Securing PHP

Survey of the solutions
Stanislav Malyshev
stas@zend.com

Most code Is extremely buggy...

Can we help?

Input filtering

 Unauthorized code (remote include)
 Unauthorized DB access (SQL Injection)

* Client subversion (XSS, XSRF)

Let’s protect all data

Magic quotes:
© a.php?data=1'2 -> $data == “1\'2" can be
iInside quotes

® Optional
® No support for context

Let’s restrict the user

Safe mode:

©
©

®

@ -

®

Allow access only to own files
Allow only “safe” actions

No OS support
'00 many modules not controlled

"00 hard to find out all “unsafe” ones and
not kill apps

Let’s filter

© $var = filter_input(INPUT_GET, 'var’);
© Standard filters for standard use-cases

@ No time machine
® Voluntary

Let’s watch the data

Data tainting
© No unfiltered data in sensitive contexts

® How do | know the filtering was right?
® Complex implementation — contexts
® Performance

Static vs.

Static

© Can be as slow as it
needs to

© False positive OK
© External engine

® $$foo = $$bar
® $foo->$bar($baz)
® eval($foo.$bar)

Dynamic

Dynamic
© Real code, real data
© Can prevent attack

® Need for speed
® Engine modification
@® Breaks applications

Let’'s watch the data - |l

CSSE
© Track each character of data
© Ensure the data is safely

® Safety is context-dependant
® Modification for all operations
® Performance?

Let's watch the input & learn

Runtime detection
© No need to study application
© No need to study context

® Complex heuristics
® Needs data collection

	Securing PHP
	Input filtering
	Let’s protect all data
	Let’s restrict the user
	Let’s filter
	Let’s watch the data
	Static vs. Dynamic
	Let’s watch the data - II
	Let’s watch the input & learn

