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Abstract—Personalized IoT adapt their behavior based on
contextual information, such as user behavior and location.
Unfortunately, the fact that personalized IoT adapt to user
context opens a side-channel that leaks private information
about the user. To that end, we start by studying the extent to
which a malicious eavesdropper can monitor the actions taken
by an IoT system and extract user’s private information. In
particular, we show two concrete instantiations (in the context
of mobile phones and smart homes) of a new category of
spyware which we refer to as Context-Aware Adaptation Based
Spyware (SpyCon). Experimental evaluations show that the
developed SpyCon can predict users’ daily behavior with an
accuracy of 90.3%. Being a new spyware with no known prior
signature or behavior, traditional spyware detection that is
based on code signature or system behavior are not adequate
to detect SpyCon. We discuss possible detection and mitigation
mechanisms that can hinder the effect of SpyCon.
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I. INTRODUCTION

Context-aware systems provide personalized services that
are adaptive according to user context and surrounding
environments. These pervasive systems have enabled a mul-
titude of applications in several IoT sectors including smart
cities, health care, and automotive systems. However, these
enhanced capabilities come at the expense of privacy weak-
nesses [1]. As pictorially illustrated in Figure 1, a human-
in-the-loop (HITL) IoT utilizes edge devices (e.g., mobile
phones and wearables) to sense and infer human states.
Such states are then used by the IoT to produce actions and
adapt its behavior to match the human state. Resting on this
observation, in this paper, we investigate how the coupling
between human behaviors and decisions taken by IoT system
can open a side channel, leaking sensitive information about
users. In particular, this paper raises the following questions:
(1) Can an eavesdropper who monitors the actions taken by
the IoT be able to reverse engineer these actions in order
to estimate human states and leak sensitive information? (2)
Can we develop new software mechanisms that can detect
and mitigate such privacy leaks? To explore the answers, we
introduce a new type of spyware that exploits privacy leaks
in context-aware adaptations which we call SpyCon.

A. Related Work
Context Monitoring Malware on Mobile Platforms:

Mobile systems are becoming an integral component in
multiple IoT systems due to their sensing capabilities [2].
Different side-channel attacks have been proposed, for ex-
ample, using inertial sensors and touch screen to infer user
input such as passwords [3; 4]. Besides, we witnessed how
to exploit cellular signal strengths, air pressure, or power
consumption for locations [5], gyroscope for eavesdropping
conversations [6], system-level aggregate statistics for user’s
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Figure 1: A cartoon that illustrates the flow of information in a
personalized IoT. The IoT uses devices (typically on the edge) in
order to sense and infer the human state. The IoT then adapts
to the human state by applying some actions. (top) the proposed
personalized IoT Spyware monitors the actions taken by the person-
alized IoT and reverse engineers it in order to estimate the human
state (bottom) the proposed VindiCo framework which prevents
modifies the IoT actions in a fashion that prevents any spyware
from estimating the human state.

real world identity [7], and the state of shared memory for
foreground apps, and even, activity transition sequences
[8]. There is a trend that malicious apps are adapting to
wearable devices [9]. For example, MoLe [10] exploits the
wrist motion derived from smartwatches to infer keystroke
inputs. These many examples show that “Your apps are
watching you” [11] in a broad spectrum which a majority
of users will never realize, and for sure “These aren’t the
droid you’re looking for” [12].

Contrary to the aforementioned side-channel attacks, we
consider a spyware which does not have access to sensor
information like inertial or gyroscope sensors, a spyware
which can monitor only the actions that are triggered—by
HITL IoT—based on changes in these sensory data.

Malware Detection Techniques: Several techniques have
been proposed for malware detection and can be broadly
categorized into two groups. (1) Code signature-based ap-
proach [13] detects stealthy behavior based on the code flow.
(2) Behavior-based approach [14] performs information
leakage detection in execution time, but tackling the issue
from different layers of an operating system. DroidRanger
[15] points out that an app can download binary payload at
runtime, and hence code-signature based approach can not
diagnose its intention but can raise a warning.

B. Paper Contribution
• We exploit a new side-channel attack vector arising from

monitoring actions and decisions taken by IoT systems.
We call this new set of attacks a context-aware adaptation
based spyware, or in short, SpyCon.

• We show two concrete instantiation of SpyCon. The first
instantiation targets mobile phones in which the SpyCon
can maliciously infer user’s behavior by monitoring the
decisions taken by context-based apps. We assess the
performance of the developed SpyCon through a one-
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Figure 2: SpyCon mounted at different places in HITL IoT.

month user study involving human subjects. The second
instantiation targets smart homes, in which the SpyCon
monitors HVAC activity reported to the cloud and use it
to infer human activity. We assess the performance of the
developed SpyCon through an industrial-level simulation
engines simulating Heating, Ventilation, and Air Condi-
tioning (HVAC) systems.

In the remainder of this paper, we show two examples of
SpyCon, one targets IoT mobile/edge devices while the other
one targets the IoT cloud. We refer to these two SpyCon as
“SpyCon Edge” and “SpyCon Cloud”, respectively. We then
discuss a novel information-based detection engine that can
be used to detect SpyCon.

II. SPYCON EDGE: POPULAR PHONE MANAGER APPS

A typical pipeline of an IoT application includes edge
devices which generate sensor data, an IoT cloud which
stores and forwards these data, and a mobile phone which
consumes the data, computes the actions, and presents them
to IoT users. Mobile phones are arguably a primary target for
spyware due to their sensing capabilities and the integrations
with IoT systems. In this scenario, we consider SpyCon is
mounted on a mobile phone to leak sensitive information,
depicted in Figure 2a. The SpyCon, for example, can reveal
a user location such as next to the smart fridge (the sensitive
information) if a notification reminder of a grocery list
is observed (the adaption). Location-based phone settings
management is one of the most popular context-aware ap-
plications1. Due to their capability to adapt to user context,
apps like Llama [17], Tasker [16], and Locale [18] have
gained more than 1 million downloads from Google Play
Store. Moreover, these location-based apps are increasingly
integrated as part of larger IoT systems. For example, Tasker
can be combined with IBM Watson IoT platform to allow
HITL IoT to take location-based decisions. Motivated by the
popularity of these location-based context-aware apps, we
choose user location as the sensitive data for which SpyCon
is trying to leak.

A. Spyware Description
We designed a SpyCon that monitors changes in phone

settings to demonstrate it is possible to leak user location,
which is arguably the most sensitive type of user informa-
tion [19]. The phone setting changes are triggered by the
decisions taken by a location-based context-aware app as

1By the time this paper was written, context-aware phone settings
management applications ranked 3rd in the Productivity category in the
Android Developer Challenge [16].

PS Description PS Description
R Ringer mode P Wallpaper
H Touch sound D Dialpad sound
W Enable WiFi A Alarm volume
I Ringer volume M Media volume
T Display timeout B Screen brightness
V Vibration on touch L Screen locking sound

Table I: Phone settings (PS).

part of an IoT system. We start by making the following
two important remarks:
• No user permissions: Unlike location information, many

phone settings can be monitored without seeking user
permissions. For example, SpyCon can easily get current
screen brightness or alarm volume without user consent.

• Ambiguity on setting changes: Manual adjustment can
make changes in phone settings through physical buttons.
Although SpyCon can not discriminate a priori between
the changes in the phone settings done by a location
change or by manual adjustment from users, machine
learning algorithms can be handy in discovering repetitive
patterns in the data.

The operation of the designed SpyCon is divided into two
phases:
• Logging: SpyCon monitors all the changes in phone

settings and records a timestamped value upon a change
is detected. A list of phone settings that we consider in
our SpyCon is given in Table I.

• Data Mining: Once enough data is collected, SpyCon
analyzes these data to discover repeated patterns and hence
infers user’s daily behavior. More details about the data
mining algorithm are given in Section II-B4 after we
discuss the user study setup.

B. SpyCon User Study
1) Shadow Logging Application: To understand how

much information is leaked by context-aware apps like
Tasker and Locale, we developed a shadow app that re-
sembles the functionality of Tasker and Locale in order to
collect the ground truth data. First, we ask users to enter
the same profiles which they would provide in the context-
aware apps (Tasker or Locale). To be more specific, users
have to enter a fixed-radius circular geo-fence as a context
trigger, as well as a set of actions (e.g., adjusting screen
brightness or changing ringer mode to vibration) that would
be activated when the user enters these geofences. The full
phone settings we considered are listed in Table I. Secondly,
in order to keep track of the golden output (ground truth)
for later evaluation, the shadow app keeps and timestamps a
record whenever the active profile is changed, implying that
the user moves to a different location.

2) SpyCon Application: We developed a SpyCon whose
only task is to log phone settings in the background without
any interaction with all the other apps, including the context-
aware app2. All the settings collected by the SpyCon app can
be accessed without permissions in Android OS, including
those listed in Table I.

2In the real world, this SpyCon can provide some functionality but collect
data stealthily, which is a typical way a spyware hides its true intention.
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However, it should be noted that any SpyCon app
may benefit from knowing whether a context-aware
adaption application is installed. This information
can be retrieved through different ways such as the
getInstalledApplications()API 3.

3) User Study: We implemented both apps mentioned
above on Android running on Nexus 4 and Nexus 5. Seven
participants are recruited in our user study, including four
males and three females. Each participant carries our phone
for four weeks. Users can choose the settings/profiles based
on their personal preferences, and they are allowed to change
the phone settings manually. Based on the data we collected
during the user study, we explore what sensitive informa-
tion can be mined maliciously as shown in the following
experiment.

4) Experiment 1: Data Mining by Clustering: Revealing
the semantics of the user location trace, or equivalently,
the active profile sequence from phone settings is chal-
lenging since both the profile and the phone settings do
not always have a one-to-one mapping. This is because (1)
Users configure only a subset of the 12 settings listed in
Table I in their profiles and hence it is not known a priori
which subset of settings are used by the user. Furthermore,
different profiles may include different phone settings to
be changed. (2) Users can manually override the phone
settings by, for instance, pressing the volume buttons or
adjusting the brightness through the Settings App. Thus, we
use a clustering technique to approach the user data mining
problem, and in particular, we use k-means algorithm.

Deciding the number of clusters in the k-means algorithm
is known to be hard in general and is usually application
dependent. Since our SpyCon does not know how many
profiles are defined by users, we brute-forcedly set k to
be any value between 2 through 7 (selected based on the
maximum number of profiles defined by our participants).
Our algorithm returns the clustering result with the highest
silhouette score.

C. Critical Phone Settings
Inspired by how most unsupervised machine learning

algorithms work, we implement a greedy algorithm to find
dominant phone settings. The algorithm procedures are
provided below:
1) Initialize the selected feature set S = φ.
2) We examine every other setting f not in S by performing

k-means with feature set S ∪ {f}. The silhouette score
hf is computed accordingly.

3) Denote ĥ as the maximum hf from the previous step.

If ĥ is larger than previous silhouette score, then S =
S ∪{f} and go back to step 2. Otherwise, the algorithm
terminates.

D. Privacy Implications
The clustering result of one participant in our study

is demonstrated in Figure 3. Figure 3a shows the actual
user profile changes across the day (the golden output as

3 Even though Android may protect this API by adding a permission in
the future, studies have shown that it is hard for most users to relate the
side-channel privacy implications to the granted permissions in different
apps [20].

UID # clusters using all features Dominant
base 2 3 2-7 features

1 75.2 +18.9 +22.9 +19.1 +21.8 W,R,V
2 56 +17.2 +24 +18.3 +24.1 R,B,W
3 80.5 +12.9 +14.4 +13.6 +16.7 R
4 45.6 +37.3 +34.2 +35.6 +35.9 W,R,L
5 42 +24 +35.2 +24 +41.8 T,R,A
6 57.9 +4.4 +36 +4.4 +40.7 A,R,B,W
7 78 +15 +15.5 +15 +15.6 R

Avg. 62.2 +18.5 +25.8 +18.2 +28.1
Table II: Clustering accuracy (in percentage) of all users compared
to the baseline accuracy (the accuracy that the SpyCon can have
based on blind guesses) by applying k-means using the settings in
Table I.

explained in Section II-B1). Figure 3b shows the k-means
clustering result (using an adaptive number of clusters) and
demonstrates similar patterns with the golden output in
Figure 3a. Our algorithm is able to capture subtle events, for
example, learning that the user regularly went to a particular
place (which turns out to be the child care) after leaving
or before returning home, despite the portion of time this
user spent in child care is short. Clustering result derived
by dominant features from our feature selection algorithm
is shown in Figure 3c. Figures 3b and 3c clearly indicate the
ability of the developed SpyCon to reconstruct user context
(switching profiles in this case) by just monitoring its side
effect (changes in phone settings)4.

The overall accuracy of our clustering algorithm is re-
ported in Table II. We define baseline accuracy by using
blind guesses, that is, the SpyCon always reports a user is
at home without observing any phone settings. The results in
the rest of the columns are the additional information (the
increase in accuracy) the SpyCon gains over the baseline
accuracy if an inference is used based on a different number
of clusters. The accuracy derived from dominant features
is slightly higher because the feature selection algorithm
excludes noisy features leading to a better result. We report
dominant features for each user in the last column of Table
II. We observed that the ringer mode is a dominant feature.

In summary, this study shows that the designed SpyCon
can estimate and learn with an average accuracy of 90.3%
the user behavior, in particular:
• Average commuting time between home and work.
• Average time spent at work and at home.
• Weekend behavior, such as if a specific place is frequently

visited on Sundays and average time spent at home.

E. Experiment 2: Detection Using Current Antivirus Apps
After we had implemented this spyware app, we examined

it using 5 well-known anti-virus applications 5. None of them
reported this app as malware. This follows from the fact that
the proposed SpyCon does not have any suspicious code
signature. This motivates the need to find a new detection
technique that suits this kind of spyware.

4If the user specifies two profiles with the same settings, SpyCon will
recognize them as the same profile. However, the incentive of the user to
define the same settings for multiple profiles defies the idea of the context-
aware app.

5These 5 anti-virus applications are AVG AntiVirus, Symantec Norton
Security & AntiVirus, AVAST Mobile Security & Antivirus, McAfee
Security & Power Booster, and Kaspersky Internet Security for Android.
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Figure 3: One example of profile timeline from user #2.

Context-aware App Context Side-channel

Tasker [16] location phone settings
Locale [18] location phone settings
Silence [21] calendar events phone settings

RockMyRun [22] biometrics music played
HABU music [23] mood music played

Table III: Context-aware apps in the market and their side-channel.

F. Experiment 3: Beyond Location SpyCon
While the previous experiment aims at studying how

the proposed SpyCon can leak the semantics of the user
location, we further explore how acquiring side-channels can
reveal other sensitive user information. To this end, we study
several context-aware apps in the Android market and report
the monitored context and the corresponding actions taken
by these apps in Table III. Since other apps can observe these
actions (even without asking for user permissions), these
actions open a side-channel that leaks information about the
user behavior. For example, if a SpyCon knows a priori the
presence of Silence App [21] (an app which changes your
phone settings based on the calendar events), it can reveal
the timing or repetition of calendar events based on the side-
channel of phone settings. Similarly, monitoring changes in
the played music media6 can leak information about the
user biometrics (heart rate and running pace) and user mood
whenever such context-aware apps are used. In general, the
proposed SpyCon can take advantage of any pair of get
and set methods that are in the Android framework APIs.

III. SPYCON CLOUD: SMART HVAC SYSTEM

Cloud servers continue to be one of the weakest points
when it comes to data breaches [24]. We argue in this
example, that even non-sensitive information collected on
HITL IoT clouds can be used to leak sensitive user in-
formation. To that end, we choose the personalized smart
HVAC system as an example of a HITL IoT application.
The personalized HVAC incorporate the human’s activity to
change the HVAC set point to maximize his comfort level.
In this scenario, as pictorially shown in Figure 2b, human’s
activity such as cooking, sleeping, sitting, etc. is used with
the current temperature in the house to tune the HVAC set
point. The activity of the human is a wealth of information
that should be kept safe as it leaks the behavioral pattern
of the human along with his house occupancy patterns.

6While Android framework does not provide an API to directly retrieve
which music is playing, our experiments show that a SpyCon can retrieve
such information by reading the metadata associated with the currently
active media.

Although the HVAC set point is calculated on the phone
and pushed to the cloud service that controls the smart
thermostat, a SpyCon operating on the cloud could monitor
the changes in temperature set points along with the current
home temperature to infer the human’s daily behavior.

A. Spyware Description
We conduct a simulation-based experiment using En-

ergyPlus [25], an industrial-level physics-based simulation
engine, to model HVAC systems. We use the weather reports
in Colorado-Denver during January 2018 [26]. The user
activity is used to control the set point of the HVAC across
the day to maximize the human thermal comfort. A SpyCon
mounted in the cloud can monitor the following information
to infer the user’s daily behavior: (1) Changes in the HVAC
set point triggered by the IoT, (2) current house temperature,
(3) time of the day, and (4) day of the week.

B. Experiment 4: Data Mining by Clustering
Using the same procedure in Experiment 1a (Sec-

tion II-B4), we simulated several humans independently in
EnergyPlus. Due to space, we only show the ground-truth
activity and the occupancy of one human (human #1) across
time for a month in Figure 4a. The results of the clustering
algorithm used by the SpyCon to infer the human’s daily
behavior and the home occupancy are shown in Figure 4b
and 4c, respectively.

C. Privacy Implications
The results shown in Figure 4b suggest that SpyCon oper-

ating in the cloud can infer sensitive information like when
the IoT user wakes up and goes to sleep (prof3), and when
the user leaves the house and comes back (prof1). SpyCon
Cloud is also able to detect the occurrence of a periodic
user activity just after returning home from work which is
not performed during the weekends (prof6). The accuracy of
the clustering is listed in Table IV. By using two clusters to
detect the occupancy (home/away), SpyCon Cloud achieves
an accuracy of 75% for human #1 and 91.72% for human
#2. To detect the daily behavioral patterns, we increase the
amount of clusters and achieved an accuracy of 76.2% for
human #1 and 65.4% for human #2.

IV. DETECTION AND MITIGATION DISCUSSION

Sharing information in the context of HITL IoT systems
may lead to privacy leaks stemming from the tight coupling
between human behavior and actions produced by IoT
(as shown in Experiment 1 and Experiment 4). SpyCon
exploiting these privacy leaks cannot be detected by the
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Figure 4: Activity timeline from simulated human #1.

UID Number of Clusters (k-means)
2 4 5 6 7 8

1 75.65 73.47 72.59 76.71 85.31 73.06
2 91.72 70.08 70.14 73 63.23 50.52

Table IV: Clustering accuracy (in percentage) to detect the human’s
daily behavioral pattern for two simulated humans in a house using
EnergyPlus simulator to simulate HVAC system. The clustering
algorithm (k-means) uses features mentioned in Section III-A

current state-of-the-art signature-based and behavior-based
detection techniques (as shown in Experiment 2). In this
discussion, we propose a novel information-based detection
engine and mitigation firewall.

The basic idea behind this engine is to keep track of
the ability of any SpyCon to infer the human state through
monitoring actions triggered by changes in these states. To
this end, we draw on the literature of information theory and
leverage mutual information (MI) to quantify the amount of
correlation (or dependence) between two random variables.
In our scenario, we use MI between state and action as
a metric to measure how certain a SpyCon may infer the
human state from observed actions. MI provides a theoretical
bound on the inference capability of any learning algorithm.
Generally speaking, the lower the MI between context and
actions is, the smaller the accuracy any inference algorithm
can get. Push into one extreme; if the MI is zero, then no
algorithm can infer context from monitored actions.

Once the MI (and hence the correlation) between actions
and human states are above a certain threshold, the mit-
igation firewall starts to carefully corrupt the information
before being shared with other edge devices in the IoT
system in an attempt to lower this correlation and prevent
any inference algorithm from discovering patterns in the
data. While completely blocking all side-channels may not
be practical, our goal is to drastically reduce its bandwidth.
This process needs to be done without any prior assumption
on the type of inference algorithms used by SpyCon.

One way to reduce the correlation is to mask some action
values (report zero value instead of actual value). As a result,
at any given context change, the SpyCon can only observe
partial action values after an adaptation occurs. The decision
of masking depends on flipping a biased coin with a selected
probability p, which serves as the parameter of mitigation
effectiveness. As a preliminary evaluations, we examine the
decrease in MI when mitigation is applied and how it affects
the overall accuracy of detection in SpyCon.

A. Mitigation of SpyCon Edge
In Figure 5a, we show how the MI decreases across all the

users with respect to different values of masking probability
p. As expected, when the MI decreases, the ability to infer
the context decreases as shown in Figure 5b.

B. Mitigation of SpyCon Cloud
We plot the mitigation results of human #1 in Figure 6. We

applied the masking with different probabilities. We observe
that the performance of the SpyCon Cloud in detecting
the user profile is adversely affected by increasing the
probability of masking. Similarly, as shown in Figure 6b, the
SpyCon ability to detect home occupancy degraded severely
as a consequence of applying the mitigation compared to
Figure 4. This mitigation entails changing the HVAC set-
point in order to hinder the ability of SpyCon to infer
the human behavior which can affect the human thermal
comfort. Accordingly, we compared the Prediction Mean
Vote (PMV) values–as a measure for the human thermal
comfort [27]–before and after mitigation in Figure 7. The
PMV score ranges from −3 to 3 which is the range of
thermal sensation from very cold (−3) to very hot (3).
According to ISO standard ASHRAE 55 [27], a PMV in the
range of −0.5 and 0.5 for an interior space is recommended
to achieve thermal comfort. We used the Fanger model in
EnergyPlus to estimate the PMV value [27]. In particular,
as seen in Figure 7, a choice of masking probability equal
0.8 lead to user PMV in the range of −0.8 to 1.2 while
achieving a degradation in SpyCon accuracy by 45%.
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Figure 6: Activity and occupancy timeline of human #1 after mitigation.
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Figure 7: PMV score before and after mitigation across 15 days.
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