
On the Design of a Web Browser:
Lessons learned from Operating Systems

Kapil Singh Wenke Lee

College of Computing, Georgia Institute of Technology, Atlanta, USA
E-mail: {ksingh, wenke}@cc.gatech.edu

Abstract

The advent of “Web 2.0” applications has changed
the requirements for a web browser: it has evolved from
being an application for rendering static web pages to a
host of a variety of applications, where each web page
represents a distinct application, such as a news feed,
an email client or a video application. This new role
has led to the emergence of new security holes in the
web browser. While research has focused on fixing these
vulnerabilities by augmenting solutions to the current
browsers, limited work has been done in designing a
browser from scratch considering the current and future
role of the browser.

The web browser is quickly evolving as a mini-OS
running a huge variety of application code. Going by
this thinking, we analyze the functional similarities be-
tween an operating system and a web browser and pro-
pose a new browser design based on a typical µ-kernel
based OS. Our design is flexible and allows finer cus-
tomization of the browser. The simplicity of the design
shows promise in solving most of the security issues
prevalent in the current generation of browsers; the fea-
sibility of the design in terms of performance and ac-
ceptability is being studied along with the browser im-
plementation.

1 Introduction

The web browser has become the centerfold applica-
tion to the Internet. It has evolved from being an applica-
tion for rendering static web pages to a host of a variety
of applications, where each web page represents a dis-
tinct application, such as a news feed, an email client or
a video application. The concept of mashups has taken
this requirement to the next level with these different ap-
plications being aggregated into a single web page.

The growing requirements for a web browser has lead
to code additions, without much change in its base de-
sign. The latest release of Firefox contains over 3.7
million lines of code [11]. The growing size of the
browser code and the reluctance to change the design
of the browser has left the browser open to a number of
exploits. According to a recent report [12], Symantec

documented 93 vulnerabilities in Internet Explorer, 74
in Mozilla browsers, 29 in Safari, and 11 in Opera. In
addition to these browser vulnerabilities, Symantec also
documented 301 bugs in browser plug-ins over the same
period of time.

The monolithic model for the web browser provides
little security and isolation to the distinct web applica-
tions. Once a part of the browser is exploited, it results
in the total compromise of the applications and plug-ins
running in the browser. In addition, crash of one compo-
nent of the browser results in crashing of the complete
browser.

Research has tried to fix the security problems related
to the web browsers as they evolve. The most commonly
used security policy for web browsers – the same origin
policy – is found to be too restrictive for Web 2.0 ap-
plications. As a result, the application authors have de-
veloped ad-hoc solutions to work around the same ori-
gin policy, leaving the applications vulnerable to attacks.
Other solutions have focused on fixing specific issues
with the browser such as browser cache [7], plug-ins
[11]; or to improve on the same origin policy [8].

With the ever increasing demand and development
of new web applications, technologies such as AJAX
and mashups have become more prominent in the new
Web 2.0 revolution. The web browser is running more
code now and has effectively evolved from a standalone
application to a mini operating system (mini-OS) run-
ning a variety of web applications. Some efforts have
been made to design next generation of browsers: while
Tahoma [3] uses Virtual Machine Monitors (VMMs) to
provide isolation to web applications, OP web browser
[6] provides isolation by running each web application
as a different process. MashupOS [13] provides new ab-
stractions to enable secure communication among mul-
tiple principles in current browsers.

The paper analyzes requirements of an operating sys-
tem (OS) design from the prospect of designing a new
web browser. We study the characteristics of an µ-kernel
based OS to determine how they can be perceived in a
web browser, and propose a new browser design that
attempts to overcome the shortcomings of current web
browsers. Our design is flexible to include customized
policies and provides mediation between several distinct



(a) µ-kernel architecture. (b) β-kernel architecture.

Figure 1: Correspondence between µ-kernel based OS and β-kernel based browser.

and isolated browser components.

2 Design Principles

With the growing exposure of web browser to a va-
riety of applications and the increasing number of new
attacks against these web applications has highlighted
security as one of the foremost parameters in next-
generation browser design. We adhere to the following
properties that should be desirable from a web browser
design:

• Principle 1: Isolation. Strong isolation between
browser components is required to prevent mali-
cious or unauthorized access between components.
It should be possible to implement an arbitrary
component in a way that it cannot be disturbed
or corrupted by other components. The property
has an additional advantage in isolating the fault
in a particular component from affecting other web
components. The isolation can be at the level of
web pages or at more fine-grained frame level.

• Principle 2: Integrity. A set of components
should be able to establish a communication chan-
nel among themselves which can neither be cor-
rupted nor eavesdropped.

• Principle 3: Separation between policy and
mechanism. The user should be given the freedom
to choose its own security policies. These poli-
cies should be easily defined and the user should
be oblivious to the underlying mechanisms that im-
plement the policies.

• Principle 4: Customization and Flexibility. The
browser should allow customization based on the
requirements of individuals or corporations. This
customization should not only include addition of
specific functionality to the browser via plug-ins,
but also cover the interfaces to provide access
control between the browser components. For a
mashup page, the user of the browser should be
able to control the communication between the

web pages running on his browser. The browser
should provide explicit interfaces for addition of
new browser components.

3 Current Browser Design

The design of current web browsers can be compared
to the design of a monolithic kernel where every basic
system service like memory management, I/O commu-
nication, file system etc. runs in kernel space. The cur-
rent browsers run as single application with minimum or
no isolation between various browser components such
as rendering engine, script engine, etc. Once the plug-
ins are installed, they run as part of the same browser
space with easy access to the user’s private information
and other browser resources [11].

The inclusion of all basic services in the browser has
three big drawbacks: increased code size, lack of flexi-
bility and bad maintainability. Bug-fixing or the addition
of new features means restarting the whole browser. An
issue in one browser component or extension leads to a
complete browser crash. Similar to a monolithic kernel,
a much larger code base is difficulty to maintain result-
ing in browser vulnerabilities.

4 Redesigning the Browser

At a high level, there are many similarities in the
functional requirements of an OS and a web browser.
Figure 1 gives a high level view of these similarities; we
leverage these similarities to propose a new browser de-
sign.

We propose a layered architecture for the browser
with a browser kernel mode and a user mode. The web
applications run in the user mode with their communi-
cation being mediated by the browser kernel (β-kernel).
Since the browser runs as a single process with its own
address space, we need flexible and easy-to-use protec-
tion mechanism to isolate these protection layers in the
same address space. For our design, we develop tech-
niques in the lines of the intra-address space protection

2



mechanisms based on segmentation and paging hard-
ware for Intel x86 architecture proposed in [2].

Our layered architecture within the same address
space allows our browser to provide memory isolation
for various browser components as the memory man-
agement has a single view of the memory available to
the browser. This is an advantage over the process-based
approach used by OP web browser [6].

4.1 Browser Kernel

The β-kernel is the central component of the web
browser. Its responsibilities include managing the
browser’s resources (the communication between op-
erating system and browser components). As a basic
component of the web browser, a β-kernel provides the
lowest-level abstraction layer for the resources (espe-
cially memory, processors and I/O devices) that web ap-
plication must control to perform its function. It will
make these facilities available to applications through
intra-process communication mechanisms.

There are many OS designs, such as Exokernel [4],
SpinOS [1] and Singularity [5], that might provide in-
teresting prospectives in designing a new web browser
and need to be evaluated in detail. With the objective of
keeping the kernel as small as possible, we designed our
β-kernel based on the concepts of a L4 µ-kernel design
[10]. In this section, we anticipate the minimum “prim-
itives” that a β-kernel should implement. A primitive is
tolerated inside the kernel if moving it outside the ker-
nel would prevent implementation of browser’s required
functionality.

4.1.1 Address Spaces

The state of the browser has been a target of exploits to
track users against their wishes. This tracking is possi-
ble because persistent browser state is not properly par-
titioned on per site-basis. The same origin policy has
been refined to address this problem [7], but the solution
is not flexible to include any general user-defined policy.
Standing by our principles 3 and 4, we include the con-
cept of address spaces in the browser kernel to isolate
memory space for different browser components and to
implement customized access control policies.

The basic idea is similar to the µ-kernel concept to
support recursive construction of address spaces outside
the kernel. At browser startup, there is only one address
space controlled by the first memory management
component. For constructing and maintaining further
address spaces, the β-kernel provides three operations:
Grant. The owner of an address space can grant any of
its own memory space to another browser component.
This operation is used by memory management server
to allocate memory to new web application.

Map. Mapping is used to share address space between
various components of the browser.
Flush. Flushing operation is used to revoke sharing of
an address space.

Moving the address space concept into the β-kernel
allows memory management policies to be specified out-
side the kernel. The model can be easily combined with
the access right policies on the browser persistent state.
Mapping and granting copy the source page’s access
right or a subset of them, i.e., can restrict the access but
not widen it. Special flushing operations can be used to
remove specified access rights.

The complete memory available to the browser is in
the control of the memory management module, hence
the installation of drive-by plug-in installations can be
detected. The browser has installation directories in the
file system to install the plug-ins; memory concepts can
be extended to the file system to prevent unauthorized
plug-in installations: only the file server can grant per-
mission to write to the file system and hence all plug-in
installations are mediated by the file server in compli-
ance with the security engine policies.

4.1.2 Communication between Browser Compo-
nents

With the advent of new web applications, there is a
growing need for communication across domain bound-
aries. This communication includes communication be-
tween different web domains in a mashup, between dif-
ferent plug-ins, or between web pages and plug-ins.

From a security point of view, this communica-
tion needs to be verified and checked for malicious in-
tent. The β-kernel provides the complete mediation and
hence assure integrity (Principle 2); the functionality to
provide the message passing interface for inter-domain
communication resides in the kernel. This communica-
tion model is analogous to the IPC in µ-kernel design.

Liedtke et. al also proposed supervised IPC channels
or Clans [9] for providing access control for the IPCs
between various subsystems. Access control for intra-
browser communication can be implemented along the
same lines: the policies are specified at the user-level
and allows for browser customization (Principle 4).

4.1.3 Identity of Components

The β-kernel assigns identifiers to the browser compo-
nents for reliable and efficient communication between
them. The identifiers should be unique both in time and
space. The identifiers are useful to force component-
specific policies in the kernel effectively. Since the β-
kernel keeps track of the identifiers and provides com-
plete isolation between components, it is difficult for a

3



malicious component (such as plug-in) to masquerade
another component’s identity and as a result, support
runtime monitoring solutions for plug-ins [11].

4.2 Browser Extensions

A variety of extensions can be developed on top of the
β-kernel showing the flexibility of our design. The user
has the flexibility to develop their own memory manage-
ment, access control system, file server, etc. as a layer
on top of the kernel.

The browser plug-ins are installed in the user mode
on top of the β-kernel as extensions. The installation
process is mediated by the kernel based on the user-
specified policies for security and memory management.
The communication interfaces published by the plug-ins
are cross-checked against the user policies before mak-
ing them available to the other browser components.

4.3 Web applications

The rendering of web pages in a browser is equiva-
lent to running of user applications in an operating sys-
tem. A web page could be a standalone page running in
the browser or could be a component of a mashup page.
These web pages communicate with each other similar
to the inter-process communication between OS applica-
tions. The β-kernel is their gateway to other web-pages
and to the resources available in the operating system
(Figure 1(b)).

5 Policies and Browser Customization

We propose a layered approach for specifying secu-
rity policies: policies are defined by the web page au-
thors, by system administrators and by the user of the
browser. In case of conflicts, the administrator policies
take precedence over user and the web page provider:
the user can only make the policies more restrictive.
The user policies have higher authority compared to web
page author’s policies.

This layered policy model allows development of
customized browsers with controlled intra-browser com-
munication. For example, the system administrator of a
corporation provides a custom-made browser with se-
lected plug-ins, putting restrictions on the visit of cer-
tain web-pages, and policies to define what interfaces
are available to web pages in order to interact with plug-
ins or other web pages. The web page author can specify
the interfaces accessible to other web components. The
system administrator can only allow access to a subset
of these interfaces; the user can, in turn, restrict these
policies further.

6 Discussion

We presented a new browser design leveraging the
learnings from a µ-kernel design. Our design is flexi-
ble providing customized browser policies and mediated
intra-browser communication. We believe that the flex-
ibility and simplicity of the design could solve most of
the security problems of the current browsers.

Our design shows potential, but whether it is re-
ally feasible in practice depends on the achieved perfor-
mance of the β-kernel. The success of µ-kernel based
OS shows promise that such designs are practical; we
are currently implementing the design to test its feasi-
bility.

In this paper, we tried to bridge the gap between the
web browser and the OS. This might be useful in uti-
lizing the experiences in the field of OS to provide de-
fensive solutions for the web browser. One argument
that supports this thinking is that web attacks also show
correspondence with the OS level attacks. For example,
a typical cross-site scripting (XSS) attack is basically a
code injection attack for an operating system, the differ-
ence being the injection is done in the network outside
the browser domain. Considering correspondences, it
would be interesting to see if the host-based solutions
can be utilized to develop defenses against the web at-
tacks. Our β-kernel based design provides flexibility to
include such future security solutions.

References

[1] B. N. Bershad, S. Savage, P. Pardyak, E. G. Sirer, M. E.
Fiuczynski, D. Becker, C. Chambers, and S. J. Eggers.
Extensibility, safety and performance in the SPIN oper-
ating system. In Proceedings of the 15th ACM Sympo-
sium on Operating Systems Principles (SOSP’95), Dec.
1995.

[2] T. Chiueh, G. Venkitachalam, and P. Pradhan. Integrat-
ing segmentation and paging protection for safe, effi-
cient and transparent software extensions. In Proceed-
ings of the 17th ACM Symposium on Operating Systems
Principles (SOSP’99), Dec. 1999.

[3] R. S. Cox, S. D. Gribble, H. M. Levy, and J. G. Hansen.
A safety-oriented platform for web applications. In Pro-
ceedings of the 2006 IEEE Symposium on Security and
Privacy (S&P’06), Oakland, CA, May 2006.

[4] D. R. Engler, M. F. Kaashoek, and J. J. O’Toole. Exok-
ernel: an operating system architecture for application-
level resource management. In Proceedings of the
15th ACM Symposium on Operating Systems Principles
(SOSP’95), Dec. 1995.

[5] M. Fähndrich, M. Aiken, C. Hawblitzel, O. Hodson,
G. C. Hunt, J. R. Larus, and S. Levi. Language sup-
port for fast and reliable message-based communication
in singularity os. In Proceedings of EuroSys2006, Apr.
2006.

[6] C. Grier, S. Tang, and S. T. King. Secure web brows-
ing with the op web browser. In Proceedings of the

4



2008 IEEE Symposium on Security and Privacy, Oak-
land, CA, May 2008.

[7] C. Jackson, A. Bortz, D. Boneh, and J. C. Mitchell. Pro-
tecting browser state from web privacy attacks. In WWW
’06: Proceedings of the 15th International Conference
on World Wide Web, pages 737–744, Edinburgh, Scot-
land, May 2006.

[8] C. Karlof, U. Shankar, J. D. Tygar, and D. Wagner. Dy-
namic pharming attacks and locked same-origin policies
for web browsers. In CCS ’07: Proceedings of the 14th

ACM conference on Computer and Communications Se-
curity, pages 58–71, Alexandria, Virginia, USA, Oct.
2007.

[9] J. Liedtke. Clans & chiefs. In Architektur von Rechen-
systemen, 12. GI/ITG-Fachtagung, pages 294–305, Lon-
don, UK, 1992. Springer-Verlag.

[10] J. Liedtke. On micro-kernel construction. In Proceed-
ings of the 15th ACM Symposium on Operating System
Principles (SOSP), pages 237–250, Copper Mountain
Resort, Colorado, December 1995.

[11] M. T. Louw, J. S. Lim, and V. N. Venkatakrishnan. Ex-
tensible web browser security. In DIMVA, pages 1–19,
Lucerne, Switzerland, July 2007.

[12] D. Turner. Symantec internet security threat report.
Technical report, Symantec, Sept. 2007.

[13] H. J. Wang, X. Fan, J. Howell, and C. Jackson. Protec-
tion and communication abstractions for web browsers
in MashupOS. In Proceedings of the 21st ACM Sym-
posium on Operating Systems Principles (SOSP’07),
Stevenson, WA, Oct. 2007.

5


