
Ensuring the Safe and Secure Operation of
Electronic Control Units in Road Vehicles

Florian Kohnhäuser∗, Dominik Püllen†, Stefan Katzenbeisser‡
Security Engineering Group, Computer Science Department, TU Darmstadt, Darmstadt, Hessen, Germany

Emails:{kohnhaeuser∗, puellen†, katzenbeisser§}@seceng.informatik.tu-darmstadt.de

Abstract—With the increasing connectivity and complexity of
road vehicles, security heavily impacts the safety of vehicles. In
fact, researchers demonstrated that the lack of security in vehicles
can lead to dangerous and even life-threatening situations. A
threat that has been insufficiently addressed in existing vehicular
security solutions are software attacks, in which the adversary
compromises the software of Electronic Control Units (ECUs).
A promising technique to defend against software attacks is
remote attestation, as it enables to detect compromised devices.
This paper presents a novel attestation scheme that ensures the
software integrity of ECUs to warrant the vehicle’s safety. In
our scheme, a trusted master ECU verifies the integrity of all
safety-critical ECUs and refuses to start the engine in case an
untrustworthy, and hence, unsafe state is detected. As modern
vehicles are highly heterogeneous system of systems, we propose
two different attestation techniques that enable the attestation
of simple ECUs, such as basic sensors or actuators, as well as
advanced, more complex ECUs like sensor fusion systems. We
implement our attestation scheme on an exemplary automotive
network that incorporates CAN and Ethernet, and show that our
solution imposes an imperceptible overhead for passengers.

Index Terms—safety, security, remote attestation, road vehicles

I. INTRODUCTION

In the past decades, vehicles converted from mere mechani-

cal devices to complex systems with dozens of interconnected

embedded computers, called Electronic Control Units (ECUs).

Nowadays, ECUs are accessible through various communica-

tion protocols and interfaces, of which some are even wireless,

e.g., Bluetooth, WiFi, and LTE. This evolution drastically in-

creased the attack surface of vehicles and rendered established

techniques to ensure the safety of cars, like redundancy, relia-

bility, and determinism, insufficient. In fact, recent attacks [16]

and security evaluations [5], [9] have demonstrated that ECUs

can be manipulated to perform malicious actions which can

lead to life-threatening accidents. Consequently, the safety of

modern vehicles can only be guaranteed by establishing an

appropriate level of security.

To secure vehicles, much effort has gone into the re-

search [18], [20] and standardization [4] of authentication

protocols. These protocols protect against network attacks, in

which the adversary attempts to forge or manipulate messages

in the automotive network. Although authentication proto-

cols are essential for security, they cannot protect against

all attacks. In particular, they are unable to defend against

software attacks, in which the adversary compromises the

software of ECUs to perform malicious actions. For instance,

the firmware of brake actuators may be manipulated to refuse

applying the actual brakes. Authentication protocols are unable

to prevent this attack. A key technology to defend against

software attacks is remote attestation. It is typically realized

as a challenge-response protocol between a verifier and at least

one prover. By executing the protocol, the verifier determines

whether the prover is in a trustworthy software state (or not).

The potential of remote attestation to protect vehicles

against software attacks has already been recognized in exist-

ing works. However, existing solutions suffer from limited ap-

plicability, as they either require ECUs to implement a Trusted

Platform Module (TPM) [14], [19] or the SANCUS research

architecture [25]. As of yet, ECUs are not equipped with TPMs

and SANCUS is commercially unavailable. Furthermore, ex-

isting works do not focus on safety [14], [19], [25] or lack an

implementation and evaluation of the attestation [25].

Contributions. In this work, we present a novel solution to

ensure the safe and secure operation of ECUs in road vehicles.

In short, we make the following contributions:

• Automotive Attestation Scheme: We present the first attesta-

tion scheme that aims to ensure the safety of road vehicles.

In our scheme, a trusted master ECU verifies the software

integrity of all safety-critical ECUs in the vehicle, each time

passengers unlock the vehicle and open the door(s). Only

after all safety-critical ECUs are successfully verified, the

master ECU mechanically allows the engine to launch.

• Applicability to Commodity ECUs: To address the hetero-

geneous character of ECUs in road vehicles, our scheme

comprises two attestation techniques. The first technique

is suited for simple ECUs that possess only a small and

modest system architecture, such as basic sensors and

actuators. The second technique targets advanced ECUs that

feature ARM application processors, and hence are suited

for more complex tasks, e.g., sensor fusion. We show that

both techniques are applicable to a broad range of existing

commodity ECUs which are deployed in road vehicles.

Thus, our scheme entails only minimal deployment costs.

• Evaluation: We implement our scheme on commodity

devices, which we connect in an automotive CAN and

Ethernet network. Measurements conducted in our setup

demonstrate that 100 ECUs can be verified in less than 1.4

seconds. Note that typical vehicles contain 70-100 ECUs

in total, so that the amount of safety-critical ECUs can be

expected to be less than 100. Based on our measurement

results, we argue that passengers are unable to notice any

overhead to the startup time of vehicles.

Outline. § II summarizes related work. § III describes our

system model. § IV presents our attestation scheme. § V shows

our implementation and evaluation. § VI concludes this work.

126

2019 IEEE Security and Privacy Workshops (SPW)

© 2019, Florian Kohnhäuser. Under license to IEEE.
DOI 10.1109/SPW.2019.00032

II. RELATED WORK

Remote Attestation. Remote attestation is a technique that

allows a third party, the verifier, to ensure the integrity of

a remote device, the prover. During attestation, the verifier

challenges the prover and receives a response that indicates

whether the prover is in a trustworthy system state (or not).

Hardware-based attestation techniques [13] rely on secure

hardware that is built-in the prover device, such as the

TPM, ARM TrustZone, or Intel SGX. For low-end embedded

devices, such hardware has shown to be too complex and

expensive. This is why recent techniques aim at an attestation

with minimal secure hardware [10], [17]. In contrast, software-
based attestation is hardware-independent and thus suited for

legacy devices that do not provide secure hardware. However,

software-based techniques rely on strong assumptions that are

hard to achieve in practice [3], such as an optimal implementa-

tion and execution of the protocol, precise time measurements,

and an adversary who is passive during attestation.

Attestation of ECUs in Vehicles. Oguma et al. [14], [19]

proposed an attestation scheme that enables a dedicated master

ECU to verify the integrity of other ECUs within the vehicle.

To ensure a secure attestation, the master and all ordinary

ECUs are equipped with a TPM 1.2. Yet, TPMs are considered

too complex and costly to be deployed in embedded systems.

Hence, the proposed attestation scheme suffers from limited

applicability in actual vehicles, where most, if not all, ECUs

are embedded systems. We acknowledge that the TPM 2.0

Automotive Thin Profile was recently announced. Yet, because

these new TPMs are also separate microcontrollers that need

to be integrated into ECUs, they increase the ECUs’ size,

complexity, and cost, just like the TPM 1.2 [26]. Moreover,

these TPMs are only commercially available since October

2018 and are not deployed in current commodity ECUs.

VulCAN [25] is a message authentication, software isola-

tion, and attestation scheme, which is able to dynamically at-

test the integrity of ECUs across an untrusted vehicle network.

However, VulCAN builds on the assumption that all attestable

ECUs are equipped with SANCUS [17], which is a research

security architecture that is commercially unavailable. Further-

more, VulCAN’s attestation concept was not implemented and

evaluated, so that its practicality has not been proven.

Attestation of Commodity Embedded Devices. Recent

works have shown that commodity low-end embedded devices

can already be attested in case they provide read-only boot

code and a simple memory protection mechanism [6], [11],

[12], [23]. However, none of the works investigated whether

the required hardware security features can be found in ECUs.

Moreover, the proposed solutions were not implemented and

evaluated in automotive networks. Hence, their practicality in

the automotive context is unclear.

Other works approach remote attestation on more powerful

commodity embedded devices that additionally feature the

ARM TrustZone technology. fTPM [21] and Komodo [8] show

how a TPM, respectively Intel SGX, can be implemented in

software using the TrustZone. Shepherd et al. [24] present

 Master ECU
ID Valid
1 LiDAR Sensor
2 ADAS Sensor Fusion
3 Brake Pedal Sensor
4 Brake Actuator

 Vehicle in unsafe state
 Lock power supply

Brake Pedal
Sensor ECU

Brake Actu-
ator ECU

Ethernet
CAN

Sensor
Fusion ECU

LiDAR Sensor
ECUECU

Fig. 1: Illustration of our system architecture in an electric car.

a protocol that establishes secure channels between devices,

based on a mutual attestation of applications that run in the

TrustZone. Nevertheless, fTPM [21] and Komodo [8] only

provide a first step towards attestation, as they lack a concept

to measure and verify the integrity, and [24] only enables the

attestation of a single program running in the TrustZone.

III. PRELIMINARIES

System Model. As depicted in Figure 1, we consider a vehicle

that consists of various interconnected ECUs. The Master ECU
has a special role, because it verifies the software integrity

of other ECUs in the vehicle using our proposed attestation

scheme. The master is directly connected to the ignition switch

in gasoline-powered vehicles or to the power supply in all-

electric vehicles. In case the software of at least one safety-

critical ECU cannot be verified, the master refuses to start

the vehicle. The master is assumed to be trustworthy, as

opposed to all other ECUs within the vehicle, which may be

compromised by an adversary, as described below.

To be verifiable by the master, ECUs must provide certain

secure hardware features, which are stated in § IV-B. We

focus on two types of ECUs. First, we consider simple
ECUs that perform basic sensor and/or actuator tasks, such

as sensing the brake pedal or applying the actual brakes.

Simple ECUs are typically low-end to mid-range devices

with a few MB of storage and a CPU that operates at most

at a few hundred MHz. Second, we regard more advanced
ECUs, which are mid-range to high-end embedded devices that

run a full-featured Operating System (OS) including various

applications. Advanced ECUs are used in more complex tasks,

such as sensor fusion or object detection in Advanced Driver

Assistance Systems (ADASs). Although our solution is suited

to attest all ECUs in the vehicle, this may not be necessary

from a safety perspective. For instance, assuming that all in-

vehicle communication is authenticated, a window lifter has a

negligible impact on safety compared to the brakes.

Adversary Model. We assume an adversary Adv who has full

control over the communication medium (Dolev-Yao model).

Thus, Adv can eavesdrop, modify, delete, or insert any mes-

sage between all ECUs in the network. We further assume

that Adv can compromise the software of all ECUs, except

for the trusted master ECU. On a compromised ECU, Adv

127

has complete control over the execution state and can read all

readable storage and write to all writable storage. However, we

assume that Adv is unable to bypass the hardware protection

provided by an ECU. Thus, Adv cannot manipulate data

or code that is stored or executed inside hardware-protected

memory. In addition, we do not consider Denial of Service

(DoS) attacks on individual ECUs, as they cannot be prevented

against an adversary who has full control over the network. We

refer to our attestation scheme as secure, if Adv is unable to

forge a valid system state for a software-compromised ECU.

IV. ATTESTATION SCHEME FOR ROAD VEHICLES

In this section, we first describe the basic functioning of our

attestation scheme (§ IV-A) and then explain its technical im-

plementation details on simple and advanced ECUs (§ IV-B).

A. Overview

The center of our attestation scheme constitutes the master

ECU. At each time the vehicle is unlocked and then opened,

the master verifies the software integrity of a predefined set

of safety-critical ECUs by executing our proposed attestation

protocol. The set of safety-critical ECUs is fixed at the roll-out

of the vehicle by the manufacturer, but can be changed later on,

e.g., in case ECUs need to be replaced. The manufacturer de-

ploys each safety-critical ECU with two different nonces, NB

and N , a unique identifier ID, and a unique attestation key AK
that is only known to the ECU and the master. Furthermore,

the master and all safety-critical ECUs are supplied with the

protocol code and data, as detailed in § IV-B. The protocol is

illustrated in Figure 2 and described in the following.

The attestation takes place in three steps that are sequen-

tially executed when the vehicle is unlocked and opened:

Step (1). All safety-critical ECUs boot and measure their local

software integrity. To this end, ECUs compute a hash value

over their installed software and store it in IM, the integrity

measurement variable. Afterwards, each ECU derives a so-

called response key RK. ECUs generate RK by computing an

Hash-based Message Authentication Code (HMAC) over the

nonce NB and the measurements IM with the attestation key

AK. In step (2), RK is used to answer the attestation challenge

from the master. If an ECU is in a compromised software state,

IM differs from the ECU’s known good integrity measurement,

so that RK does not match the ECU’s expected response key.

In step (3), this is eventually detected by the master ECU when

verifying the attestation response.

For a secure attestation, it is crucial that an adversary Adv
is unable to obtain access to the attestation key AK of ECUs,

and cannot tamper with the computation of IM and RK. The

details to ensure this depend on the ECU type and are subject

to the following subsection (§ IV-B).

Step (2). The master ECU generates a random nonce N
and broadcasts it to all safety-critical ECUs. The nonce N
functions as a challenge and prevents Adv from performing

replay attacks with recorded attestation responses.

Upon the reception of N , ECUs overwrite NB with N .

Since RK is dependent on NB , this causes RK to change in

each attestation run. As discussed later on, this enables our

scheme to recover from so-called runtime attacks, in which

Adv compromises the software of ECUs after their attestation.

Afterwards, ECUs generate their attestation response, which

consists of two parts: (i) the identity ID of the ECU, and (ii) an

HMAC σ that is computed over N and ID with the response

key RK from step (1). Finally, ECUs send their attestation

response, i.e., ID and σ, to the master ECU.

Step (3). The master ECU receives all responses and verifies

them as follows. For each safety-critical ECU, the master

stores the known good integrity measurement IM′
as well

as the secret attestation key AK′
. Based on the ID contained

in a received response, the master retrieves the known good

integrity measurement IM′
and the attestation key AK′

of an

ECU. Using AK′
and IM′

as well as the previous nonce NB ,

the master then computes the expected response key RK′
.

Next, the master generates an HMAC over N and ID with the

computed RK′
, and compares it with σ from the attestation

response. If both values match, the attestation response of the

particular ECU is considered valid.

Only if all safety-critical ECUs replied with a valid re-

sponse, the master ECU regards the vehicle to be in a safe

state. Only then, the master allows the vehicle to launch the

engine by releasing the lock for the ignition switch and/or

power supply. Hence, compromised ECUs can only prevent

the start of the vehicle, but are unable to jeopardize its safety.

B. Technical Details

Security Requirements. For a secure attestation, it is crucial

that an adversary Adv (i) is unable to access AK, and (ii)

cannot manipulate the computation of the software integrity

measurements IM and the response key RK. If (i) and (ii)

are ensured, Adv cannot compute RK. In addition, RK will

reflect the software integrity of the ECU. This means that

RK only matches the expected response key RK’, which is

used by the master to verify the attestation response, in case

the respective ECU is in a trustworthy software state. Since

Adv can only bypass our attestation scheme by violating (i)

or (ii), all hardware and software that ensures (i) and (ii) is

our Trusted Computing Base (TCB).

More specifically, our TCB software consists of all code

that is executed in step (1), in which AK is accessed and IM
and RK are computed. Common for hardware-based attestation

schemes, we require the TCB software to be supported by se-

cure hardware that must provide the following properties [10]:

(1) Secure Storage: The attestation key AK must exclusively

be accessible to the TCB code.

(2) Immutability: The TCB code and data must be stored in

a write-protected memory region.

(3) Uninterruptability: Once the TCB code gets executed, its

execution cannot be interrupted by other code.

In the following, we discuss the implementation of these

properties and the TCB code on simple and advanced ECUs.

Implementation on Simple ECUs. Simple ECUs are de-

ployed with a bootloader that is stored in Read-Only Memory

128

Master ECU
N

ID,

N

ID,

Simple ECU

Firmware

IM

RK

(1) Measure SW
 Hash(Firmware)
Derive Response Key
 HMAC(AK; NB|IM)
Execute Firmware

NB

(2) Receive Nonce
 N
 HMAC(RK; N|ID)
Send Response

(3.1) Verify each ECU
AK', IM' = getRefValues(ID)
RK' = HMAC(AK'; NB|IM')
if != HMAC(RK'; N|ID):
 return false
return true
(3.2) NB N

ID AK IM

Database with
Reference Values

ID AK IMID AK IMID AK IMID AK IMID AK' IM'

(2) Send Nonce
N rand()

Read-only Memory

Boot Code
Secure Storage

AK

App1 App2

Secure World

(1.1) Secure Boot
 Linux + OP-TEE

Advanced ECU

(1.2) Measure SW
IM1 Hash(App1)
IM2 Hash(App2)
...

IM
(1.2) Store Measurements
 IM1|IM2|IM3|...

RK

Read-only Secure
Boot Code

Normal World

Linux + IMA

Memory Storage

AK

... OP-TEE + TA

(1.3) Derive Response Key
 HMAC(AK; NB|IM)

NB

(2) Receive Nonce
 N
 HMAC(RK; N|ID)
Send Response

Fig. 2: Attestation of simple and advanced ECUs by the master ECU. Code and data that is protected by secure hardware is shown in gray.

(ROM) and contains the TCB code. Executing the boot-

loader, the TCB code first computes IM by hashing predefined

memory regions that contain the firmware of the ECU. To

increase flexibility, the memory regions to be measured can

be read out from a certificate, as described in [12]. Next, TCB

code accesses AK and generates the response key RK. After

generating RK, TCB code ensures that AK is hidden, which

may involve purging intermediate secrets from memory and

locking AK against further access by software. Finally, the

bootloader executes the measured firmware.

Storing the TCB code in the write-protected bootloader

ensures that it is immutable and immediately executed when

the ECU starts. By temporarily disabling all interrupts, the

bootloader code also ensures its own uninterruptability until

the TCB code finishes execution. Consequently, any malicious

code can only be executed after step (1). The implementation

of the secure storage depends on the respective hardware of an

ECU. Existing works have demonstrated concrete implementa-

tions based on a simple Memory Protection Unit (MPU) [11],

an emulated MPU [6], an SRAM PUF [12], [23], or EEPROM

that can be hidden [12], [23]. In § V-A, we describe the

implementation of all properties on an exemplary device.

In practice, many simple ECUs provide the required secure

hardware properties, as they are based on microcontrollers

that have shown to exhibit those properties [6], [11], [12],

[23]. Furthermore, since several years, all major manufacturers

offer ECUs1 that fulfill the HIS-SHE [7] and/or EVITA [26]

standard. Both standards provide a common specification for

secure hardware in road vehicles. They specify that ECUs must

offer hardware support for immutable and uninterruptible code

to implement the secure boot functionality [2], and thus fulfill

property (2) and (3). Based on (2) and (3), recent work [6]

has shown that a secure storage can be emulated to also fulfill

property (1). Therefore, all ECUs that implement the HIS-SHE

and EVITA standard also implicitly fulfill our secure hardware

requirements. Note that actual ECUs often offer a real MPU,

whose use we prefer over an emulated MPU (e.g., all ECUs

mentioned in the footnote1 provide an MPU).

Implementation on Advanced ECUs. Advanced ECUs uti-

1E.g., AURIX from Infineon; MPC564xB/C, MPC5746M, MPC574xB-C-G
from NXP; SPC564B/EC, SPC56ECx from ST; RH850/P1x-C from Renesas.

lize the same measures as simple ECUs to implement the

necessary properties. Hence, they also store their boot code

and boot data in ROM. Yet, to achieve increased functionality,

we require advanced ECUs to also feature the ARM TrustZone

technology [1], which offers a privileged second execution

environment, called secure world. The secure world is isolated

by hardware from the normal world, in which the standard

OS and applications are running. Since the ARM Cortex-A15

from 2010, all ARM application processors (Cortex-A) feature

the TrustZone technology. Moreover, the new ARMv8-M

architecture brings TrustZone to microcontrollers, namely

Cortex-M23/M33/M35P processors. Additionally, we require

the secure storage of AK to be only accessible from the secure

world, which is a common requirement for TrustZone-based

security services [8], [21]. To implement the secure storage,

manufacturers offer different solutions, such as hardware fuses,

TrustZone aware memory controllers, and/or IOMMU [8].

The additional secure hardware features are necessary, be-

cause advanced ECUs must rely on a different attestation

technique than simple ECUs due to their software complexity.

Nowadays, a full-featured OS contains thousands of constantly

changing files. Predefining which memory regions must be

measured to detect malware, as required for simple ECUs,

would hence be an impossible task on advanced ECUs.

Therefore, we instead present a flexible technique, where any

executable code is measured on demand at load-time, before it

is executed. Using the additional security features of advanced

ECUs, our technique ensures that the measurement code is

unmodified, and executed potentially malicious software is

unable to tamper with already performed measurements.

More precisely, advanced ECUs are deployed with a boot-

loader that performs a secure boot [2] of two software systems:

(i) a Linux-based OS running in the normal world, and (ii) a

software called OP-TEE [15] running in the TrustZone secure

world. The secure boot technology ensures that the particular

software comes from a trusted party, like the manufacturer,

as opposed to an adversary. For this purpose, the software is

measured and the measurement is compared with a reference

measurement from a stored certificate. In case actual and

reference measurement differ or the signature verification of

the certificate fails, the software is not executed.

129

All (automotive) applications running on the advanced ECU

are managed by the Linux-based OS, which is deployed with

an enabled Integrity Measurement Architecture (IMA) [22].

IMA is part of recent Linux kernels and offers the capability to

measure binary files before their execution, including libraries

and configuration files. Each measurement is stored in the IMA

measurement list and contains, among others, the filename,

filepath, and hash value computed over the file.

The second securely booted software, OP-TEE, manages all

applications that are running in the TrustZone secure world.

In particular, a special Trusted Application (TA) is deployed

in the secure world of advanced ECUs. The TA provides an

API that enables the IMA to pass performed measurements

to the TA. Passed measurements are concatenated in IM
(IM = IM1|IM2|...) and stored protected in the secure world. In

addition, the TA offers a second API to compute the response

key RK. For this purpose, the TA takes a nonce NB and returns

an HMAC RK that is computed with the attestation key AK
over NB and the concatenated measurements IM. Note that the

computation of RK can also take place on demand in step (2).

This is possible, as the computation is handled in the secure

world, which prevents potentially malicious code running in

the normal world from tampering with the computation.

Runtime Attacks. We acknowledge that Adv may also per-

form runtime attacks, in which Adv compromises the software

of an ECU after it was measured. Such attacks allow Adv
to subvert the security of our scheme and are a well-known

limitation of all load-time attestation protocols, e.g., also affect

the widely deployed TPM. Nevertheless, the boot nonce NB

prevents any persistent attacks, since it causes RK to change in

each attestation run. Hence, malware that is installed by Adv
during a runtime attack is detected at the next ECU restart.

V. EVALUATION

In this section, we describe our implementation setup

(§ V-A) and then show and evaluate our measurements (§ V-B).

A. Implementation

We connected exemplary simple and advanced ECUs in a

CAN bus and via Ethernet. As a target platform for simple

ECUs, we used 5 Olimex ESP32-EVB development boards,

which feature 4 MB flash memory, a 240 MHz dualcore 32-

bit microprocessor, 100 MBit Ethernet, and a CAN communi-

cation module. To implement the required security properties

(§ IV-B), we locked the bootloader of each ESP32-EVB with

the ”one-time flash” option, such that it cannot be modified.

Furthermore, our deployed bootloader configures the MPU to

enable only the bootloader code access to the attestation key

AK. For advanced ECUs and the master ECU, we employed

6 Raspberry Pi 3 Model B+, which feature 1 GB RAM, a 1.4

GHz quadcore ARM Cortex-A53, and Gigabit Ethernet. In

addition, we extended each RPI3B+ with a SK Pang PiCAN2

module to enable CAN communication. Unfortunately, we

were unable to implement all required security properties on

the RPI3B+ (§ IV-B), as the RPI3B+ insufficiently protects

TrustZone secure world memory and lacks a secure storage.

Operation ESP32-EVB RPI3B+

Secure Boot Overhead 587.38 ms 508.29 ms

SHA-256(32 B Flash) 0.04 ms 0.06 ms

SHA-256(512 KB Flash) 126.71 ms 67.30 ms

SHA-256(2 MB Flash) - 281.65 ms

HMAC-SHA-256(32 B RAM) 0.10 ms 0.08 ms

HMAC-SHA-256(64 B RAM) 0.12 ms 0.09 ms

HMAC-SHA-256(1 KB RAM) 0.37 ms 0.32 ms

Ethernet Round Trip Time 0.75 ms 0.44 ms

Ethernet Throughput 49.08 MBit/s 95.70 MBit/s

CAN Round Trip Time 0.17 ms 0.85 ms

CAN Throughput 1.27 MBit/s 1.22 MBit/s

TABLE I: Averaged measurements on the ESP32-EVB and RPI3B+.

We further acknowledge that our selected hardware lacks

certain safety features that can be found in typical automotive

hardware, such as a lockstep mode, ECC memory, and a large

operating temperature range. However, the implementation of

a TrustZone-aware memory controller, secure storage, and

automotive safety features only entail a negligible runtime

overhead and thus have an insignificant effect on our perfor-

mance measurements.

B. Runtime Measurements

Single-Device Measurements. We investigated the runtime

overhead to verify a single device. Table I outlines our

averaged runtime measurements for the main building blocks

of our attestation scheme on the ESP32-EVB and the RPI3B+.

As shown, the main overhead on both devices comes from

the secure boot, which ensures the immutability and unin-

terruptability of the boot code (§ IV-B). The secure boot

takes with 587 ms on ESP32-EVB and 508 ms on RPI3B+

much more time than other operations, as it involves multiple

computationally expensive signature verifications. Note that on

other devices, a secure boot may not be required to implement

the secure hardware properties (§ IV-B).

Further overhead is imposed by cryptographic operations,

which we implemented with the mbed TLS library. During

attestation, both devices compute a SHA-256 hash value over

all software to be executed. Whereas the ESP32-EVB hashes

a 512 KB firmware binary, which takes 127 ms, the RPI3B+

measures 29 files that sum up to a total of 2.5 MB, which

takes 326 ms. Moreover, both devices compute two HMACs,

which consumes 0.24 ms runtime on the ESP32-EVB and

0.41 ms on the RPI3B+. The RPI3B+ requires more time,

because it computes an HMAC over 29 software integrity

measurements, instead of a single measurement. Furthermore,

the master ECU, an RPI3B+, requires 0.18 ms to recompute

the HMACs and verify the attestation response of an ESP32-

EVB, and 0.44 ms to verify responses of an RPI3B+.

Additionally, the network communication also entails over-

head, as a 16 Byte challenge and 33 Byte response needs to be

transmitted during attestation. Interestingly, the performance

130

RPI3 CAN

RPI3 Ethernet

ESP32 Ethernet

ESP32 CAN

1 2 3 4 5
700

750

800

850

900

R
u

n
ti

m
e

(m
s)

0 25 50 75 100
0

400

800

1200

Number of Prover Devices

Measured Projected

Fig. 3: Runtime overhead of verifying multiple ECUs.

of the network interfaces is quite different on the ESP32-EVB

and RPI3B+. On the ESP32-EVB, CAN is faster than Ethernet

and requires only 1.19 ms to transmit both challenge and

response. By contrast, on the RPI3B+, CAN is much slower

than Ethernet and entails an overhead of 5.95 ms.

Altogether, the runtime overhead to perform the attestation

of a single device depends on the device type and network

interface. It varies between at least 715 ms (on ESP32-EVB

over CAN) and at most 844 ms (on RPI3B+ over CAN).

Multi-Device Measurements. Figure 3 depicts the runtime

overhead to attest a varying amount of ECUs over CAN and

Ethernet. As shown, the fastest attestation is possible with the

ESP32-EVB over CAN, while the slowest is the RPI3B+ over

CAN. Compared with the overhead to verify a single device,

the runtime to attest many devices only slightly increases with

a raising number of devices in the network. This demonstrates

the good scalability of our attestation scheme. In fact, our

projections to large networks show that the attestation of up

to 100 devices takes even in the worst-case, being a CAN

network with only RPI3B+ devices, less than 1.4 seconds.

Because a typical passenger requires more than 1.4 seconds to

get in the vehicle and initiate a start of the engine, our scheme

entails no perceptible delays for passengers. Moreover, road

vehicles typically contain less than 100 safety-critical ECUs.

VI. CONCLUSION & FUTURE WORK

In this work, we presented a novel automotive attestation

scheme. In our scheme, a trusted master ECU verifies the soft-

ware integrity of all safety-critical ECUs in the vehicle, each

time the vehicle is unlocked and opened. Only after the master

has ensured that all safety-critical ECUs are in a trustworthy

software state, the master allows the vehicle engine to launch.

This way, compromised ECUs are prevented from jeopardizing

the safety of the vehicle. To address the heterogeneity of

ECUs, we presented two distinct attestation techniques. The

first technique targets simple sensor and actuator ECUs, while

the second is designed for more complex ECUs, e.g., used for

sensor fusion. Since both techniques are applicable to many

existing commodity ECUs, our solution entails only minimal

deployment costs. We evaluated our scheme in an automotive

network that uses CAN and Ethernet. Our results show that the

overall timing overhead to verify 100 ECUs is less than 1.4s.

Thus, our scheme causes no perceptible delays for passengers.

ACKNOWLEDGMENT

This work has been co-funded by the Federal Ministry

of Education and Research of Germany (BMBF) within the

UNICARagil project and the Hessen State Ministry for Higher

Education, Research and the Arts (HMWK) within CRISP.

REFERENCES

[1] T. Alves and D. Felton, “TrustZone: Integrated Hardware and Software
Security,” ARM Technical White paper, 2004.

[2] W. A. Arbaugh, D. J. Farber, and J. M. Smith, “A secure and reliable
bootstrap architecture,” in IEEE S&P, 1997.

[3] F. Armknecht, A.-R. Sadeghi, S. Schulz, and C. Wachsmann, “A security
framework for the analysis and design of software attestation,” in ACM
CCS 2013.

[4] AUTOSAR, “Specification of Secure Onboard Communication,” V.4.3.1.
[5] S. Checkoway, D. McCoy, B. Kantor, D. Anderson, H. Shacham,

S. Savage, K. Koscher, A. Czeskis, F. Roesner, T. Kohno et al.,
“Comprehensive experimental analyses of automotive attack surfaces.”
in USENIX Security, 2011.

[6] K. Eldefrawy, N. Rattanavipanon, and G. Tsudik, “HYDRA: hybrid
design for remote attestation (using a formally verified microkernel),”
in ACM WiSec, 2017.

[7] R. Escherich, I. Ledendecker, C. Schmal, B. Kuhls, C. Grothe, and
F. Scharberth, “SHE–Secure Hardware Extension Functional Specifica-
tion,” 2009.

[8] A. Ferraiuolo, A. Baumann, C. Hawblitzel, and B. Parno, “Komodo: Us-
ing verification to disentangle secure-enclave hardware from software,”
in ACM SOSP, 2017.

[9] I. Foster, A. Prudhomme, K. Koscher, and S. Savage, “Fast and vulner-
able: A story of telematic failures,” in USENIX WOOT, 2015.

[10] A. Francillon, Q. Nguyen, K. B. Rasmussen, and G. Tsudik, “A
minimalist approach to remote attestation,” in DATE, 2014.

[11] L. Jäger, R. Petri, and A. Fuchs, “Rolling dice: Lightweight remote
attestation for cots iot hardware,” in ARES, 2017.

[12] F. Kohnhäuser and S. Katzenbeisser, “Secure code updates for mesh
networked commodity low-end embedded devices,” in ESORICS, 2016.

[13] X. Kovah, C. Kallenberg, C. Weathers, A. Herzog, M. Albin, and
J. Butterworth, “New results for timing-based attestation,” in IEEE S&P,
2012.

[14] G. Lee, H. Oguma, A. Yoshioka, R. Shigetomi, A. Otsuka, and H. Imai,
“Formally verifiable features in embedded vehicular security systems,”
in IEEE VNC, 2009.

[15] Linaro, “Open Portable Trusted Execution Environment,” op-tee.org.
[16] C. Miller and C. Valasek, “Remote exploitation of an unaltered passenger

vehicle,” Black Hat USA, 2015.
[17] J. Noorman, P. Agten, W. Daniels, R. Strackx, A. Van Herrewege,

C. Huygens, B. Preneel, I. Verbauwhede, and F. Piessens, “Sancus: Low-
cost Trustworthy Extensible Networked Devices with a Zero-software
Trusted Computing Base,” in USENIX Security, 2013.

[18] S. Nürnberger and C. Rossow, “–vatiCAN–Vetted, Authenticated CAN
Bus,” in CHES. Springer, 2016.

[19] H. Oguma, A. Yoshioka, M. Nishikawa, R. Shigetomi, A. Otsuka, and
H. Imai, “New attestation based security architecture for in-vehicle
communication,” in IEEE GLOBECOM, 2008.

[20] A.-I. Radu and F. D. Garcia, “Leia: A lightweight authentication protocol
for can,” in ESORICS. Springer, 2016.

[21] H. Raj, S. Saroiu, A. Wolman, R. Aigner, J. Cox, P. England, C. Fenner,
K. Kinshumann, J. Loeser, D. Mattoon et al., “fTPM: A Software-Only
Implementation of a TPM Chip,” in USENIX Security, 2016.

[22] R. Sailer et al., “Design and Implementation of a TCG-based Integrity
Measurement Architecture,” in USENIX Security, 2004.

[23] S. Schulz, A. Schaller, F. Kohnhäuser, and S. Katzenbeisser, “Boot
Attestation: Secure Remote Reporting with Off-The-Shelf IoT Sensors,”
in ESORICS, 2017.

[24] C. Shepherd, R. N. Akram, and K. Markantonakis, “Establishing mutu-
ally trusted channels for remote sensing devices with trusted execution
environments,” in ARES, 2017.

[25] J. Van Bulck, J. T. Mühlberg, and F. Piessens, “Vulcan: Efficient
component authentication and software isolation for automotive control
networks,” in ACM ACSAC, 2017.

[26] M. Wolf and T. Gendrullis, “Design, implementation, and evaluation of
a vehicular hardware security module,” in ICISC. Springer, 2011.

131

