
Securing PHP

Survey of the solutions
Stanislav Malyshev

stas@zend.com

Most code is extremely buggy…

Can we help?

Input filtering

• Unauthorized code (remote include)

• Unauthorized DB access (SQL Injection)

• Client subversion (XSS, XSRF)

Let’s protect all data

Magic quotes:
☺ a.php?data=1’2 -> $data == “1\’2” can be

inside quotes

/ Optional
/ No support for context

Let’s restrict the user

Safe mode:
☺ Allow access only to own files
☺ Allow only “safe” actions

/ No OS support
/ Too many modules not controlled
/ Too hard to find out all “unsafe” ones and

not kill apps

Let’s filter

☺ $var = filter_input(INPUT_GET, 'var');
☺ Standard filters for standard use-cases

/ No time machine
/ Voluntary

Let’s watch the data

Data tainting
☺ No unfiltered data in sensitive contexts

/ How do I know the filtering was right?
/ Complex implementation – contexts
/ Performance

Static vs. Dynamic
Static

☺ Can be as slow as it
needs to

☺False positive OK
☺External engine

/ $$foo = $$bar
/ $foo->$bar($baz)
/ eval($foo.$bar)

Dynamic
☺Real code, real data
☺ Can prevent attack

/ Need for speed
/ Engine modification
/ Breaks applications

Let’s watch the data - II

CSSE
☺ Track each character of data
☺ Ensure the data is safely

/ Safety is context-dependant
/ Modification for all operations
/ Performance?

Let’s watch the input & learn

Runtime detection
☺ No need to study application
☺ No need to study context

/ Complex heuristics
/ Needs data collection

	Securing PHP
	Input filtering
	Let’s protect all data
	Let’s restrict the user
	Let’s filter
	Let’s watch the data
	Static vs. Dynamic
	Let’s watch the data - II
	Let’s watch the input & learn

