. In Second Life, permission to perform an
action in the virtual world is represented as a URL containing an
unguessable secret [16]. Various photo sharing applications also
transfer permission using such URLs. Many email registration
applications also verify control of an email account through
passing of a URL bearing a secret.

Though the design of the web-key has much in common with
prior distributed capability systems and current Web applications,
the analysis of the suitability of this technique to authorizing
HTTP requests, and the unsuitability of the status quo technique,
is a significant contribution of this paper. Whereas common
wisdom has sometimes held that a technique like the web-key is a
hack, this paper argues the technique is actually more secure, and
better supports good web architecture, when compared to the
status quo technique.

7. CONCLUSION
The misconception that client authentication provides access

control, and the widespread use of this technique on the Web, is
the cause of many of the problems with today's Web. Cross Site
Request Forgery (XSRF) bugs are a direct expression of this
misconception. Pervasive password prompts are part of the
implementation of a technique that does not actually provide the
required functionality. This user interaction conditions users to be
easier prey for phishing attacks. The requirement that proof of
knowledge of a user password accompany every request to a
private resource undermines core architectural principles of the
Web. Violation of these principles created the need for the Same
Origin Policy, which severely limits communication between all
sites, in an insufficient attempt to protect those sites suffering
from this misconception.

In addition to explaining the ill-effects on the Web of the
common, and W3C recommended, use of client authentication,
this paper also introduces a simple URL convention for curing
these ills in a way that is compatible with the existing Web
infrastructure. The web-key is an https URL convention for
implementing transferable permission on the Web. This
convention enables solution of access control challenges within
the architectural model provided by the URI, thus benefiting from
the principles identified by the W3C in "Architecture of the World
Wide Web, Volume One" [1]; rather than suffering the ill-effects
that come from violating these principles, as is the status quo.
Adherence to these principles also enables application of the web-

key technique using existing Web development tools to create
Web applications deployed to existing Web browsers. The user
interaction for a web-key is the same as for other URLs; in
particular, no user prompting is required, such as is required with
passwords. While providing immediate benefit using today's Web
browsers, the web-key technique also anticipates and provides for
a future Web, free from the restraints of the Same Origin Policy.

8. ACKNOWLEDGMENTS
Thanks to Ihab Awad, Alan Karp, Mark Miller, Kevin

Smathers and Marc Stiegler for providing valuable feedback on
early drafts of this paper. Though the received feedback was
instrumental in clarifying the presented arguments, any remaining
confusion, or error, is the responsibility of the author.

9. REFERENCES
[1] I. Jacobs and N. Walsh. Architecture of the World Wide

Web, Volume One. W3C Recommendation. 15 Dec. 2004.

[2] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P.
Leach, T. Berners-Lee. Hypertext Transfer Protocol --
HTTP/1.1. RFC 2616. June 1999.

[3] T. Berners-Lee, R. Fielding, L. Masinter. Uniform Resource
Identifier (URI): Generic Syntax. RFC 3986. January 2005.

[4] T. Bray. “Deep Linking” in the World Wide Web. W3C Tag
Finding. 11 September 2003.

[5] N. Hardy. The Confused Deputy. ACM SIGOPS Operating
Systems Review Volume 22, Issue 4. October 1988.

[6] D. Florencio, C. Herley. A Large-Scale Study of Web
Password Habits. WWW 2007. May 2007

[7] R. Dhamija, J.D. Tygar and M. Hearst. Why Phishing Works.
Conference on Human Factors in Computing Systems (CHI
2006). 2006.

[8] T. Close. Web Security Experience, Indicators and Trust:
Scope and Use Cases. W3C Note. 1 November 2007.

[9] C. Shiflett. Security Corner: Cross-Site Request Forgeries.
Shiflett.org. 13 December 2004.

[10] T. Close. Waterken Server. SourceForge. September 1999.

[11]T. Sharif. Phishing Filter in IE7. IEBlog. September 2005.

[12] A. van Kesteren. Enabling Read Access for Web Resources.
W3C Working Draft. 1 October 2007.

[13] D. Crockford. JSONRequest. Json.org. April 2006.

[14] M. Miller. erights.org. 1998.

[15] A. S. Tanenbaum, S. J. Mullender, R. van Renesse. Using
Sparse Capabilities in a Distributed Operating System.
Proceedings of the 6th International Conference on
Distributed Computing Systems (ICDCS). 1986.

[16] M. Lentczner. Registration API. Second Life. 2006.

[17] J. Donnelley. A Distributed Capability Computing System.
Third International Conference on Computer
Communication, Toronto, Canada, August 3-6. 1976.

