
Privacy Protection for Social Networking Platforms

Adrienne Felt
University of Virginia
Charlottesville, VA
felt@virginia.edu

David Evans
University of Virginia
Charlottesville, VA

evans@cs.virginia.edu

ABSTRACT
Social networking platforms integrate third-party con-
tent into social networking sites and give third-party
developers access to user data. These open interfaces
enable popular site enhancements but pose serious pri-
vacy risks by exposing user data to third-party devel-
opers. We address the privacy risks associated with so-
cial networking APIs by presenting a privacy-by-proxy
design for a privacy-preserving API. Our design is mo-
tivated by an analysis of the data needs and uses of
Facebook applications. We studied 150 popular Face-
book applications and found that nearly all applica-
tions could maintain their functionality using a limited
interface that only provides access to an anonymized
social graph and placeholders for user data. Since the
platform host can control the third party applications’
output, privacy-by-proxy can be accomplished by us-
ing new tags and data transformations without major
changes to either the platform architecture or applica-
tions.

Categories and Subject Descriptors
H.3.5 [Information Storage and Retrieval]: On-line In-
formation Service—Data Sharing; H.2.7 [Database Man-
agement]: Database Administration—Security, integrity,
and protection

General Terms
Management, Design, Security

Keywords
Social networking, privacy, data mining

1. INTRODUCTION
Content sharing services have made social network-

ing sites immensely popular. Users view their profiles
on social networking sites as a form of self-expression,
but these profiles also have commercial value. To al-
lay fears of privacy violations, social networking sites
provide users with access control settings to place re-
strictions on who may view their personal informa-

tion. The introduction of open APIs to social networks,
however, has created a way to circumvent access con-
trol settings and increased the ease with which such
attacks can be executed.

Facebook released the first social networking API for
third-party development in May 2007. Applications
built using this API pose serious privacy concerns: an
“installed” application acquires the privileges of the
profile owner and can query the API for personal infor-
mation of the user and members of the user’s network.
The information available to developers includes home-
towns, dating preferences, and music tastes. A Face-
book demographics study of CMU students found that
89% disclosed their full birth date and gender to their
network, and 46% also posted their current residence
[7]. Thus, the information on most user profiles is suf-
ficient to uniquely identify their owners, even with the
name removed [15]. This loss of privacy directly im-
pacts users. It is also of concern to social networking
site operators: if advertisers can independently iden-
tify “desirable” users, the importance of the social net-
working site intermediary diminishes.

Since the release of the Facebook Platform, nineteen
other sites have joined together to support Google’s
OpenSocial, a cross-site social network development
platform [8]. Several sites have implemented restricted
versions of OpenSocial, which is still in alpha release.
Like Facebook, they support the distribution of social
graph and personal user data. These new APIs suffer
from the same privacy concerns as Facebook.

Due to the popularity of the Facebook Platform and
the ongoing development of new APIs, it is important
to address the privacy risks inherent in exposing user
data to third-party applications. The next section pro-
vides background information on the structure of so-
cial networking platforms, and Section 3 discusses how
platforms violate user privacy expectations. We then
present an analysis of Facebook applications’ informa-
tion needs, finding that most applications use informa-
tion in a predictable and limited way (Section 4).

Section 5 introduces privacy-by-proxy, an alternative
platform design that prevents third parties from ob-

1

taining real user data. This design upholds users’ pri-
vacy expectations while providing sufficient function-
ality for nearly all current Facebook applications. It
hinges on two observations: social networking sites
can manipulate application output, and applications
need limited information. Section 6 analyzes our de-
sign from the perspective of an attacker, a developer,
and a host site. Section 7 describes related work on
privacy protection, and Section 8 concludes.

2. SOCIAL NETWORK PLATFORMS
This section describes the architectures of the Face-

book Platform (Section 2.1) and OpenSocial (Section
2.2). The Facebook Platform is the more popular (and
only complete) social networking site platform.

2.1 The Facebook Platform
Facebook is a popular social networking site with

over thirty million users [1]. Users can see the profiles
of their friends and network (e.g., college) members.
Profiles include photos, dating preferences, birthdays,
etc. Since the launch of the Facebook Platform, profiles
can also display third-party gadgets.

Facebook applications have two core components:
a homepage and a profile box. The homepage is lo-
cated at a Facebook URL and appears to be part of
the Facebook site. Developers may choose whether
their homepage content is proxied through Facebook
or isolated in an iframe. Proxied content is written
in Facebook Markup Language (FBML), a “safe” sub-
set of HTML and CSS extended with proprietary Face-
book tags. Content in an iframe may contain arbitrary
executable code but lags behind proxying in popular-
ity due to the convenience of FBML. Profile box (“gad-
get”) content must always be written in FBML.

Figure 1 shows how third party content is integrated
into profiles using proxying. In Step 1, a user interacts
with an application’s homepage through the Facebook
website. The Facebook server passes the user’s ID and
session key to the third party (Step 2). The applica-
tion running on the third party’s server requests data
from Facebook servers using a Representational State
Transfer (REST) interface. Querying the server requires
a valid user session key and application secret. Ap-
plications can request detailed information about the
user, the user’s friends, and members of the user’s net-

User Facebook Third party
(1) Interact

(2) User
(3) Communication

(4) FBML output

(5) Transforms FBML (6) Puts XHTML on page

(7) XHTML

Figure 1: Application installation.

works.
In Step 4, the application sends its output back to the

Facebook server for display. The output is stripped of
executable code to prevent cross-site scripting. Instead
of JavaScript, FBML has “mock AJAX” FBML tags and
Facebook JavaScript (FBJS), both of which are trans-
formed by the Facebook server into JavaScript. The
post-processing phase also reduces the server load, pro-
vides useful scripts to developers, and hides the iden-
tity of the viewer from the third party. API calls can be
avoided with tags like <fb:name id="[$id]" />,
which displays the name of a user and a link to her
profile. Scripts like <fb:friend-selector>, a type-
ahead user search box, provide developers with a rich
interface through simple tags. In steps 6 and 7, the
XHTML content is incorporated in the response page
and served to the client. Profile box content is set for a
user with an API call and will remain cached until it is
reset by another API call.

When a client requests a profile page, Facebook ex-
amines the cached third party content to see if it con-
tains viewer-dependent tags (such as the <fb:visible
-to-friends> tag that determines whether the viewer
may see the enclosed content). If so, it completes the
output transformation. The content is then returned
to the viewer along with the rest of the profile. Profile
viewers are not identified to the third party unless they
specifically log into the application through an AJAX
window provided by Facebook.

2.2 OpenSocial
OpenSocial provides a set of APIs for its partner sites

(which it refers to as “containers”) to implement. An
application that is built for one container should run
with few modifications on other partner sites. The APIs
give third parties access to social graph and personal
user data, and containers can give gadgets access to
canvas pages and profiles (like Facebook). Several sites
have added limited support for the OpenSocial APIs.

Gadgets are XML files with JavaScript and HTML
that can be hosted anywhere. The container’s server
fetches the XML on behalf of the user and renders it.
(This is often done prior to load time for the benefits
of caching.) To prevent cross-site scripting and request
forging attacks, the gadgets are typically imported into
iframes that are hosted on separate domains (e.g., MyS-
pace profiles are served on myspace.com but gadgets
are on api.msappspace.com).

In the future, containers will be able to add gad-
gets with JavaScript directly into profile pages [6]. The
Google Caja project defines an object-capability subset
of JavaScript [10]. It enforces limitations on regular
JavaScript with static and dynamic JavaScript checks.
The JavaScript in a gadget will be transformed accord-
ingly so that iframes (and their associated additional

2

latency) are not required. This functionality is in the
specifications but is not supported yet.

OpenSocial has the same privacy risks as Facebook,
since gadgets can request and store user data on exter-
nal servers. They also have architectural similarities:
both proxy third-party gadget content, and OpenSocial
will be adding a pre-processing transformation step for
JavaScript. This means that privacy-by-proxy, as de-
scribed in Section 5, could be implemented in OpenSo-
cial as well as Facebook.

3. PRIVACY IN SOCIAL NETWORKS
Next, we survey user privacy expectations for social

networking sites. The goal of our design is to provide a
platform that satisfies these expectations by guarantee-
ing that a user’s data is only accessible to another user
through the programming platform if it can be viewed
by that same user through the standard web interface.

3.1 User Expectations
Past work demonstrates that users have strong ex-

pectations for privacy on social networking sites. A so-
cial phishing attack experiment [9] harvested personal
data from a social networking site by screen scraping
and used it to construct phishing e-mails. Users ex-
pressed anger that their information could be collected
and used in such a manner without consequences, with
users protesting that their profile data should be pro-
tected [9]. Additionally, when Facebook launched the
Facebook Beacon, which correlated activities on other
websites with Facebook profiles, user outrage forced
Facebook to retract the program [13]. These strong re-
actions illustrate that users believe social networking
sites have a responsibility to shield their data.

Privacy expectations in social networks are based on
relationships. Typical social networks support friends
and networks with privileged access.

Friends. Friendships are a defining characteristic of
social networking sites, and friends receive access to
personal data. Friendships require acceptance by both
parties. Some sites may extend privileges to the second
or third degrees of connection.

Networks. Social networks also support networks,
where members have some access to each other. Bebo
and Facebook associate access controls with school at-
tendance. Alternately, self-defined regions can be con-
sidered a network, and privacy controls may be asso-
ciated with the chosen location (e.g., Friendster users
can limit their profile visibility to certain continents).

Public visibility. Sites define some subset of a pro-
file (such as the user’s name and affiliation) visible by
default for searching and identification. Most sites also
allow users to relax or strengthen their definition of
public information.

3.2 Platform Privacy
Application platforms give developers access to data

that would not otherwise be available to them through
the user interface. OpenSocial sites let third parties ac-
cess the information of users who directly “install” an
application. Users cannot add an application to their
profile without also granting it data permissions. Face-
book additionally gives third parties second-degree ac-
cess: when Jane installs an application, the third party
can also request information about Jane’s friends and
fellow network members. It is likely that OpenSocial
containers will allow second-degree access in the fu-
ture, since it is used by many Facebook applications
(as shown in Section 4).

Application developers can therefore see user data
that they would not otherwise have access to since they
are not friends with users at the web interface level.
Unlike regular friend relationships, the relationship is
neither symmetric nor transparent; the user does not
necessarily know who the application owner is. The
current binary privacy situation (installed or not in-
stalled) forces users to give away access to data that
may not even be needed. Second-degree permissions
add another layer of complexity. Setting up new pri-
vacy settings for each application, however, could eas-
ily grow convoluted. Instead, regular web interface
settings should be enforced with applications.

Host social networking sites have a responsibility to
protect the user data that has been entrusted to them.
The current approach is to display a Terms of Service
(TOS) warning screen every time a user adds an ap-
plication. Since this TOS agreement is present on every
application, and the majority of applications do not ap-
pear to use user personal data, the warning becomes
meaningless. Sites also have Terms of Service agree-
ments for third parties, but the host site has no way
of monitoring the path of information once it has been
released from the database.

Social networking sites should not rely on untrusted
third parties following their TOS agreements to pro-
tect user privacy. In fact, our survey of Facebook ap-
plications reveals several that clearly violate it through
their externally-visible behavior, and there is no way
to know how many others violate it with internal data
collection. Instead, privacy policies should be enforced
by the platform and applied to all data that has been
entrusted to the social networking site.

4. APPLICATIONS
We studied the 150 most popular applications (col-

lected from http://www.facebook.com/apps/ on
22 Oct 2007) to determine their information require-
ments and behavior. To conduct the survey we installed
each application on a user account with the minimum
amount of information filled out. If an application re-

3

Information Used Applications
None 13 (8.7%)

Yours 133 (88.7%)
Friends 99 (66.0%)
Strangers 51 (34.0%)

Public

Any 133 (88.7%)
Yours 12 (8.0%)
Friends 10 (6.7%)
Strangers 7 (4.6%)

Private

Any 14 (9.3%)

Table 1: Application information requirements. Data
for 150 applications. Categories may overlap. “Yours” refers to
the person using the application; “Friends” and “Strangers” fol-
low from their relationship to that person.

quested more data, broke, or required the interaction
of multiple users, we installed it on a fully filled-out
second account to observe the difference. We explored
the features of each application to look for the appear-
ance of data or use of the social graph. Although it is
not possible to determine exactly how an application
uses information without access to its source code, the
simplicity and limited interactivity of Facebook appli-
cations gives us reasonably high confidence that this
method captures application functionality well enough
to understand their data use.

4.1 Data Usage
We found that applications generally do not need

the extensive personal information that is available to
them. Although two-thirds of applications depend on
public friend data, far fewer require access to private
data. Public data refers to information used publicly
for identification or searching.

Table 1 summarizes the results of our analysis of the
150 most popular applications. Only 14 applications
require any private data, meaning that over 90% of ap-
plications have unnecessary access to private data. Of
the 14 applications that use private data, four clearly
violate the Facebook Terms of Service: they pull user
data and add it to an in-application profile, making it
visible to other application users who would not oth-
erwise have the ability to view it.

Nine applications (6.0%) performed processing on
data beyond just displaying it. Two of these use pub-
lic information, and 7 of them processed private data
(e.g., two use birth dates to generate horoscopes). The
most sophisticated use of data is an application that
plots user locations on a map.

Regardless of their information needs, all of the ap-
plications require users to install or log into the appli-
cation and thus provide access to private user informa-
tion. This includes the 13 applications that use no per-

Behavior Applications
Wall Posting 15 (10.0%)
Messages/Gifts 37 (24.7%)
Viral recruiting 20 (13.3%)
Top Scorers 30 (20.0%)

Table 2: Common application behaviors. Applications
may be counted in more than one category if they exhibit multiple
behaviors.

sonal information at all and the 141 applications that
do nothing with data other than display it.

The application survey also included two applica-
tions that use Flash to query the API. Although we fo-
cus on FBML, Facebook also allows Flash to connect
to the API. Flash applications are inherently insecure
because any user can decompile them to obtain the ap-
plication’s secret key. Because of this, few developers
use Flash to query the API; instead, they use Flash in
combination with FBML/HTML.

4.2 Behavior
Table 2 summarizes behaviors commonly observed

in the sample applications. Our platform must sup-
port these popular behaviors to be a feasible choice
as a development platform. Common application fea-
tures include wall posting, viral recruiting, global top
scores for games, and message passing behaviors as
described next.

Wall posting. A wall-posting application lets users
leave publicly visible messages on each other’s profile
pages. If Alice has the application installed, her profile
displays past messages and a form for visitors to leave
messages.

Gifting and messaging. A gift-sending or message-
passing application lets users send each other small
images and text. To send Bob a martini, Alice would
visit her application homepage, select his name, and
choose the martini. The gift would appear in Alice’s
sent list and Bob’s received list.

Viral recruiting. Several popular applications’ pri-
mary function is to spread through the social network.
Users get points by inviting friends to install the appli-
cation. The game may continue as a pyramid scheme.

Top scorers. Many applications are games users can
play on the application homepage against other users.
Scores appear on their profiles. Many games provide a
leader board that displays the names of the top scoring
players to all visitors.

In addition to these application types, general so-
cial graph connectivity information is needed by many
applications (67 of the 150). Aspects of the real so-
cial graph must be available to applications in some
way. Other tasks we encountered include uploading
files, setting static content to a profile wall, or taking

4

quizzes. None of these other behaviors require access
to data or social graph information beyond what we
have already addressed.

5. PRIVACY-BY-PROXY
We now present a simple solution for providing pri-

vacy a site has the ability to transform the third-party
output (as do Facebook and OpenSocial sites). Our
goal is to simultaneously shield users’ identities and
provide applications with the capabilities identified by
our survey, including the ability to display friends’ in-
formation and traverse the social graph. As described
in Section 5.1, user data may be displayed to users with
appropriate permissions using tags that are replaced
with real values before being shown to the user. This
approach can protect personal data, but third party ap-
plications need direct access to the social graph infor-
mation embodied in the user’s friend list. This is ac-
complished privately with user and graph anonymiza-
tion described in Section 5.2. Access to public data
presents risks for exposing anonymized user identi-
ties, so we limit access to normally public information
through the platform as described in Section 5.3.

5.1 Data Hiding
With privacy-by-proxy, the networking site does not

provide any personal data to third party developers.
Instead, applications display information to users with
special markup tags like FBML. We extend the mark-
up language to include tags that abstract user data and
handle user input without providing private data to
the application.

The simplest data tags take a user ID (encrypted as
described in the next subsection) and private profile
field, and are replaced by the server with the corre-
sponding data. For example, to display a friend’s birth
date, an application would use <uval id="[$id]"
field="birthday" />. For application homepages,
a single permission check is done by the proxy server
(e.g., Facebook) to decide if data should be displayed.
If the user viewing the page has appropriate privileges
to see the identified data, the data is retrieved and dis-
played. For content in profile gadgets, however, a sec-
ond permission check is needed to ensure that the con-
tent viewer also has sufficient access to see the requested
data. Personal data displayed in a profile gadget should
always be in the intersection of the privileges of the
profile owner and profile viewer.

Conditional tags (e.g., <if-male>) let applications
display output that depends on private data unavail-
able to the application. The content within conditional
blocks must be restricted to prevent applications from
learning information about a user since anything that
reveals to the third party application whether or not
the if-block is followed would leak private data. The

server must remove all forms and form elements from
if-blocks. Images are permissible only if the social net-
work server caches the images so no leaking requests
are sent to external servers. (Facebook does this al-
ready to keep the third party from learning the IP ad-
dresses of viewers.)

Our design assumes the application cannot observe
its output after it is transformed by the network server.
This would be violated if an application could include
scripting code in the output that could send informa-
tion from the displayed output to an external server.
FBML and FBJS are already specifically designed to
prevent this; OpenSocial’s planned JavaScript rewrit-
ing tool could be used similarly.

5.2 User Identification
Application users are identified to the third party

with an application-specific ID number. These IDs must
be consistent across all user sessions, without revealing
the actual user identities to the application. Hence, we
encrypt user IDs using a symmetric encryption func-
tion keyed with the application ID and a secret kept
by the server. Since each application obtains user IDs
encrypted with a different application-specific key, ap-
plications cannot collude by correlating encrypted user
IDs or use the encrypted user IDs to identify global
public user information.

Applications can request the friend and contact lists
of a logged-in user through the API. All user IDs in
query responses are transformed. Hence, an applica-
tion cannot access actual user IDs, but can construct
an anonymized view of the social graph starting from
application users.

In addition to the simple data lookup tags, form el-
ements need to be added to the markup language to
allow user input to be part of the anonymous social
graph scheme. A user needs to be able to select friends
from a list. This can be accomplished with the transfor-
mation of a special form input tag (in the third party
code) into a functioning HTML form input tag (in the
final user-viewed content). When the form is submit-
ted, the friend’s encrypted ID is sent to the third party.
Facebook currently has a user selection tag that accom-
plishes this, so the only change is for that tag to return
application-encrypted IDs instead.

Profile viewers need some way to submit actions on
other users’ profiles such as making a wall post. This
is done using an <identify> tag. When transformed,
it is replaced with a form tag <input type="text"
id="vid" name="vid" value="[$id]" />. The
$id variable is the encrypted ID of the submitter.

5.3 Public Data
Some information is meant to be completely public

for the purpose of user identification (e.g., user names

5

and networks), and this public data is displayed with
the same tags as in Section 5.1. We place an artifi-
cial restriction on personally identifying public infor-
mation to prevent de-anonymization. This restriction
is necessary to prevent an attack in which an appli-
cation developer installs the application on her own
account and attempts to use it to learn the mapping
between application-encrypted IDs and real user IDs.
If arbitrary public information could be displayed, the
attacker could create a page that enumerates through
a list of application-encrypted user IDs and display a
<uval id="[$id]" field="name" /> tag for each
one.

We combat public data attacks by limiting an appli-
cation’s ability to display public information to only
those IDs in the current user’s contact list, a new struc-
ture maintained by the social networking site. Contact
lists are distinct from existing social networking site
user lists and are always conservative. They prevent
an attacker from seeing the names of arbitrary users
by only allowing users to see the public names of users
with whom they already have an explicit or implicit re-
lationship. An explicit relationship is a friendship, so
the contact list includes all of the user’s friends. An
implicit relationship is created when a user receives
a message, gift, or other communication from a per-
son. These implicit events can be recognized using the
<identify> tag described in Section 5.2; submission
of a form with this tag in it indicates that the social net-
working site should add the sender to the recipient’s
contact list. For example, an implicit relationship is es-
tablished with a wall post. When Alice submits a form
to write on Bob’s wall, Alice is added to Bob’s contact
list so that Bob can see the identity of the wall poster.

Unlike friend lists, contact lists can contain one-way
relationships. The one-way nature of the contact list is
an important feature to prevent abuse and circumven-
tion. If the list were reciprocal, spam bots would give
attackers privileges. In the wall-posting example, Al-
ice is added to Bob’s contact list, but Bob is not added
to Alice’s. The display decision for public data is based
on the contact list of the profile owner only. Following
the example, Bob’s friend Charlie will be able to see
Alice’s name on Bob’s wall even if Charlie has never
interacted with Alice. Only the profile owner’s priv-
ileges need to be restricted, because that prevents the
attack.

6. ANALYSIS
The privacy-by-proxy design must resist attacks (Sec-

tion 6.1), allow applications to function (Section 6.2),
and be implementable with minimal performance over-
head (Section 6.3).

6.1 Attack Analysis

We described how privacy-by-proxy resists basic at-
tacks using public information in Section 5. Here, we
consider the possibility of more sophisticated attacks
that attempt to de-anonymize the encrypted user IDs.
Pure social graph anonymity through pseudonyms is
imperfect since it reveals aspects of the graph structure
that may be used to expose user identities.

In the simplest graph attack, the attacker locates her-
self by being the first user to install the application.
She could then compare her friends’ friend lists (ob-
tained through the web interface) to her own friends to
look for patterns. This attack is fairly limited, however,
since the chain of de-anonymization would end when
she runs out of external information to compare the
graph structure to. Identification can only take place
when a node’s surrounding structure is already known.

Attacks that rely on known data from the web in-
terface (either from screen scraping or a conspiracy of
users) face the same limitation. Correlating real struc-
ture and anonymous graph structure requires knowl-
edge of the real structure, which means that the API
is not revealing new data. Privacy-by-proxy does not
leak any personal information that cannot be obtained
through the web interface, thus satisfying the reason-
able privacy expectations of users.

Our design still betrays information about the nature
of the social graph as a whole. A popular application
may be used by enough Facebook users to allow the
application owner to construct a fairly complete social
network graph. Structural facts like average connec-
tivity can be computed, and nodes of high influence
can be located in the graph (although their identity is
not revealed). This leaked information, however, is of
little commercial value compared to the original situa-
tion where third parties can connect graphical features
with actual users and their personal data.

6.2 Application Functionality
Our privacy design enforces a conservative privacy

policy, preventing applications from accessing personal
data. Most existing Facebook applications could be
supported using the additional markup tags introduced
in Section 5.

Our application survey identified only 9 applications
that need access to real data from Facebook for external
computation. Seven of them used private data, and 2
used public data. The small minority of applications
that need to process real data would need to be re-
designed to work with our platform. The preferred
solution is for applications that need private data to
directly prompt users to provide that information, in-
stead of obtaining it from the social network API. This
shifts the liability of protecting the data from the so-
cial networking site to the third party, and users will
be more informed about their data use if they are en-

6

tering it at its point of use. Three of the 7 personal
data applications already prompt users with a form to
add, correct, or delete data, with the user’s personal
profile data only used to seed the default values of
the form. An alternate solution would be to provide
a richer (privacy-compromising) interface to applica-
tions that have been installed through a more extensive
agreement process (possibly involving extra monitor-
ing by the social network operator).

The contact list constraint on public information af-
fects a larger number of applications, but the severity
of the restriction is mild. Of the sample applications,
34% displayed the public information of strangers. This
constraint can be mitigated with contact lists or the use
of non-unique data in public badges. The amount of
information that identifies a user in context (e.g., mes-
sage boards) is less than what is necessary to uniquely
identify a specific user in a public data attack. Alter-
nately, users could enter their own names or create an
in-application profile. In-application profiles contain-
ing application-specific data are already common.

6.3 Performance
Privacy-by-proxy does not impose a substantial bur-

den on the application or social networking site servers.
New transformations are simply added to the existing
post-processing or caching step, and network commu-
nications are decreased.

To evaluate the feasibility of our approach, we con-
structed a simple mock social network application and
measured its performance. Without access to a large-
scale social network, it is difficult to accurately predict
the impact of our design on server load. To get a rough
estimate of the cost of supporting privacy-by-proxy,
we conducted some experiments with our mock appli-
cation server, which includes a simple transformer.

We built a profile for “Anne”, who was given 500
friends and 750 contact list members. Additionally,
there were 249 strangers. The database maintained ta-
bles for user data, friend lists, and contact lists, all of
which were filled with pieces of fake data. Anne’s pro-
file contains a third party gadget (modeled by an appli-
cation running on the same server) that requests Anne’s
friend and contact lists, and it has access to the remain-
ing stranger IDs as if they were other application users.
User IDs are encrypted using AES through the PHP
Mcrypt extension. On our test machine, a 1.86 GHz
Intel Core 2 Duo CPU with 2GB RAM, it takes 0.7 mil-
liseconds on average to encrypt a user ID, which sup-
ports over 1400 ID encryptions per second.

The third party application iterates through friend,
contact, and stranger lists, requesting their names, net-
works, and hometowns using fake markup tags. For
each tag that is matched, the ID is compared to contact
and friend lists for a permissions check. If permissions

are satisfied, the data is retrieved from the database.
The average time for a permissions failure is 2.3 mil-
liseconds, and the average total time for a successful
data lookup is 3.6 milliseconds.

On a commercial server running highly optimized
permission and data lookup algorithms, the cost will
be even smaller. Although it is not possible to precisely
determine the cost of our approach without a large-
scale experiment, both the details of our design, and
the results from these experiments, support the con-
clusion that privacy-by-proxy would not substantially
increase server load or latency experienced by users.

7. RELATED WORK
Substantial work has been done on the problem of

preserving statistical characteristics of data sets with-
out revealing the unique identity of database members
[4, 14, 2]. Although this work also has the goal of pre-
serving privacy under queries, social networking site
applications need more than statistical information to
provide the essential functionality of linking users.

Secure function evaluation computes f (x1,x2) with-
out revealing x1 or x2 [5]. Selective private function
evaluation is a specific instance of secure function eval-
uation in which a client wishes to compute some func-
tion over a server’s data set, but neither party should
learn more than the response [4]. This might be useful
for large-scale studies of social network properties of a
social network, but does not provide the information
needed for applications.

Past work in the field of untrusted databases assumes
an untrusted server and a trusted client. Security in
this model can be done with information dissociation
or encryption [11, 16, 12]. Our scenario is the reverse.

Backstrom, Dwork, and Kleinberg describe sophis-
ticated active and passive attacks on anonymous so-
cial graphs. Their goal is to determine whether two
given known nodes are connected, and they assume
the attacker obtains a static copy of the entire social
graph [3]. In an active attack, the attacker is aware
of the pending release of the social graph and is able
to insert nodes. The active attacker creates a unique
subgraph to locate herself in the graph and friends the
target nodes. Once she has found herself in the graph,
the attacker knows which nodes belong to the targets.
A passive attack occurs after the social graph is pro-
cured. The attacker colludes with a coalition of the tar-
gets’ friends that defines a unique subgraph; once the
coalition is found, the targets are found.

Both their goal and assumptions are inappropriate
for our social networking site privacy model. The goal
of an attacker in our model is to start with the social
graph and connect it to a large number of real users,
as opposed to starting with a small number of known
nodes and trying to find them in the graph. Also, our

7

attacker does not have a complete social graph. Friend-
ships could not be realistically used to mount an at-
tack on our model, because an attacker who can be-
come friends with the targeted users would render the
attack unnecessary by directly gaining access to their
data through the web interface. Because contact lists
are unidirectional, they cannot be exploited either; if
the attacker is interacting with users’ profile gadgets,
then the attacker already has access to their profiles.

8. CONCLUSIONS
The Facebook Platform has proven wildly popular,

and other large social networking sites are releasing
similar public APIs. Current platforms cannot enforce
their privacy policy with third-party applications, how-
ever, thereby increasing the risk of malicious data har-
vesting. Our privacy standard holds that access con-
trols established for the web interface should be en-
forced for third-party applications.

Using the privacy-by-proxy approach, a social net-
working site has control over the application output
and can support applications without compromising
user data. Our design is motivated by how current
Facebook applications (which were developed with an
open, privacy-compromising interface) actually use in-
formation. Our findings indicate that a simple privacy-
preserving interface, combined with our privacy-by-
proxy approach is able to support nearly all existing
applications while providing privacy protection.

Admittedly, open social network platforms are new
and it is possible that a privacy-preserving interface
would inhibit potentially valuable future applications
more than is apparent from out study of current Face-
book applications. There is an inherent tradeoff be-
tween protecting privacy, which requires limiting ac-
cess to information, and providing a rich interface; our
work seeks a compromise.

9. ACKNOWLEDGMENTS
Our thanks to Andrew Spisak for helping with the

Facebook application survey and Chris Soghoian for
bringing the policy issue to public attention. This work
was partially funded by the NSF CyberTrust program,
award CNS 0627523.

10. REFERENCES
[1] C. Abram. Thirty Million on Facebook. The

Facebook Blog, 10 July 2007.
[2] N. R. Adam and J. C. Wortmann.

Security-Control Methods for Statistical
Databases: A Comparative Study. In ACM
Computing Surveys, volume 21, pages 515–556,
1989.

[3] L. Backstrom, C. Dwork, and J. Kleinberg.
Wherefore Art Thou R3579X? Anonymized Social

Networks, Hidden Patterns, and Structural
Stenography. In 16th International World Wide Web
Conference, 2007.

[4] I. Dinur and K. Nissim. Revealing Information
While Preserving Privacy. In Twentieth ACM
SIGMOD-SIGACT-SIGART Symposium on
Principles of Database Systems, pages 202–210,
2003.

[5] O. Goldreich, S. Micali, and A. Wigderson. How
to Play ANY Mental Game. In 19th Annual ACM
Conference on Theory of Computing, pages 218–229,
1987.

[6] Google. People Data API Developer’s Guide:
Protocol. Open Social Developer’s Guide, 9
December 2007.

[7] R. Gross and A. Acquisiti. Information Relevation
and Privacy in Online Social Networks. In
Workshop on Privacy in the Electronic Society, 2005.

[8] M. Helft and B. Stone. MySpace Joins Google
Alliance to Counter Facebook. The New York
Times, 2 November 2007.

[9] T. Jagatic, N. Johnson, M. Jakobsson, and
F. Menczer. Social phishing. Communications of the
ACM, 50, 2006.

[10] M. S. Miller, M. Samuel, B. Laurie, I. Awad, and
M. Stay. Caja: Safe active content in sanitized
JavaScript. Draft tech report., November 24 2007.

[11] A. Motro and F. Parisi-Presicce. Blind
Custodians: A Database Service Architecture that
Supports Privacy Without Encryption. In 19th
Annual IFIP WG 11.3 Working Conference on
Database and Application Security, 2005.

[12] G. Ozsoyoglu, D. A. Singer, and S. S. Chung.
Anti-Tamper Databases: Querying Encrypted
Databases. In 17th Annual IFIP WG 11.3 Working
Conference on Database and Application Security,
2003.

[13] B. Schiffman. Facebook CEO Apologizes, Lets
Users Turn Off Beacon. Wired, 2007.

[14] A. Shoshani. Statistical Databases:
Characteristics, Problems and Some Solutions. In
8th International Conference on Very Large Data
Bases, pages 208–222, 1982.

[15] L. Sweeney. Uniqueness of Simple Demographics
in the U.S. Population. Technical report, Carnegie
Mellon University, Laboratory for International
Data Privacy, Pittsburgh, PA, 2000.

[16] Z. Yang, S. Zhong, and R. Wright.
Privacy-Preserving Queries on Encrypted Data.
In 11th European Symposium on Research in
Security, 2006.

8

