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Abstract—The advent of autonomous mobile multi-robot sys-
tems has driven innovation in both the industrial and defense
sectors. The integration of such systems in safety- and security-
critical applications has raised concern over their resilience to
attack. In this work, we investigate the security problem of a
stealthy adversary masquerading as a properly functioning agent.
We show that conventional multi-agent pathfinding solutions are
vulnerable to these physical masquerade attacks. Furthermore, we
provide a constraint-based formulation of multi-agent pathfind-
ing that yields multi-agent plans that are provably resilient
to physical masquerade attacks. This formalization leverages
inter-agent observations to facilitate introspective monitoring to
guarantee resilience.

Index Terms—Multi-robot systems; Multi-agent pathfinding;
Observation planning; Physical masquerade attacks

I. INTRODUCTION

Recent trends in industrial production automation indicate

an ever-increasing adoption of autonomous mobile robots.

Systems from Fetch Robotics (FetchCore [1]) and Amazon

Robotics (Kiva [2]) are prime examples. These robots, dis-

tributed across a factory floor, aid production efficiency and

lower human effort, but the security research community has

begun to raise alarm over the security of these systems [3].

As a result, the factory floor is at risk from malicious actors

aiming towards production shutdown [4] or causing human in-

jury [5] through manipulation of the robots in the environment.

These threats also extend to multi-agent systems (MAS) in a

less structured environment such as unmanned aerial vehicles

(UAVs) [6]. It is therefore important to devise new strategies

that can preemptively address these threats.

In this paper, we consider a novel class of attacks called

physical masquerade attacks – a compromised insider (robot)

masquerading as a properly functioning robot and attempting

to gain access into unauthorized locations without being

noticed. We use the term physical to distinguish this type of

attack from masquerade attacks typically considered in the

network security literature [7]. In the multi-agent path finding

(MAPF) context, this manifests as one of the agents deviating

from its pre-planned path and moving into an unauthorized

zone. We show that solutions to the traditional MAPF problem

are susceptible to this type of attack.

We propose a novel defense mechanism through path plan-

ning by leveraging the physical-sensing capabilities of robots

(e.g., cameras) to detect and mitigate these attacks. The key

idea is that, even if the compromised robot can forge false lo-

cation information, other uncompromised robots can detect the

physical anomaly (i.e. a robot veering off from its designated

path) if they are close enough. By specially crafting the multi-

agent plan, the induced inter-agent observations can provide

introspective monitoring guarantees – any adversarial agent

that attempts to break the system-wide security specification

must necessarily violate the induced observation plan. We

show that our method can find a multi-agent plan with the

guaranteed resilience (if one exists) under a strong attacker

model where an agent is completely compromised and has

full knowledge of the plan. Our work is inspired by the recent

efforts on defending against Sybil or spoofing attacks in multi-

robot systems [8], [9].

The contributions of this paper are summarized below.

• We introduce a new class of attack in the multi-agent

planning domain called physical masquerade attacks.

• We show that conventional solutions to MAPF are vul-

nerable to physical masquerade attacks.

• We propose a novel automated detection mechanism by

simultaneously constructing an observation plan during

path planning.

• We show that an attack-proof plan can by synthesized

via an encoding to an Exists/Forall Satisfiability Modulo

Theory (EFSMT) problem.

The rest of the paper is organized as follows. In Section II

we discuss related work. Section III introduces the scenario of

attack-proof multi-agent path finding. Section IV summarizes

our results and Section V concludes.

II. RELATED WORK

Autonomous agents are increasingly being used to manage

various physical systems. This has introduced a number of

vulnerabilities. Quarta et. al. explore the vulnerabilities in

robotic arms of the type used in factory assembly lines and also

give a review of some notable exploits such as in automated

blast furnaces and nuclear plants [3].

The interconnection and interaction of industrial robots with

the physical world can also open up new attack surfaces. Bijani

and Robertson provide a taxonomical treatment of attacks

on multi-agent systems [10]. The common theme of these

studies is that interconnected autonomous agents suffer from

lack of effective monitoring. Our work provides introspective

monitoring guarantees by crafting a multi-agent plan in such

a way that an agent is required to be seen by other agents at

specific locations and at specific times.
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There is a large body of work on multi-robot path find-

ing [11]–[16]. However, relatively scarce literature has taken

security into consideration. Among those that consider secu-

rity, existing works are primarily limited to patrol strategies for

intrusion detection [17]–[21], secure communication [22], [23]

and attack-resilient network protocols [9], [24]. More recently,

approaches that leverage the physics of the environment to

counter cyberattacks began to emerge. In [8], the authors

propose an algorithm that uses the physics of wireless signals

to defend against Sybil attacks in multi-robot networks. In

[25], the authors propose a Sybil attack-resilient traffic estima-

tion and routing algorithm that uses information from sensing

infrastructure and the dynamics and proximities of vehicles.

Our paper is similar to these in spirit in the use of physical

channels. In addition, we consider novel attacker models that

not only involve insider attacks but also involve maneuvers in

the physical space.

In terms of multi-agent systems that consider observations

made by the agents, a recent work by Lee and Winfield

introduce mathematical tools to scrutinize the observations and

claims made by agents in a multi-robot setting by formalizing

strength of opinion and evidence [26]. Our work can be

differentiated from the patrolling problem by the distinction

that in our work the would-be attacker is taken to be one of

the defenders. Another line of work that considers adversarial

agents is Adversarial Cooperative Path Finding (ACPF) [27].

In ACPF two teams of robots are pitted against each other in a

race to reach their goal positions first. In contrast to ACPF, in

our work we do not know which, if any, robots are adversarial

and must assume that any of the robots may attempt to foil

the security property.

On the computational side, many MAPF problems such as

MAPF for optimal makespan [28] and optimal MAPF with

deadlines (maximizing the number of agents that can reach

their goal locations within the deadline) [29] are known to

be computationally intractable to solve. In our work we use

formulations that stipulate an optimal multi-agent solution, as

such we expect high runtimes and scalability is not the focus of

this work. As our reader will uncover, we are interested only

in specific solutions to the MAPF problem that are attack-

free. Approaches exist for coping with the high complexity

of optimal MAPF but with the sacrifice of completeness.

These methods essentially achieve scalability by decoupling

agents from each other, planning a single agent at a time and

resolving conflicts as they arise – subsequently planned agents

treat previously planned agents as moving obstacles. As is

explained by Gabrielle and Helmert, suboptimal MAPF has

been completely solved by Kornhauser in his 1984 master’s

thesis [30]. Although Kornhauser’s work is mostly forgotten,

results building on his thesis have been rediscovered inde-

pendently, for example by Wang and Botea in their work on

scalable MAPF [13]. Recent work on MAPF has attempted

to bridge the gap between decoupled planning and dynamic

planning by using reinforcement learning [31]. It is however

not clear whether these incomplete methods can be applied to

finding attack-free multi-agent plans since we might need to

enumerate all possible MAPF solutions in the worst case.

There is also rich literature on fault detection and fault-

tolerance in multi-agent systems [32]–[34]. Our method of

simultaneously synthesizing an observation plan can also be

seen as a way to detect “faults” (malfunctioning robots). In a

similar light, an attack that defeats an observation plan can be

viewed as “unobservable faults.”

III. OBSERVATION PLANNING

In this section, we describe in detail how we reformulate

the multi-agent path finding problem to directly incorporate

security requirements. The main idea is that by scheduling

the robots’ paths concurrently with an observation plan, the

overall system is able to detect when specific robots are

not at assigned locations at predetermined times. We call

this sort of multi-agent path finding multi-agent observation
planning. A multi-agent observation plan entails sequences of

planned observations between robots. By carefully construct-

ing this multi-agent observation plan, the system can detect

attacks (and faults) by detecting any difference between the

planned observations and the actual observations reported by

the robots. In fact, we would like to construct the multi-

agent observation plan in a way that if a faulty or attacking
agent breaks the security specification then that agent would
necessarily violate the observation plan.

We begin by providing a formal definition of the multi-agent

path finding with deadlines (MAPF-DL) problem, hereafter

referred to as simply MAPF.

Definition 1: MAPF

The MAPF problem for R homogeneous robot agents is

defined over a 6-tuple M = (W,U, δ, {Si}Ri=1, {Gi}Ri=1,Ω).
The workspace, or world, W is the set of locations and U
is the set of control inputs. δ : 2W × U → 2W encodes the

dynamics of the homogeneous robots. Si ⊆ W is the initial

set of locations occupied by agent i and Gi ∈ W is the goal

location of agent i. Obstacles in the environment are given as

the Ω ⊆W . A solution x = {xi}Ri=1 to problem M is a set of

T -length paths xi = 〈x1
i , . . . ,x

T
i 〉 for each agent i satisfying

the properties:

(∀ i ∈ NR)
(
x1
i = Si

)
, NR = {1, . . . , R} (1)

(∀ i ∈ NR, t ∈ NT )
(
xt
i ⊆W

)
, NT = {1, . . . , T} (2)

(∀ i ∈ NR, t ∈ NT−1 ∃u ∈ U)
(
δ(xt

i, u) = xt+1
i

)
(3)

(∀ i ∈ NR ∃ t ∈ NT )
(
Gi ∈ xt

i

)
(4)

(∀ i, j ∈ NR, t ∈ NT )
(
xt
i ∩ xt

j 
= ∅ =⇒ i = j
)

(5)

(∀ i ∈ NR, t ∈ NT )
(
xt
i ∩ Ω = ∅) (6)

Definition 1 allows us to work with both discrete and

continuous workspaces W . In the discrete case of a 2D

gridworld, we can take W = N
2
k, U = {·, ↑, ↓,→,←},

etc. to obtain a synchronous discrete MAPF problem of the

kind explored in [13]. Solutions to the MAPF problem on a

gridworld are shown in Figure 1 with solid lines.

Next, we describe the attacker model. In our scenario, an

attacker aims to compromise the safety/security of a factory
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floor (e.g. entering an unauthorized zone) by replanning one

of the robots. Replanning several robots and allowing coor-

dination between attacking robots is also possible, but is not

considered in this paper. We assume that regardless of how

much additional power the attacker can gain over the system,

at the very least the attacker can fully control the processes

being run on the compromised robot including motion plans

and robot intercommunication software. We further assume

that the attacker can only move the compromised robot in

the same fashion as an uncompromised robot can move; the

control input set U for the attacker is inherited from an existing

MAPF problem. There are two levels of information that an

attacker can have about the motions of other agents.

1) The full-information attacker has knowledge of the full

observation plan

2) The partial-information attacker knows only the motion

plan for the compromised robot

In our motivating example we experiment with an attacker

that has knowledge of the full observation plan, i.e. the

attacker knows the motion plans for each of the robots and

therefore knows when an attacking robot should be observed

and by which observing robot. The alternative to the full

information case is one where the attacker has imperfect

information and knows with certainty only the initial position

of the compromised robot and knows with uncertainty the

motion plans of other uncompromised robots. As mentioned

in Section II, this reduces to the attack-side of the patrolling

problem.

Given a MAPF problem M with solution x we now consider

the Attack-MAPF problem where an adversarial agent aims to

reach a secure location undetected. The attacker knows that

all of the robots are equipped with sensors for inter-robot

communication and monitoring such as radios and cameras.

Uncompromised agents will be reporting observations to a

central controller for verification against the observation plan.

The sensor properties are known to the attacker, i.e. the

attacker knows which positions relative to uncompromised

agents will result in observations being reported to the central

controller.

Definition 2: Attack-MAPF

The Attack-MAPF problem is defined over a 4-tuple A =
(M,x, φ,Ξ). M is a MAPF problem, x is a solution to M ,

φ : 2W × 2W → {⊥,�} is the observation function, and

Ξ ⊆ Ω is the set of secure locations (they would appear as

obstacles to normal agents in MAPF). A solution y to problem

A is a T -length trace satisfying the properties:

(∃ i∗ ∈ NR)
(
y1 = x1

i∗
)
, call i∗ the attacking agent. (7)

(∀ t ∈ NT )
(
yt ⊆W

)
(8)

(∀ t ∈ NT−1 ∃u ∈ U)
(
δ(yt, u) = yt+1

)
(9)

(∃ t ∈ NT )
(
yt ∩ Ξ 
= ∅) (10)

(∀ t ∈ NT )
(
yt ∩ (Ω \ Ξ) = ∅) (11)

(∀ t ∈ NT , j ∈ NR \ i∗)
(
xt
i ∩ yt = ∅) (12)

(∀ t ∈ NT , j ∈ NR \ i∗)
(
φ(xt

j ,x
t
i∗)⇔ φ(xt

j ,y
t)
)

(13)

S

(a) Insecure

S

(b) Secure

Fig. 1: (left) Solution to the MAPF problem (solid lines)

for two agents in a 5 × 5 gridworld. This solution is not

secure, since there is a solution to the corresponding Attack-

MAPF problem for the square agent (dotted line). A com-

promised square agent can reach the secure location, marked

S, undetected by the circle agent. (right) Solution to the

APMAPF problem for two agents in a 5×5 gridworld. Neither

agent can reach the secure location without breaking with the

observations expected by the other agent.

Eqs. 8, 9, 11, 12 are related to the attacker motion and

are analogous to the motion constraints in Definition 1. Eq. 7

ensures that the attacker is one of the robots present in the

MAPF problem and inherits that robot’s starting position.

Eq. 10 stipulates that the successful attacker reaches one of

the secure locations. Eq. 13 maintains that the attacker neither

remove observations from nor introduce observations to any of

the non-attacking robots. The observation function, φ(xt
i, x

t
j),

is read as ”robot i observes robot j at time t”; φ need not be

a symmetric function although in our experiments it always

is symmetric. A solution to the Attack-MAPF problem on a

gridworld is shown on the left of Figure 1 with dashed lines.

φ for this example returns � only for adjacent robots. Now we

can easily define the attack-proof MAPF (APMAPF) problem

in terms of MAPF and Attack-MAPF.

Definition 3: APMAPF

The APMAPF problem is defined over 3-tuple Map =
(M,φ,Ξ). M is a MAPF problem, φ an observation function,

and Ξ a set of secure locations. A solution xap to Map

is a solution to M such that the Attack-MAPF problem

(M,xap, φ,Ξ) has no solution.

Figure 1 shows a solution to the APMAPF problem along-

side a corresponding MAPF problem. Definitions 1 to 3 can be

easily modified to apply to non-homogeneous sets of agents by

allowing agent-specific δ and φ. Non-homogeneous agents can

be used to model a mixture of mobile robots with stationary

security cameras.

We examine a toy discrete gridworld example and a more

realistic continuous case with simple robot dynamics. For the

discrete case we describe a procedure for the full APMAPF.

For the continuous case we describe the primary obstacles

to a full solution and just demonstrate Attack-MAPF, i.e.

the single-agent planning problem to find a plan to enter a

secure location undetected; we demonstrate possible attacks

on MAPF solutions that result in weak observation plans.
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The continuous case is significant especially when continuous

dynamics are involved. Applications such as mapping or

search-and-rescue using multiple UAVs fall into this category.

We want to highlight that solving the APMAPF problem in

the continuous case is much harder than in the discrete case.

A. N ×N 4-connected grid

We encode the MAPF problem from Definition 1 as a

Satisfiability Modulo Theories (SMT) proposition IsPlan(x)
following the 4-connected grid formulation of [13]–[16].

In the 4-connected grid environment, we decide that when

robots are adjacent they can mutually observe one another.

With this decision made, we encode the Attack-MAPF prob-

lem from Definition 2 as an SMT proposition Attacks(y, x).
We elect to use an SMT encoding for the Attack-MAPF

problem because we would like to keep the approach general

to other types of security specification or attack objective.

Although in our Definition 2 version of Attack-MAPF the

attacker is performing a reach-avoid task, we would like to

have an approach that can also be used for attackers wishing

to fulfill richer types of objectives such as those expressed in

safe Linear Temporal Logic [35]. This means our approach

can also be applied to settings where SAT/SMT-based motion

planning is suitable, e.g. to satisfy additional dwell-time or

sequence requirements [36].

Finally, We encode the APMAPF problem as an EFSMT

problem (formulas of the form ∃x.∀y.Φ(x, y) where Φ(x, y)
is quantifier-free). The high-level EFSMT problem is shown

in Eq. 14. In plain English Eq. 14 is saying that the satisfying

solution x is a motion plan for all of the robots such that for

all single-agent trajectories y, y is not a valid plan of attack

for the full-information attacker.

(∃x ∀y) (IsPlan(x) ∧ ¬Attacks(y, x)) (14)

B. Continuous Case

In the continuous case the positions of the robots at

each timestep become real-valued. Therefore we formulate

the MAPF and Attack-MAPF problems as a Mixed Integer

Quadratically Constrained Program (MIQCP) in the continu-

ous case. Auxiliary integer-valued variables in the set {0, 1}
are used to handle disjunctions that are present in the EFSMT

formulation of Section III-A using the standard mixed-integer

programming tricks.

The workspace is now W = [a, b]2 ⊂ R
2. The secure

location and obstacle sets Ξ ⊂ Ω ⊂ W consist of rectangles

defined by extremal values, i.e. (xmin, ymin, xmax, ymax).

Where in the 4-connected grid case the robots are con-

strained to movement between adjacent squares on the grid

during one timestep, in the continuous case we adopt simple

dynamics xt
i = xt−1

i + ut−1
i where ut

i is the control input for

robot i at timestep t with ‖ut
i‖2 ≤ ū. Convex optimization

is used to obtain a solution x for this MAPF problem for

the continuous case. The optimization objective we use is

min
∑

i≤R,t≤T ‖ut
i‖2.

As opposed to the discrete case where adjacent robots in

the grid are said to observe one another, in the continuous

case we say that robots that are within a fixed radius robs are

mutually observable. Given x we compute for each robot i a

set of intervals [tstart, tend] ∈ [1, T ] where i goes unobserved

by all other robots. Since an unobserved attack can only take

place during one of these intervals, we iterate over the intervals

and secure locations and use convex optimization to solve for

a feasible single-agent motion plan that reaches one of the

secure locations.

The convex optimization objective in the Attack-MAPF step

is min
∑

t ‖yt−Center(ξ)‖2 and is essentially a heuristic that

encourages a single-agent plan that stays within the secure

location ξ for as long as possible. The planning procedure

returns a successful attack result if any of the yt are within

ξ.

IV. RESULTS

The key metric for evaluating the danger posed by physical

masquerading attacks is the percentage of time that con-
ventionally obtained MAPF solutions are vulnerable to the
corresponding Attack-MAPF problem.

First we evaluate the vulnerabilities in N ×N 4-connected

grids under varying grid size, number of agents, and number

of obstacles. We use the Z3 SMT solver [37] running on a

Intel Core i7-7700 CPU @ 4.2GHz machine with 16GB RAM

for solving the MAPF, Attack-MAPF and APMAPF problems.

As in [38] we begin by generating 100 random 8 × 8 grids

without obstacles. The first set of experiments allowed five

minutes each for the MAPF step and Attack-MAPF step. The

results, shown in the top half of Table I indicate that in over

90% of cases on average, conventional MAPF is vulnerable to

the physical masquerade attack. The second set of experiments

evaluate vulnerabilities in larger, more complicated grids with

obstacles present in the environment. We generated 50 of

these more complicated grids with five different settings and

allow 20 minutes each for the MAPF step and Attack-MAPF

step. The MAPF step is performed by an Enhanced Conflict-

Based Search (ECBS) planner. ECBS is a conventional MAPF

algorithm [39]. The results, shown in the bottom half of

Table I, indicate that MAPF solutions returned by conventional

planners are predominantly (over 95% on average) vulnerable

to the physical masquerade attack.

The third set of experiments demonstrate the full APMAPF

pipeline. We experiment with 50 instances for a variety of

settings that we know from the prior two experiments that our

SMT-based MAPF solver can handle in a reasonable amount

of time. Now in addition to 20 minutes each for MAPF

and Attack-MAPF we allow 2 hours for the APMAPF step.

Because there is a tradeoff between total distance traveled and

security with respect to Definition 2, we set the deadline for

APMAPF to five timesteps more than the deadline from the

MAPF step. The results of these trials in Table II demonstrate

that for smaller grids we can obtain plans that are proof

against physical masquerading attacks using the EFSMT-based

approach described in Section III-A.
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TABLE I: MAPF and Attack-MAPF results for the 4-

connected grid case for varying grid size N , number of agents

R, and number of obstacles O. The N = 8 trials correspond

to the first set of experiments to set a baseline against [38].

The remaining trials have 20 minutes timeouts.

N R O Attack UNSAT (%) Vulnerable (%)

8 3 0 8 92
8 4 0 3 97
8 5 0 2 98
8 6 0 7 93
8 7 0 7 93
8 8 0 7 93
8 9 0 9 91
8 10 0 4 96
8 11 0 11 89

10 4 10 4 96
20 5 20 6 94
40 3 50 6 94
40 6 50 0 100
80 7 100 0 100

TABLE II: APMAPF results for the 4-connected grid case

for varying grid size N , number of agents R, and number

of obstacles O. 20 minutes each are allowed for MAPF and

Attack-MAPF and two hours are allowed for APMAPF.

N R O Attack UNSAT Timeout Secured

5 2 4 12 2 36
10 2 4 6 24 20
10 3 15 3 31 16
10 5 15 5 34 11
15 5 15 0 43 7

The fourth and final set of experiments demonstrate the

physical masquerading attack on the continuous case described

in Section III-B. We use GUROBI as our MIQCP solver [40]

running on a Intel Core i7-6850K @ 12x 4GHz machine

with 126GB RAM. We generate 20 random instances each

for a varying number of agents and obstacles. The agents

and obstacles are rectangular and the problem is scaled to be

solvable in approximately 100 time steps, i.e. the workspace

is a box of side length ten centered at (0, 0) and the control

input bound is ū = 0.2. The observation radius is robs = 1.5.

The results of the continuous case experiments are shown

in Table III and reinforce the findings from the 4-connected

grid case; conventionally planned agents are vulnerable to

attack by masquerading agents. An illustration of one of our

continuous case experiments detailing the MAPF solution and

corresponding Attack-MAPF solution is shown in Figure 2.

TABLE III: Attack-MAPF results for the continuous case with

varying number of agents R and number of obstacles O.

R O Attack-MAPF UNSAT Vulnerable

2 2 1 19
3 2 1 19
3 4 1 19
4 4 0 20
4 8 0 20
6 8 0 20

Fig. 2: Solution to the MAPF problem (solid lines) for six

agents in a continuous workspace. This solution is not secure,

since there is a solution to the corresponding Attack-MAPF

problem for the red agent (dotted line). A compromised red

agent can reach the secure location, shown in green, after being

appropriately observed by the blue agent (double-headed black

line) without any unplanned detections.

We observe that starting scenarios that result in congested

plans with almost-collisions are more secure since congestion

creates more observation points and leaves less opportunity

for the compromised robot to deviate from its replanned path

without violating the observation plan. We also experimented

with special scenarios such as robots with goal positions in

different rooms; for valid APMAPF solutions this necessitates

that robots travel together for significant distances. We leave

a systematic study of the relationship between attack-proof

constraints and planning performances such as makespan and

total distance traveled for future work.

V. CONCLUSION

This paper introduces a new class of attacks for multi-robot

systems where a compromised robot can masquerade as a

properly functioning agent and conduct clandestine maneuvers

without being detected by other agents. We show that solutions

to purely MAPF problems are susceptible to this type of

attacks. Further, we propose a novel mechanism for detecting

these physical masquerade attacks by simultaneous synthesiz-

ing observation constraints during path planning. In the future,

we plan to study weaker attacker models such as attacker

knowing only part of the plan and the security implication

of these models. In the case where more than one agent are

compromised, collusion between these agents are possible and

new strategies will need to developed to detect and defend

against masquerade attacks. Computationally, MAPF problems

are in general NP-hard and APMAPF additionally requires

the absence of potential attack paths in the solutions to the

MAPF problems. A subject of current investigation is the

exact complexity characterization of APMAPF. In addition,

our EFSMT-based approach can be viewed as a centralized

planning approach and this type of approaches often face

scalability issues. We plan to investigate decoupled approaches

to the APMAPF problem motivated by the high algorithmic

complexity of the current approach.
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