
Investigating the Risks of Client-Side Scanning for
the Use Case NeuralHash

Dominik Hintersdorf1,∗, Lukas Struppek1,∗, Daniel Neider2, Kristian Kersting1,3
1 Department of Computer Science, Technical University of Darmstadt, Darmstadt, Germany

2 Max Planck Institute for Software Systems, Kaiserslautern, Germany
3 Centre for Cognitive Science, Technical University of Darmstadt, and Hessian Center for AI (hessian.AI)

∗ Both authors contributed equally
{dominik.hintersdorf, lukas.struppek}@cs.tu-darmstadt.de

Abstract—Regulators around the world try to stop the dis-
tribution of digital criminal content without circumventing the
encryption methods in place for confidential communication.
One approach is client-side scanning (CSS) which checks the
content on the user’s device for illegality before it is encrypted
and transmitted. Apple has recently revealed a client-side deep
perceptual hashing system called NeuralHash to detect child
sexual abuse material (CSAM) on user devices before the images
are encrypted and uploaded to its iCloud service. After its public
presentation, criticism arose regarding the users’ privacy and the
system’s reliability. In this work, we present an empirical analysis
of client-side deep perceptual hashing based on NeuralHash.
We show that such systems are not robust, and an adversary
can easily manipulate the hash values to force or prevent
hash collisions. Such attacks permit malicious actors to exploit
the detection system: from hiding abusive material to framing
innocent users, a large variety of attacks is possible.1

I. INTRODUCTION

Apple recently announced its NeuralHash [1] system, a deep
perceptual hashing algorithm for client-side content scanning.
The approach focuses on identifying CSAM content in user
files uploaded to Apple’s iCloud service. Apple has made
several assurances about privacy and security, such as a low
risk of accounts being falsely flagged and restricting its access
to private data. According to Apple, only images uploaded to
the iCloud servers will be hashed and compared against a hash
database of known CSAM material. The hash databases are
provided by child protection agencies and are only available
in encrypted form on the user devices. More information on
NeuralHash is provided in the official technical summary [1].

While Apple commissioned various expert opinions on the
security of the system from independent researchers [2]–[4],
there has been a lot of public criticism of the NeuralHash
approach [5]–[7]. Criticism is directed not only at possible
privacy violations but also at the system’s reliability. So far,
however, there has been a lack of comprehensive analyses, at
least publicly, of the core of the perceptual hashing process,
the hash computation itself.

Apple is not the only organization planning to install client-
side scanning (CSS) for CSAM detection. In 2020, the Euro-
pean Union (EU) presented its strategy [8] to become more

1A long and extended version of this paper is available at
https://arxiv.org/abs/2111.09076.

effective in fighting child sexual abuse. The strategy specif-
ically refers to end-to-end encryption and calls for technical
solutions that allow companies to detect and report CSAM
material transferred in encrypted communication systems. The
subsequent EU regulation 2021/1232 [9], which also faces
criticism [10], establishes temporarily limited rules to process
personal and other data to detect and report CSAM material.
Without the regulation stating specific technical details, it is
plausible that hash-based CSS approaches could be one way
to achieve this.

A recent paper [6] by well-known cybersecurity researchers
and encryption system inventors, such as Hal Abelson,
Carmela Troncoso, and Josh Benaloh, outlines and critiques
the potential security and privacy risks of CSS technologies.
The authors argue that even if the initial goal of these systems
is only the detection of clearly illegal content, tremendous
pressure to expand the scope of application will arise with
time. People would then have little chance to resist the
expansion of the system or prevent its abuse.

In this work, we investigate the perceptual hashing com-
ponents of NeuralHash, in particular, the embedding neural
network and the hashing step. It might be to some extent
common knowledge that neural networks are susceptible to
various kinds of attacks. However, we are convinced that
it is important to demonstrate that this susceptibility is not
only interesting from a researcher’s point of view but actually
affects systems used by millions of users who might not be
aware of these risks. We further want to emphasize that by
using neural networks for CSS and, therefore, being able to
calculate the gradients with respect to the inputs, most of the
attacks are rather easy to perform, exposing various risks to
manipulate the systems.

Our focus lies on NeuralHash because it is the first promi-
nent representative to shift content detection from the server-
side to user devices. This approach poses additional major
risks and insecurities, such as causeless algorithmic surveil-
lance of users [6]. We show that deep perceptual hashing
has various downsides when applied to real-world large-scale
image detection. Our research aims to point out drawbacks
of deep perceptual image hashing, support the development
of more robust systems, and encourage a discussion on the
general deployment of this technology. NeuralHash merely

mailto:dominik.hintersdorf@cs.tu-darmstadt.de
mailto:lukas.struppek@cs.tu-darmstadt.de
https://arxiv.org/abs/2111.09076


1.65 -0.61 -1.18

1.11 0.35 0.99

-0.42 1.08 -0.87

1.32 1.10 0.47

1.72 -1.44 0.32

-0.97 -1.32 1.17

1.87 0.25

-1.21 -0.05

-0.32 0.77

-0.05 0.35

1.21 0.21

0.74 -1.21

-1.57

5.16

0.11

7.42

3.21

-2.20

(128) (128x96)

20.54

9.33

8.81

-7.33

5.37

(96)

1
1
1
0
1

(96)

≥ 0

Embedding Network M Hashing 
Matrix B

Binary 
Hash H(x)

Matrix-vector 
product y

Feature Extraction Locality-Sensitive Hashing

Feature 
Vector z

Fig. 1: The NeuralHash pipeline consists of an embedding
network and a locality-sensitive hashing (LSH) step.

acts as a current real-world example in this case.
Before diving into the details, we want to make the follow-

ing two statements:
1) We explicitly condemn the creation, possession, and dis-

tribution of child pornography and abusive material, and
we strongly support the prosecution of related crimes.
With this work, we in no way intend to provide instruc-
tions on how to bypass or manipulate CSAM filters.
Instead, we want to initiate a well-founded discussion
about the effectiveness and the general application of
client-side scanning based on deep perceptual hashing.

2) We have no intention to harm Apple Inc. itself or their
intention to stop the distribution of CSAM material.
NeuralHash merely forms the empirical basis of our
work to critically examine perceptual hashing methods
and the risks they may induce in real-world scenarios.
Even though this system is not in production yet, we
contacted Apple and made sure they are aware of the
possible issues with NeuralHash.

II. PERCEPTUAL HASHING FOR IMAGE DETECTION

Hashing generally describes a deterministic transforma-
tion of data into short bit sequences, the so-called hashes
or fingerprints. Perceptual hashing algorithms, e.g., Apple’s
NeuralHash [1], Microsoft’s PhotoDNA [11], and Facebook’s
PDQ [12], aim to compute similar hashes for images with
similar contents and dissimilar hashes for different contents.
In recent years, various deep hashing algorithms based on
convolutional neural networks have been proposed [13]–[16].
They all rely on deep neural networks to extract unique
features from an image and use them to compute a hash value.

The NeuralHash pipeline, visualized in Fig. 1, consists of
an embedding network and a locality-sensitive hashing (LSH)
step [17], [18] to calculate the binary hash values of an
image. First, the embedding network extracts features from
the given image and maps the image to an abstract feature
representation vector with 128 real-valued entries. LSH is then
used to assign similar feature vectors to buckets with similar
hash values. This is done by defining 96 (random) hyperplane
vectors as a matrix, multiplying the feature vector with this
hashing matrix, and applying a Heaviside step function to the
multiplication result. In other words, depending on which side
of the hyperplanes the vector is located, the bits are either set
to 0 or 1, resulting in a binary hash value with 96 bits.

For our experiments, we manually extracted [19] the Neural-
Hash model, including the network weights and hash matrix,
from a Mac running macOS Big Sur Version 11.6. We then
rebuilt the network’s architecture in PyTorch and assigned
the extracted weights accordingly. This allows us to run our
experiments on GPUs, significantly increasing the inference
speed. Also, gradients can be easily computed by PyTorch’s
automatic differentiation. NeuralHash further expects resized
RGB images with shape 360×360×3, so all images used for
our experiments are resized accordingly.

To check if the framework change induced a significant
deviant model behavior, we computed the hashes for all
100,000 samples from the ImageNet test split with our Py-
Torch model and a separately extracted ONNX model [19].
Both models differed only for a single bit in one of the hashes,
demonstrating that the models are virtually identical, and
our results should be transferable to the original NeuralHash
system.

Little work has been published on the vulnerability of
deep hashing functions. As a first step, targeted [20]–[23]
and untargeted [24] adversarial attacks against deep hashing-
based retrieval systems were proposed. Another work [25]
demonstrated the susceptibility of various image hashing func-
tions against gradient-based collision attacks. Similar works
investigated the robustness of non-deep perceptual hashing al-
gorithms against adversarial attacks [26]–[28] and their robust-
ness [29] against visible image modifications. While several
proof-of-concept implementations to create hash collisions on
NeuralHash exist [30]–[32], demonstrating that it is possible
to create hash collisions, there is no comprehensive work on
identifying the technical vulnerabilities and the robustness of
NeuralHash or CSS systems based on deep perceptual hashing
from a machine learning perspective. Our work aims to fill
this research gap and help to weigh the privacy benefits and
potential threats. In this work, we focus on two attack settings:
hash collision and detection evasion.

III. SETTING 1 – HASH COLLISION ATTACKS

In our first adversarial setting, we investigate the creation
of hash collisions by perturbing images so that their computed
hashes match predefined target hashes. This leads to several
explosive scenarios in reality. For instance, given a set of target
hashes from the (CSAM) hash database, an adversary can
create fake images whose hashes match those in the database
without containing any sensitive material at all. Distributed
across many devices, this may lead to a large number of false-
positive alarms in the (possibly partly human) detection system
and, as a consequence, could result in the framing of innocent
users or distributed denial of service (DDoS) attacks.

Another worrisome scenario could be that service providers,
governments, or other powerful organizations either add addi-
tional hashes to the database or manipulate ordinary images
that show political or social content that is undesirable to
them, such as government criticism or LGBTQ+ support. By
spreading such manipulated images through social media, they
might end up on the devices of supporters of these causes.



SR ℓ2 ℓ∞ SSIM Steps
90.81% 20.8136± 7.97 0.3120± 0.22 0.9647± 0.03 1190± 1435

TABLE I: Evaluation metrics (mean + standard deviation) for
our hash collision attack computed on an ImageNet subset.

Identification, surveillance, and persecution of these people are
then possible by detecting hash collisions with the database.
This poses a great danger, especially for people in countries
with restricted human rights or totalitarian regimes.

Even without access to the hash database, which govern-
ments might have, after all, an adversary could simply collect
its own CSAM material and compute corresponding hashes.
Assuming a large enough database, the adversary could obtain,
at least, some share of the true database hashes. Figure 2
illustrates such a hash collision attack. It shows a manipulated
image from a protest march that results in the same hash value
as a non-related target image.

Realization. We created a surrogate hash database with dog
images from the Stanford Dogs dataset [34] that acts as a list
of images that should be detected by the system. We then
tried to force hash collisions with this database using the first
10,000 samples from the ImageNet ILSVRC2012 [35], [36]
test split.

We first computed the hash of an input image and took
the target hash from the (surrogate) hash database with the
smallest Hamming distance to the hash of the input image.
Using a Hinge loss and a structural similarity (SSIM) loss [37]
to reduce visual conspicuities, we optimized the input image
such that the binarized matrix vector product approached the
target hash. We optimized the input image until the hash value
matched the target hash or until 10,000 optimization steps were
completed. For more technical details, see Appx. A.

Results. Table I states our collision attack results. The
success rate (SR) indicates the share of images whose hashes
have successfully been changed. We further state the mean
ℓ2 and ℓ∞ distances between the original images and their
optimized counterparts to quantify pixel-wise image changes.
We also computed the mean SSIM values to take the image
quality into account. The closer SSIM ∈ [0, 1] is to 1, the more
similar a manipulated image is to the original image without
perturbations. Steps denote the mean number of optimization
steps performed until a hash collision occurred.

We could force hash collisions in about 90% of all im-
ages, demonstrating the real applicability of the attack. The
visual salience of the modifications varies in strength. Most
manipulated images contain some patches of color, which are
sometimes conspicuous but often hardly noticeable. Figure 2
shows such an example where the visual differences between
the original and manipulated images are small. We plot further
examples in Appx. C.

In summary, our experiments show that hash collisions can
easily be forced in NeuralHash and might build the base for
serious attacks targeting the service provider or, even worse,
persecution of political opponents. While some of the induced
image changes are visible, they are barely noticeable in most

images, as also indicated by the high SSIM values.

IV. SETTING 2 – DETECTION EVASION ATTACKS

In our second setting, we investigate detection evasion
attacks that aim to avoid detection of sensitive material through
perceptual hashing. Intuitively, an attacker tries to evade detec-
tion in terms of hash matching with a database by perturbing
the images. We investigate two different evasion approaches:
optimization-based approaches, which compute image-specific
perturbations, and transformation-based approaches, which
apply simple transformations as implemented in standard
image manipulation programs. Non-robust perceptual hashing
algorithms would make it easy to hide sensitive material from
detection and call the overall effectiveness of such systems
into question.

Our optimization-based approaches exploit the fact that
NeuralHash is deployed on consumer devices and allows the
computation of gradients with respect to the input images if
the model access is not secured. It could also be interpreted
as an application of untargeted adversarial attacks [38]. The
induced changes of such attacks are hardly perceivable in most
cases.

For the transformation-based approaches, the adversary does
not need direct access to the hash algorithm or any expertise
in computer science. Using a simple image editor to alter the
images is sufficient to perform the attacks. Many gradient-free
transformations, such as flipping an image, can be easily re-
verted without any quality loss. It makes these transformations
particularly interesting to investigate: a single transformation
could be used to evade detection systems by first applying it to
bypass the system and then reverting the changes to reconstruct
the original image.

Realization. For our optimization-based approaches to
evade detection, we used the first 10,000 ImageNet test sam-
ples and computed image-specific perturbations to change the
hash values. We directly altered the whole images (Standard)
to increase their Hamming distance to the unmodified images’
hashes. We used a negative mean squared error (MSE) loss
between the hashes for this and added a structural similarity
(SSIM) [37] penalty term to reduce visual conspicuities. We
also tried to restrict the induced changes to edges in the images
(Edges-Only) or as few pixels as possible (Few-Pixels). Each
attack was stopped after at least a single bit flipped.

To investigate the robustness against gradient-free image
transformations, such as flipping or rotation, we independently
applied different transformations. We gradually increased the
transformation strength and measured the average Hamming
distance of the resulting hashes across all tested images.
We evaluated the robustness against transformations on all
1,281,167 ImageNet training samples. We investigated the
following transformations independently: translation, rotation,
center cropping, downsizing, flipping, changes in the HSV
color space, contrast changes, and JPEG compression. See
Appx. B for more details on our optimization-based and
transformation-based approaches.



Original

a064edd4efdcebe990d2e6a6

Poisoned

ba61ebe4ff9c49f990f0a6a7

Difference Target

ba61ebe4ff9c49f990f0a6a7

Fig. 2: Visualization of our hash collision attack. We manipulated the original image [33] to have the same hash as the
target image. The manipulated image is visually hardly distinguishable from the original since the induced perturbations are
small. Still, the manipulated image is assigned the same hash as the completely different target image. This demonstrates the
feasibility and danger of hash collision attacks. The third image illustrates the added perturbations computed as the mean
absolute differences over all color channels. Lighter areas in the heat map indicate greater changes.

Original Standard Attack Edges-Only Attack Few-Pixels Attack

66c59537ba80d95baef5d496 66c5953fba88d95baef5d496 66c59537ba88d95baef5d496 66c59537ba88d95baef5d496

Fig. 3: Visualization of our gradient-based evasion attacks. The added perturbations are barely visible to humans. Nevertheless,
the image hashes differ from the original, showing that detection evasion is possible without degrading the image quality. The
bottom row illustrates the added perturbations computed as the mean absolute differences over all color channels. Lighter areas
in the heat maps indicate greater changes.

Attack Standard Edges-Only Few-Pixels
SR 100.00% 99.95% 98.21%
ℓ2 0.7188± 0.28 1.3882± 1.37 2.9100± 2.06
ℓ∞ 0.0044± 0.00 0.0841± 0.07 0.8298± 0.25
SSIM 0.9999± 0.00 0.9996± 0.00 0.9989± 0.00
Steps 5.4006± 4.98 150.2414± 113.96 3095.0± 3901

TABLE II: Evaluation metrics (mean + standard deviation)
for our three gradient-based evasion attacks computed on an
ImageNet subset.

Results. Table II states the results for our gradient-based
evasion attacks. The metrics are the same as for our first
setting. The success rate (SR) indicates the share of images
whose hashes could be changed before the maximum number
of iterations or pixels has been reached. All three attacks

were able to change the hash value of an image in the large
majority of the cases. While the Standard attack changed the
hashes of all images, the Edges-Only and Few-Pixels attacks
only failed in a few cases. Figure 3 further illustrates the
effectiveness of our attacks and shows that the changes are
hardly visually perceivable. We state additional samples for
each attack in Appx. D. The Standard attack only needs about
five optimization steps on average to force at least a single
hash bit to flip. In the Few-Pixels attack, only 21.5 pixels
were changed on average, 0.017% of all pixels. We note that
larger Hamming distances could easily be forced by increasing
the number of optimization steps.

We further found NeuralHash to be not robust against most
gradient-free image transformations, as our results in Figure 4
demonstrate. The most significant hash changes occurred when



-64 -32 -16 -4 4 16 32 64
Angle

0.0

0.1

0.2

0.3

0.4

0.5

N
or

m
. H

am
m

in
g 

D
is

ta
nc

e

(a) Image Rotation

0.0 0.25 0.5 0.75 1.0 1.25 1.5 1.75 2.0
Brightness Factor

(b) Brightness Changes

0.0 0.25 0.5 0.75 1.0 1.25 1.5 1.75 2.0
Contrast Factor

(c) Contrast Changes

180232286328360
Center Crop Size

0.0

0.1

0.2

0.3

0.4

0.5

N
or

m
. H

am
m

in
g 

D
is

ta
nc

e

(d) Center Cropping

360 328 296 232 180
Image Size

(e) Downsizing

0 40 64 78 8792 100
Compression Value

(f) JPEG Compression

Fig. 4: Robustness results for gradient-free image transformations computed on all ImageNet training samples. The plots state
the mean results and their standard deviations. The Hamming distance also describes the share of hash bits expected to change.

image information was lost or added, e.g., translating or rotat-
ing images and filling missing parts with black color. Shifting
an image by 32 pixels in horizontal and vertical directions
resulted in a mean Hamming distance of roughly 11%. Larger
image translations even further raised the Hamming distance.
Also, cutting away the image’s boundaries increases the share
of flipped bits with the crop size. JPEG image compression,
on the other side, has only a small impact on the hash
computation. For color transformations such as changing the
saturation, or decreasing the brightness and contrast, the hash
computation is much more stable. For plots of translations and
hue and saturation changes, see Appx. E. However, flipping
the images, one of the simplest transformations without any
loss of information and easy to revert, already changed 29%
of the hash bits for horizontally flipping and even 37% for
vertical flipping.

Our results demonstrate that hash changes can be easily
forced by gradient-based perturbations. For humans, the in-
duced changes are hardly perceivable. Our analyses further
show that NeuralHash is not robust against many basic image
transformations. While the system showed stronger robustness
against HSV space modifications and image compression, it is
more susceptible to other transformations, such as rotations or
flipping. An adversary could evade detection with small effort
and little quality loss in the images. In reality, the effectiveness
of such a system is therefore questionable.

V. LESSONS & IMPLICATIONS

We conclude our work with lessons and implications that
arise for deep perceptual hashing and CSS based on our work.

Current systems may not be robust. Our experimen-
tal results illustrate that NeuralHash, and most likely other
perceptual hashing systems, are not robust against detection
evasion attacks. Simple image modifications, such as flipping
an image horizontally, already allow an attacker to evade

detection in most cases, even without direct access to the
system. The attacker only needs basic technical knowledge
and can manipulate the images with standard image editors to
evade detection. On the other hand, evasion attacks exploiting
gradient information allow evasion with only minor, barely vis-
ible changes to the images. Our experiments have shown that
with intermediate technical knowledge, an attacker can modify
the images to evade detection without the modifications being
eye-catching. Such attacks will most likely be possible in any
neural network-based CSS system if the attacker has access to
the model on the user device and is, therefore, able to calculate
the gradients of the model.

A more robust hashing system will force the attacker to
alter the images stronger, but the original content of the
images will most likely still be visible and recognizable. For
example, disassembling an image into smaller parts for storing
and reassembling the image only for viewing would lead to
completely different hashes for each part without any loss of
information in the full image.

CSS systems can be misused for malicious purposes.
Proponents of CSS emphasize the fact that the systems enable
the detection of CSAM and other criminal material while
avoiding backdoor keys in the end-to-end encryption and
maintaining the user’s privacy. However, CSS opens the door
for other malicious attacks. While evasion of the detection
system only renders the system useless, an attacker can further
misuse the system for framing or monitoring innocent users
with hash collision attacks. As we have demonstrated, an
attacker can slightly alter images to change their hashes to
a specific value, causing false-positive detections for arbitrary
image content. With access to an official hash database or a
surrogate, an attacker can frame innocent people by sending
manipulated images to their devices. The receivers of such
images then get flagged by the system without even knowing.

As legislators call for preventing the distribution of harm-



ful material while maintaining encryption gets louder, CSS
systems using perceptual hashing look very promising at first
glance. However, governments or organizations with control
over the CSS system could share manipulated images in social
media, and users who have downloaded a subset of these
images will be flagged. Mass surveillance of people with
undesired beliefs and opinions is therefore easily and secretly
realizable. Additional tools or backdoors in the user devices
are not needed. Moreover, there is no guarantee that the hash
database will not be extended with additional, probably non-
criminal content for surveillance. Since the databases are not
publicly available, changes are not traceable, and the targeted
content might be anything – who controls the provider of such
systems?

Mitigating the risks. Regarding the technical aspects of
the CSS system, one way to mitigate the effectiveness of
collision attacks against hashing-based detection systems is
to install another server-side hashing procedure not available
to the attacker. However, this would, in turn, imply that the
images are not encrypted on the server or could be decrypted
by the provider, questioning the promised privacy advantages.
Another method would be to restrict the model access, e.g.,
by running the model in a trusted execution environment,
and prevent gradient computations, which would indeed make
gradient-based attacks hardly feasible. However, these steps
do not improve the robustness against standard image trans-
formations. CSS methods based on neural networks will most
likely enable gradient computation or approximation and,
consequently, facilitate arbitrary hash manipulations. Hence,
even an updated version of NeuralHash’s embedding network
would very likely suffer from the demonstrated vulnerabilities.

It is also important to restrict public access to the hash
database. If the plain hashes are leaked, it is even easier
for an adversary to produce a large number of false-positive
matches. Furthermore, an independent instance should monitor
the database to avoid manipulations.

Conclusion. In summary, we demonstrated that Neural-
Hash, and arguably deep perceptual hashing algorithms in
general, are not robust and are susceptible to various image
manipulations. It is questionable if neural networks in their
current form will ever be fully robust. We would like to stress
that CSS has a noble aim, but at the same time we want to
draw attention to the potential risks of extending its scope.
After all, CSS is running on all devices regardless of whether
a crime is suspected or not. We hope that service providers
will not follow this direction for crime detection due to the
many technical and societal risks.

From a technical and ethical viewpoint, we conclude that
NeuralHash and related CSS systems do not (yet) provide a
safe method for detecting legal violations and should not be
deployed on user devices since attackers, service providers,
and governments could easily manipulate and misuse the
systems for their own interests. After all, mobile devices
contain a lot of sensitive information about their users,
ranging from dating behavior to health care and financial
status. Instead, based on our results, we call for NeuralHash

and other CSS systems not to be installed in practice, due to
their manipulability, risk of abuse, and lack of robustness.

Reproducibility Statement. We deliberately decided to
make our source code publicly available to reproduce the
experiments and investigate existing and future perceptual
hashing systems: https://github.com/ml-research/Learning-to-
Break-Deep-Perceptual-Hashing.

Acknowledgments. This work was supported by the German
Ministry of Education and Research (BMBF) within the
framework program “Research for Civil Security” of the
German Federal Government, project KISTRA (reference
no. 13N15343). It also benefited from the National Research
Center for Applied Cybersecurity ATHENE, a joint effort
of BMBF and the Hessian Ministry of Higher Education,
Research, Science and the Arts (HMWK).

Disclaimer. The views and opinions expressed in this article
are those of the authors and do not reflect the official policy
or position of the authors’ institutions or any agency of the
German Federal Government.

https://github.com/ml-research/Learning-to-Break-Deep-Perceptual-Hashing
https://github.com/ml-research/Learning-to-Break-Deep-Perceptual-Hashing


REFERENCES

[1] A. Inc., “CSAM Detection - Technical Summary,” 2021. https://www.
apple.com/child-safety/pdf/CSAM Detection Technical Summary.pdf,
accessed: Sept. 22, 2021.

[2] M. Bellare, “The apple psi protocol,” 2021. https://www.apple.com/
child-safety/pdf/Technical Assessment of CSAM Detection Mihir
Bellare.pdf, accessed: Oct. 1, 2021.

[3] D. Forsyth, “Apple’s csam detection technology,” 2021.
https://www.apple.com/child-safety/pdf/Technical Assessment of
CSAM Detection David Forsyth.pdf, accessed: Oct. 1, 2021.

[4] B. Pinkas, “A review of the cryptography behind the apple psi system,”
2021. https://www.apple.com/child-safety/pdf/Technical Assessment
of CSAM Detection Benny Pinkas.pdf, accessed: Oct. 1, 2021.

[5] E. Snowden, “The all-seeing ”i”: Apple just declared war on your
privacy,” 2021. https://edwardsnowden.substack.com/p/all-seeing-i, ac-
cessed: Oct. 1, 2021.

[6] H. Abelson, R. Anderson, S. M. Bellovin, J. Benaloh, M. Blaze,
J. Callas, W. Diffie, S. Landau, P. G. Neumann, R. L. Rivest, J. I.
Schiller, B. Schneier, V. Teague, and C. Troncoso, “Bugs in our pockets:
The risks of client-side scanning,” CoRR, vol. abs/2110.07450, 2021.

[7] S. J. Lewis, “Tweets on neuralhash,” 2021. https://twitter.com/
SarahJamieLewis/status/1428146453394821125, accessed: Oct. 1, 2021.

[8] E. Commission, “EU strategy for a more effective fight against child
sexual abuse,” 2020. https://eur-lex.europa.eu/legal-content/EN/TXT/
?uri=CELEX:52020DC0607, accessed: Nov. 16, 2021.

[9] O. J. of the European Union, “Regulation (EU) 2021/1232,”
2021. https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:
32021R1232, accessed: Nov. 16, 2021.

[10] P. Breyer, A. Alametsä, R. D’Amato, P. Barrena, S. Bricmont,
A. Comı́n, G. Delbos-Corfield, F. Donato, C. Ernst, C. Gamon, M. Gre-
gorová, F. Guerreiro, S. Hahn, I. Joveva, P. Kammerevert, M. Ko-
laja, M. Körner, K. Melchior, C. Ponsatı́, and M. Peksa, “Cross-
party letter of member of the european parliament against general
monitoring,” 2021. https://www.patrick-breyer.de/wp-content/uploads/
2021/11/20211020 Letter General Monitoring.pdf, accessed: Nov. 19,
2021.

[11] Microsoft, “Photodna,” 2015. https://www.microsoft.com/en-us/
photodna, accessed Oct. 18, 2021.

[12] Facebook, “Open-sourcing photo- and video-matching technology to
make the internet safer,” 2019. https://about.fb.com/news/2019/08/
open-source-photo-video-matching, accessed Oct. 18, 2021.

[13] V. E. Liong, J. Lu, G. Wang, P. Moulin, and J. Zhou, “Deep hashing
for compact binary codes learning,” in CVPR, pp. 2475–2483, 2015.

[14] H. Liu, R. Wang, S. Shan, and X. Chen, “Deep supervised hashing for
fast image retrieval,” in CVPR, pp. 2064–2072, 2016.

[15] D. Wu, Z. Lin, B. Li, M. Ye, and W. Wang, “Deep supervised hashing for
multi-label and large-scale image retrieval,” in ACM ICMR, p. 150–158,
2017.

[16] F. Zhao, Y. Huang, L. Wang, and T. Tan, “Deep semantic ranking based
hashing for multi-label image retrieval,” in CVPR, pp. 1556–1564, 2015.

[17] P. Indyk and R. Motwani, “Approximate nearest neighbors: Towards
removing the curse of dimensionality,” in ACM - STOC, pp. 604–613,
1998.

[18] A. Gionis, P. Indyk, and R. Motwani, “Similarity search in high
dimensions via hashing,” in VLDB, p. 518–529, 1999.

[19] A. Ygvar, “Appleneuralhash2onnx,” 2021. https://github.com/
AsuharietYgvar/AppleNeuralHash2ONNX, accessed Oct. 12, 2021.

[20] J. Bai, B. Chen, Y. Li, D. Wu, W. Guo, S.-t. Xia, and E.-h. Yang,
“Targeted attack for deep hashing based retrieval,” in ECCV, 2020.

[21] X. Wang, Z. Zhang, G. Lu, and Y. Xu, “Targeted attack and defense for
deep hashing,” in ACM SIGIR, p. 2298–2302, 2021.

[22] Y. Xiao and C. Wang, “You see what i want you to see: Exploring
targeted black-box transferability attack for hash-based image retrieval
systems,” in CVPR, pp. 1934–1943, 2021.

[23] X. Wang, Z. Zhang, B. Wu, F. Shen, and G. Lu, “Prototype-supervised
adversarial network for targeted attack of deep hashing,” in CVPR,
pp. 16357–16366, 2021.

[24] E. Yang, T. Liu, C. Deng, and D. Tao, “Adversarial examples for
hamming space search,” IEEE Transactions on Cybernetics, vol. 50,
no. 4, pp. 1473–1484, 2020.

[25] B. Dolhansky and C. Canton-Ferrer, “Adversarial collision attacks on
image hashing functions,” CoRR, vol. abs/2011.09473, 2020.

[26] Q. Hao, L. Luo, S. T. Jan, and G. Wang, “It’s not what it looks like:
Manipulating perceptual hashing based applications,” in Proceedings
of The ACM Conference on Computer and Communications Security
(CCS), 2021.

[27] S. Jain, A. Cretu, and Y. de Montjoye, “Adversarial detection avoidance
attacks: Evaluating the robustness of perceptual hashing-based client-
side scanning,” CoRR, vol. abs/2106.09820, 2021.

[28] J. Prokos, T. M. Jois, N. Fendley, R. Schuster, M. Green, E. Tromer,
and Y. Cao, “Squint hard enough: Evaluating perceptual hashing with
machine learning.” Cryptology ePrint Archive, Report 2021/1531, 2021.
https://ia.cr/2021/1531.

[29] A. Drmic, M. Silic, G. Delac, K. Vladimir, and A. S. Kurdija,
“Evaluating robustness of perceptual image hashing algorithms,” in
2017 40th International Convention on Information and Communication
Technology, Electronics and Microelectronics (MIPRO), pp. 995–1000,
2017.

[30] A. Athalye, “Neuralhash collider,” 2021. https://github.com/
anishathalye/neural-hash-collider, accessed Oct. 12, 2021.

[31] L. S. Kiat, “apple-neuralhash-attack,” 2021. https://github.com/
greentfrapp/apple-neuralhash-attack, accessed Oct. 12, 2021.

[32] Y. Kilcher, “Neural hash collision creator,” 2021. https://github.com/yk/
neural hash collision, accessed Oct. 12, 2021.

[33] K. C. (WMUK), “Black lives matter protest at us embassy,”
2020. https://commons.wikimedia.org/wiki/File:Black Lives Matter
protest at US Embassy, London 01.jpg, accessed Sept. 23, 2021;
Cropped; License: https://creativecommons.org/licenses/by-sa/4.0/deed.
en.

[34] A. Khosla, N. Jayadevaprakash, B. Yao, and L. Fei-Fei, “Novel dataset
for fine-grained image categorization,” in First Workshop on Fine-
Grained Visual Categorization, CVPR, 2011.

[35] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “Imagenet:
A large-scale hierarchical image database,” in CVPR, pp. 248–255, 2009.

[36] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma,
Z. Huang, A. Karpathy, A. Khosla, M. Bernstein, A. C. Berg, and
L. Fei-Fei, “ImageNet Large Scale Visual Recognition Challenge,” IJCV,
vol. 115, no. 3, pp. 211–252, 2015.

[37] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image
quality assessment: from error visibility to structural similarity,” IEEE
Transactions on Image Processing, vol. 13, no. 4, pp. 600–612, 2004.

[38] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. Goodfellow,
and R. Fergus, “Intriguing properties of neural networks,” in ICLR, 2014.

[39] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
in ICLR, 2015.

[40] J. F. Canny, “A computational approach to edge detection,” IEEE TPAMI,
vol. 8, no. 6, pp. 679–698, 1986.

https://www.apple.com/child-safety/pdf/CSAM_Detection_Technical_Summary.pdf
https://www.apple.com/child-safety/pdf/CSAM_Detection_Technical_Summary.pdf
https://www.apple.com/child-safety/pdf/Technical_Assessment_of_CSAM_Detection_Mihir_Bellare.pdf
https://www.apple.com/child-safety/pdf/Technical_Assessment_of_CSAM_Detection_Mihir_Bellare.pdf
https://www.apple.com/child-safety/pdf/Technical_Assessment_of_CSAM_Detection_Mihir_Bellare.pdf
https://www.apple.com/child-safety/pdf/Technical_Assessment_of_CSAM_Detection_David_Forsyth.pdf
https://www.apple.com/child-safety/pdf/Technical_Assessment_of_CSAM_Detection_David_Forsyth.pdf
https://www.apple.com/child-safety/pdf/Technical_Assessment_of_CSAM_Detection_Benny_Pinkas.pdf
https://www.apple.com/child-safety/pdf/Technical_Assessment_of_CSAM_Detection_Benny_Pinkas.pdf
https://edwardsnowden.substack.com/p/all-seeing-i
https://twitter.com/SarahJamieLewis/status/1428146453394821125
https://twitter.com/SarahJamieLewis/status/1428146453394821125
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:52020DC0607 
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:52020DC0607 
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:32021R1232 
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:32021R1232 
https://www.patrick-breyer.de/wp-content/uploads/2021/11/20211020_Letter_General_Monitoring.pdf
https://www.patrick-breyer.de/wp-content/uploads/2021/11/20211020_Letter_General_Monitoring.pdf
https://www.microsoft.com/en-us/photodna
https://www.microsoft.com/en-us/photodna
https://about.fb.com/news/2019/08/open-source-photo-video-matching
https://about.fb.com/news/2019/08/open-source-photo-video-matching
https://github.com/AsuharietYgvar/AppleNeuralHash2ONNX
https://github.com/AsuharietYgvar/AppleNeuralHash2ONNX
https://ia.cr/2021/1531
https://github.com/anishathalye/neural-hash-collider
https://github.com/anishathalye/neural-hash-collider
https://github.com/greentfrapp/apple-neuralhash-attack
https://github.com/greentfrapp/apple-neuralhash-attack
https://github.com/yk/neural_hash_collision
https://github.com/yk/neural_hash_collision
https://commons.wikimedia.org/wiki/File:Black_Lives_Matter_protest_at_US_Embassy,_London_01.jpg
https://commons.wikimedia.org/wiki/File:Black_Lives_Matter_protest_at_US_Embassy,_London_01.jpg
https://creativecommons.org/licenses/by-sa/4.0/deed.en
https://creativecommons.org/licenses/by-sa/4.0/deed.en


APPENDIX

A. Details for Setting 1

To create hash collisions, we first computed the hash of
an input image xorig and took the target hash Ĥ from the
(surrogate) hash database with the smallest Hamming distance
to the computed hash of xorig . After defining the target hash
Ĥ = (ĥ1, . . . , ĥk), we directly optimized the input image x =
xorig such that its binary hash value approaches Ĥ . For this
task, we defined a Hinge loss

LHinge(x, Ĥ) =
1

k

∑k

i=1
max{0, d− yi · ψ(ĥi)} (1)

with d ≥ 0 describing the margin to the hyperplanes and
y = B ·M(x) with y ∈ R96 being the real-valued hash output
before binarization. The operation ψ(ĥi) = sign(ĥi − 0.5)
replaces each 0-bit in the hash vector by −1. In our exper-
iments, we set d = 0 to optimize only until the hash value
of the optimized image matches Ĥ . This is achieved when
the signs of yi and ψ(ĥi) match at all k positions. By setting
d > 0, the distance to the LSH hyperplanes could be increased,
leading to more robust image hashes.

Furthermore, we added a structural similarity (SSIM) [37]
penalty term to reduce visual conspicuities between an op-
timized image and its original counterpart. The structural
similarity (SSIM) is defined as

SSIM (x, y) =
(2µxµy + C1)(2σxy + C2)

(µ2
x + µ2

y + C1)(σ2
x + σ2

y + C2)
. (2)

For two images x and y, the parameters µi and σ2
i denote the

mean and variance of each image’s pixels. Further, σxy denotes
the covariance of x and y. The constants C1 and C2 are added
for numerical stability and are set to C1 = 10−4 and C2 =
9 ·10−4, respectively, in our experiments. The closer SSIM ∈
[0, 1] is to 1, the more similar x is to the original image without
perturbations. We computed the SSIM, weighted by parameter
λ, in each optimization step between the optimized image x
and its unmodified counterpart xorig to improve the image
quality.

In total, we attempted to solve the following optimization
problem:

min
x

LHinge(x, Ĥ)− λ · SSIM (x, xorig)

s.t. H(x) = Ĥ

x ∈ [−1, 1]H×W×C .

(3)

For our analyses, we created a surrogate hash database
by hashing all 20,580 dog images from the Stanford Dogs
dataset [34]. We then performed our attacks by modifying
the samples on the first 10,000 samples from the ImageNet
ILSVRC2012 [35], [36] test split.

We used the Adam optimizer [39] to directly optimize x. We
further set λ = 100 and stopped the optimization when either
H(x) = Ĥ was satisfied or aborted after 10,000 iterations. If
we did not stop the optimization process when H(x) = Ĥ is
fulfilled, the image quality might be further improved due to
the SSIM term.

B. Details for Setting 2

We start by stating the details for our gradient-based
approach. To change the original hash H̃ = H(xorig) =
(h̃1, . . . h̃k) of a given input image xorig , we used a negative
mean squared error (MSE) loss to increase the hash discrep-
ancy between an image xorig and its manipulated counterpart
x as

LMSE (x, H̃) = −1

k

∑k

i=1

(
σ(c ỹi)− h̃i

)2

. (4)

Instead of LMSE , −LMSE is reducing the Hamming distance
between two hashes and can therefore be used to force hash
collisions [30].

We make the binarization step differentiable by replacing it
with a sigmoid function σ(x) = 1

1+e−x . To push the sigmoid
values closer to zero and one, we scaled its inputs by a factor
c. In our experiments, we set c = 5. For a stable optimization,
we normalized the matrix-vector product y = B ·M(x) by
ỹ = y

max(∥y∥2,ϵ)
and set ϵ = 10−12 for numerical stability. For

each attack, we optimized until a minimal Hamming distance
δ0 between x and xorig is exceeded. As with Setting 1, we
also added an SSIM penalty term weighted by hyperparameter
λ to reduce visual conspicuities.

The full optimization goal can be formulated as

min
x

LMSE (x, H̃)− λ ∗ SSIM (x, xorig)

s.t. δ(H(x), H̃) > δ0

x ∈ [−1, 1]H×W×C .

(5)

For the Edges-Only attack, we first applied a Canny edge
detector [40] in the grayscale version of an image. We then
only allowed changes in the set of edge pixels by applying a
binary mask to the gradients during optimization.

As for our Few-Pixels attack, we started by selecting a
single pixel to optimize by taking the pixel with the highest
absolute LMSE loss gradient value across all three color
channels. We then again applied a binary mask to the gradients
and optimized for N steps. If the hash did not change, we
added another pixel to the pixel set and again optimized for
N steps on all pixels of the set. Additional pixels were again
selected by their absolute LMSE loss gradient values. We
repeatedly added more pixels and modified the set of pixels
until there was a change in the hash value or a threshold of
the number of pixels has been reached.

We used the Adam optimizer to directly optimize an image
x. We applied a decaying weight for the SSIM term and
set λ = 5 · 0.99step, where step denotes the number of
optimization steps already performed. By decaying the weight,
we avoided the optimizer getting stuck in local minima in
some cases. For the Standard and Edges-Only attacks, we
performed a maximum of 1,000 optimization steps.

In the Few-Pixels attack, we set λ = 0 and, therefore,
removed the SSIM term. The optimization is aborted after
150 pixels without a hash change. In all three attacks, we set
the minimum Hamming distance δ0 = 0 and, consequently,
stopped each attack when H(x) ̸= H̃ .



We also could force our attacks to produce larger perturba-
tions and move a sample even further away from its original
hash in terms of the Hamming distance by setting δ0 > 0.

For our transformation-based approach, we applied differ-
ent image transformations T (x) : RH×W×C → RH×W×C

independently to the input images x. We then obtained the
perceptual hash of each transformed image T (x) and calcu-
lated the Hamming distance δ (H(T (x)), H(x)) between the
hashes of the transformed and the original images.

For transformations with additional hyperparameters, such
as degrees of rotation, we computed results for varying
parameter values to take the transformations’ strength into
account. All investigated transformations kept the image size
and removed image parts were filled with black color.

To save computing resources, we varied most hyperparam-
eters with an exponentially increasing step size. We investi-
gated the following transformations independently: translation,
rotation, center cropping, downsizing, flipping, changes in the
HSV color space, contrast changes, and JPEG compression.

C. Hash Collision Attacks

We depict additional hash collision results in Fig. 5.

D. Gradient-Based Evasion Attacks

We visualize additional results for our three detection eva-
sion attacks. Fig. 6 shows samples for our Standard attack,
Fig. 7 for our Edges-Only attack, and Fig. 8 for our Few-
Pixels attack.

E. Transformation-Based Evasion Attacks

We visualize example images for each transformation in
Fig. 9. The additional plots for hue and saturation changes
can be seen in Fig. 10



Original

15a0e0798d547a51c0b06a34

Poisoned

14b1603d88103a51c00d6a24

Difference Target

14b1603d88103a51c00d6a24
 

2391229700573ccc580a3dd6 6130263f08c63fcc580e1dd4 6130263f08c63fcc580e1dd4

393f529646e4a9a6bbc61fb2 7d3f5a9756d441a6bfc455bb 7d3f5a9756d441a6bfc455bb

39e2462b2b39189362a55309 12e0426aa36939974aa7d391 12e0426aa36939974aa7d391

Fig. 5: Selected samples of our hash collision attack. We modify an original image to have the same hash as a target sample
from our surrogate hash database. We state the computed hash below each image. The third column illustrates the added
perturbations computed as the mean absolute differences over all color channels. Lighter areas in the heat maps indicate
greater changes.



10e163e4ac5cb8d022a76206 753b216cf2643cc4591f29cd 3cd8288ba5540cbbc7f78a0f 2cb2528bc123238cd126df24

10a563e4ac5cb9d022a36206 77392168f2643cc4511f29cd 3cd8288ba5540abb47f70a0f
 
2cb2528bc123238cd126db20

Fig. 6: Selected samples of our Standard evasion attack where we allow modifications of all pixels in an image. We state the
computed hash below each image and highlight differences. We further visualize the differences between the modified and
original images. The third row illustrates the added perturbations computed as the mean absolute differences over all color
channels. Lighter areas in the heat map indicate greater changes.



7fdec2cb49a3915ad7cdc1a3 ed98604f9d26114f83f6f2f7 58679c8432fb50ba3e3ddeba 37cf2bcb8054085342ffcb6a

7fdec2cb48a3915ad7cdc1a3 ed98604f9d2e114f83f6f2f7 58669c8432fb50ba3e3ddeba 37cf2bcb80540853427fcb6a

Fig. 7: Selected samples of our Edges-Only evasion attack where we only modify pixels that belong to an edge. We state the
computed hash below each image and highlight differences. We further visualize the differences between the modified and
original images. The third row illustrates the added perturbations computed as the mean absolute differences over all color
channels. Lighter areas in the heat map indicate greater changes.



3278505b50ea30a7b1c85e05 cffa0bb01ace4416570a3adf f7fa359ed3003c7ab14afce3 88f067be39601cf9d1863236

3238505b50ea30a7b1c85e05 cffa0bb01ace4417570a3adf f7fa359ed3003c7ab14efce
 

88f067be39601cf9f1863236

19 64 7 1
Fig. 8: Selected samples of our Few-Pixels evasion attack where we try to change as few pixels as possible. We state the
computed hash below each image and highlight differences. We further visualize the differences between the modified and
original images. The third row illustrates the added perturbations computed as the mean absolute differences over all color
channels. Lighter areas in the heat map indicate greater changes.



original rotated translated hue changed brightness changed contrast changed

saturation changed compressed center cropped downsized horizontally flipped vertically flipped

Fig. 9: Samples of the image transformations for which we tested the robustness of NeuralHash. Many of these operations can
be reversed, which is why they could be misused to bypass perceptual detection systems without degrading the image quality
by first applying a transformation and then reverting it after the detection system has been bypassed.

-180 -120 -60 0 60 120 180
Hue Angle

0.00

0.05

0.10

0.15

0.20

0.25

N
or

m
. H

am
m

in
g 

D
is

ta
nc

e

(a) Hue Changes

0.0 0.25 0.5 0.75 1.0 1.25 1.5 1.75 2.0
Saturation Factor

0.00
0.01
0.02
0.03
0.04
0.05
0.06

N
or

m
. H

am
m

in
g 

D
is

ta
nc

e

(b) Saturation Changes

0 4 8 16 32 64
Horizontal Translation

0
4
8

16

32

64

Ve
rt

ic
al

 T
ra

ns
la

ti
on

0.00

0.05

0.10

0.15

0.20

0.25

N
or

m
. H

am
m

in
g 

D
is

ta
nc

e

(c) Translation

Fig. 10: Additional plots visualizing the mean Hamming distances and their standard deviations for different gradient-free
image transformations. In 10c the yellow dots represent the Hamming distances for varying translations in both directions.


	Introduction
	Perceptual Hashing for Image Detection
	Setting 1 – Hash Collision Attacks
	Setting 2 – Detection Evasion Attacks
	Lessons & Implications
	References
	Appendix
	Details for Setting 1
	Details for Setting 2
	Hash Collision Attacks
	Gradient-Based Evasion Attacks
	Transformation-Based Evasion Attacks


