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Abstract—In the past years, industrial networks have become
increasingly interconnected and opened to private or public
networks. This leads to an increase in efficiency and manage-
ability, but also increases the attack surface. Industrial networks
often consist of legacy systems that have not been designed with
security in mind. In the last decade, an increase in attacks on
cyber-physical systems was observed, with drastic consequences
on the physical work. In this work, attack vectors on industrial
networks are categorised. A real-world process is simulated,
attacks are then introduced. Finally, two machine learning-based
methods for time series anomaly detection are employed to detect
the attacks. Matrix Profiles are employed more successfully than
a predictor Long Short-Term Memory network, a class of neural
networks.

Index Terms—Cyber Security, Time Series, Machine Learning,
Neural Networks, Industrial Control Systems

I. INTRODUCTION

For decades, the industrial domain has been deemed secure

due to two reasons: First, the physical separation of networks.

Second, each network was created in an application specific

fashion, rendering it extremely difficult for an attacker to

exploit it [1]. However, the fourth industrial revolution in-

troduced novel use cases that build on interconnectivity and

embedded intelligence [2], [3]. While increasing productivity

and flexibility and decreasing operational cost and effort, new

attack vectors are introduced to industrial systems as well.

An increase in attacks on industrial environments can be de-

tected [4]. While industrial networks have been unique in their

applications specific nature, the establishment of Commercial

Off The Shelf (COTS) hard- and software introduces stan-

dardised modules. This makes set up and maintenance much

easier, but also drastically increases the effect of vulnerabilities

in one of the modules. In order to tackle these problems, cyber

security measures have been adapted to industrial scenarios,

such as firewalls, anti virus software and intrusion detection

tools. However, the characteristics of industrial networks differ

from those of home and office networks, motivating the

need for adaption of those tools. A deep understanding of

these characteristics is required in order to effectively protect
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industrial networks. In this work, an overview of possible

attacks for industrial networks is provided. Attack vectors

are analysed and categorised, with an emphasis on industrial

network protocols. Furthermore, the simulation of a real-world

scenario is presented, as well as attacks on this scenario. The

remainder of this work is structured as follows: In Section II,

related work is presented. A systematic categorisation of attack

scenarios is provided in Section III. The simulated process and

the implementation of attacks is described in Section IV and

evaluated in Section V. Finally, the findings are discussed in

Section VI.

II. RELATED WORK

In this section, related work on classification of industrial

cyber attacks is presented. Furthermore, it is grouped with

respect to the scope that is addressed by the work in Table I.

Cherdantseva et al. survey existing risk assessment methods

and evaluate their usefulnes with respect to Supervisory Con-

trol And Data Acquisition (SCADA) scenarios [5]. Gao and
Morris discuss the detection of cyber attacks [6]. They focus

on signature-based detection for Modbus-based communica-

tion. In order to evaluate the intrusion detection and to classify

it, possible attacks are grouped. A more thorough analysis of

attacks on Industrial Control Systems (ICSs) is performed by

Morris and Gao as well [7]. Zhu et al. provide an overview

of cyber attacks while considering many dimensions [8].

They compare industrial cyber security to classic IT security.

Furthermore, they consider the security objectives of industrial

applications and ways they can be attacked. Finally, they

present specific attacks on different attack surfaces of an

industrial environment. In another work, Zhu and Sastry create

a taxonomy for SCADA-specific attacks [9]. They present

types of attacks and discuss countermeasures. Fernandez et
al. discuss the development of secure SCADA systems [10].

In doing so, attacks on industrial systems are evaluated with

respect to their attack vector. Fovino et al. discuss the effects

of SCADA attacks on infrastructure [11]. They first assess

the potential damages to eventually discuss potential attack

types. Ten et al. present a vulnerability assessment of SCADA

systems [12]. They consider the increasing dependency of in-

dustrial and office Information Technology (IT). Furthermore,

they classify attacks according to their type to model and
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evaluate attack scenarios in using attack trees in an earlier

work [13]. Cai et al. analyse the development of SCADA

systems, their applications and threats [14]. Furthermore, they

discuss standards and guidelines for protecting such systems.

Igure et al. discuss SCADA security [1]. They analyse attacks,

categorise them and extract research challenges. Furthermore,

standardisation efforts are addressed. The summary of ad-

dressed topics is shown in Table I.

TABLE I
RESEARCH TOPICS COVERED BY THE INDIVIDUAL WORKS

Subject Covered Research Work
Risk Assessment [5], [11]–[13]

Industrial vs Home- and Office IT [8]

Attack Vectors [10]

Security Objectives [1], [8]

Types of Attacks [1], [6]–[9], [11]–[13]

Standards and Guidelines [14]

Applications in SCADA [14]

Taxonomy [1], [9]

Intrusion Detection [6], [9]

Most research is done regarding the types of attacks, i.e.

the way an attacker will influence the systems or networks.

Risk assessment is a widely regarded topic as well. In risk

assessment, the effects of an attack are discussed in a formal

manner. The remaining topics are more specific and only

addressed by one or two singular works.

III. INDUSTRIAL ATTACKS

In this section, possible ways for an attacker to break

into industrial applications are discussed. This is done by

looking at past attacks on industrial networks that have

extensively been discussed. Stuxnet, the attack that came

to attention first, has been widely discussed [15]–[18], but

also the lesser known successors, such as Duqu [17], Indus-
troyer/Crashoverride [15], [19], Flame [17], BlackEnergy [15],

[19], Havex [15] and Red October [17] have received attention.

An assessment of attack vectors for industrial companies is

done by Positive Technologies [20]. They evaluate points of en-

try and propagation methods in a general fashion which, how-

ever, is in accordance to the above-mentioned malware-specific

analyses. The first step in attacking industrial environments

is commonly the breach of the perimeter. Even though there

are occasions where industrial networks are directly connected

to the Internet [4], they are commonly separated from public

networks. This is an important recommendation in securing

industrial networks [20], especially since many industrial

network protocols do not contain means for authentication or

encryption. This allows easy propagation and participation in

communication for an attacker once the network is accessible.

If the production network is not reachable from the outside,

the corporate network needs to be breached first. According

to Positive Technologies, 73% of the corporate systems they

tested had insufficient protection of their perimeter [20].

Another common attack vector is the human user. Allegedly

the Stuxnet attack has breached the perimeter by means of a

thumb drive that was carelessly used [18]. After breaking the

perimeter, the ICS or the field devices respectively have to

be taken over. The analysed malware that was tailor-made for

industrial targets used properties or vulnerabilities characteris-

tic to the industrial environment they were designed for. Some

malware could stay undetected for long periods of time, at least

partly due to missing or insufficient security procedures for

industrial networks. Implementing robust security for critical

parts of production networks is one of the major take aways.

Most industrial malware consists of several modules:

• Backdoor,

• loader module, and

• wiper module

The backdoor allows for communication with Command &

Control (C&C) servers. Coupled to the backdoor is the loader

module that is tasked with uploading the malware modules to

perform certain attacks. And lastly, most industrial malware

contains a module for wiping the traces of its existence from

the infected system. Breaking the perimeter has proven to be

possible most of the time. The difficulty of industrial malware

lies in the profound knowledge the malware authors needs to

have about the targeted systems. This goes for the architecture

of the infrastructure as well as for the protocols and devices

used. Most devices used in industrial applications are COTS

products and can thus be obtained for vulnerability analysis,

so that exploits can be written and re-used. However, to

successfully break a process by abusing system parameters, the

intent of devices as well as the structure of the process needs to

be known. These attacks are hardest to detect, as the attacker

can conceal them as irregularities or normal behaviour. The

attacks that are implemented and evaluated in this work are

such attacks. They are based on the assumption of a suc-

cessful breach of perimeter and take over of a Programmable

Logic Controller (PLC) which subsequently shows malicious

behaviour.

In summary, any attack of an industrial application first needs

to break the perimeter. Then it needs to move laterally towards

the control system or target device. Finally, the malicious

intent has to be carried out. During each of these steps, the

attack can be discovered by different means. Breaking the

perimeter should be observed by IT-based security means.

Lateral movement is in the domain of siem! (siem!)-systems.

Detecting attacks in the context of an industrial process is the

final method to discover misbehaviour.

IV. PROCESS ENVIRONMENT AND ATTACK SCENARIOS

In this section, the process under investigation as well as

the implemented attacks are discussed. First, the real-world

process is described and transferred to a simulation. After that,

the attack scenarios and their implementations are presented.

A. Process Environment

The process this work is based upon has been used to

generate data for industrial intrusion detection already [21].

It is shown in Figure 1. The process environment consists of
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Fig. 1. Schematic Overview of the Process Environment

two water containers, Container 1 and Container 2. Water is

pumped with pump P101, driven by a DC motor M101 from

Container 1 to Container 2 until a threshold is reached. The

water level is measured with different sensors, S111 and S112,

as well as capacitive sensors B113 and B114. Additionally, A

vane sensor measuring the flow of liquid between Container
1 and Container 2, B102, and a PT100 temperature sensor,

B104, are used. To release water from Container 2, a solenoid

valve, M102, is employed. An exemplary behaviour of this

process is shown as a time-series in Figure 2. A selection

of process parameters, all of them sensor outputs, during

normal operation is shown. This operation has been performed

on real implementation of the scenario that was used to

create the simulation analysed in this work. For this work,

the environment described above has been extended to five

instances. They are simulated with real-world hardware, i.e.

Siemens S7-1500 PLCs and PiXtend extension boards for

Raspberry Pis. Five Raspberry Pis with a PiXtend-board each

are used to simulate the process, controlled by a PLC each.

The process information is collected on a central Human

Machine Interface (HMI). In order to obtain realistic data,

the simulation has been developed to mimic the real scenario

as good as possible. For communication, OPC UA [22] is

used. It provides encrypted, authenticated, easy and platform-

independent communication and consists of an information

model including communication capabilities. In this scenario,

a master-slave concept is followed with regular polling of the

devices by the HMI.

B. Attack Scenarios

Two scenarios have been implemented and evaluated in this

work. They are loosely coupled to the categorisation of Morris
and Gao [7]. In this work, all attacks are a kind of Response
and Measurement Injection Attack. In creating the data set for

evaluation, one of the five PLCs shows malicious behaviour

for five minutes after 15 minutes of normal operation for

each attack. The use case is an attacker having breached

the perimeter, bridged the air gap and used well-engineered

malicious code to disrupt the process. The aim of this scenario

is to detect malicious behaviour on field level. This area is

currently not well-developed, intrusion detection on field level

is a growing field with a short history. The behaviour regarding

flow and water level of Container 1 of the malicious process

is shown in Figure 3. Since a specific application use case

is discussed in this work, the attacks are domain-specific.

However, as discussed in Section III, the general concept of

this kind of attack can be generalised to most processing units.

1) Open Valve Attack: In the first attack scenario, the valve

M102 is opened even though water is pumped from Container
1 to Container 2. This leads to an increased time it takes for

Container 2 to be filled up to the desired level. The HMI

indicates the valve as open. This attack starts at packet 4,200

and ends around packet 4,800 in Figure 3. As in the process,

the valve is not supposed to be opened, this is an identifier

of the attack, making it trivial to detect. In order to better

evaluate the methods presented in this work, it is not used as

an input variable.

2) Stealth Attack: The second attack scenario is imple-

mented in a stealthier fashion. As in attack scenario 1, the

valve is opened invalidly. However, the sensor still indicates

a closed valve. This leads to an unexpected decrease in filling

speed of Container 2 and an increased emptying once the

container is filled. This attack starts at packet 6,500 and ends

at the end of the trace in Figure 3.

V. EVALUATION

In this section, the methods to detect the discussed attacks

are presented and evaluated on the data set. As input values

for the anomaly detection, the water flow as well as the water

level of Container 1 are used. They could easily be extended,

but proved to be the most expressive variables.

A. Matrix Profiles

Time series-based anomaly detection has proved to be

highly effective in industrial intrusion detection [23]. As the

process is expected to produce regular sensors and actuator

values, deviations of a time series representation of those

values should be detectable. In this work, Matrix Profiles are

used to analyse the data sets. Matrix Profiles were introduced

by Yeh et al. in 2016 and provide a mean to determine the

similarity of sequences in a time series to other sequences [24].

In order to employ Matrix Profiles, only one hyper-parameter

needs to be set, the window size m. It is robust against changes

and provides sensible results for a variety of lengths. However,

each time window needs to contain a set of values that has a

standard deviation that is not zero. Thus, m needs to be chosen

in a way that no window in the water flow values only contains

zero flow, as shown in Figure 4. In this figure, the water

flow, as well as the water level of Container 1, are shown in

combination with their respective Matrix Profiles. The Matrix
Profile determines the minimal distance of any windowed

sequence of length m from any other sequence of length

m. In terms of anomaly detection, a high minimal distance

represents an outlier, as the corresponding window does not

look like any other. In Figure 4, the normal behaviour of the

process is shown, with m as 300. Even though m proved to be

robust in the evaluation, auto-correlation [25] was employed in
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Fig. 2. Normal Process Behaviour

order to find a sensible value. The auto-correlation function of

the normal process is shown in Figure 5. The peak at around

150 seconds indicated periodic behaviour. In our experiments,

two measurements per second were performed, thus a window

size of 300 packets was chosen as m. In Figure 4, the Matrix
Profiles, named Min. Dist., are small, except for the beginning.

The settling of the process is a unique event, thus the high

minimal distance. The process was monitored on one of the

PLCs that did not exhibit malicious behaviour. This was

introduced to another PLC and resulted in the behaviour shown

in Figure 6. Both attacks show significant peaks in the minimal

distances around both attacks as described in Subsection IV-B.

It is noteworthy that the transitions from normal to malicious

behaviour, and vice versa, are the events in the time series that

are unique and thus result in an increased minimal distance. If

an attack has a characteristic signature that is repeated more

than once, it is not detected as an anomaly anymore, as another

instance with the same characteristic is found. To counter this

effect, Matrix Profiles can be adapted in a way that they are

employed continuously. This shows promising results [23].

This approach indicates any change in behaviour. To mitigate

disruptions due to alerts, natural changes in processes can

be integrated into Matrix Profiles with an extension [26].

Furthermore, Matrix Profiles can be used to analyse meta data,

providing good results as well [23].

B. Long Short-Term Memory

Many types of Recurrent Neural Networks (RNNs) tend

to neglect long-term dependencies in the decision making. In

order to keep such information, Hochreiter and Schmidhuber
proposed a novel kind of RNNs in 1997 to overcome the

vanishing gradient problem [27]. This kind of RNN is called

Long Short-Term Memory (LSTM). In this work, an LSTM
with an input layer consisting of 350 units, two hidden layers
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Fig. 3. Malicious Process Behaviour

Fig. 4. Time Series and Matrix Profiles of Normal Behaviour

with 350 and 250 units respectively and a dense output-layer

is employed. The input length is 300 as this is the minimal

periodicity of the data. The learning rate was set to 0.001. An

hour of process activity was used to train it in 25 iterations.

No attacks were contained in the data. After that, the hour of

process activity conducted by the infected PLC was used as

the testing data set. In order to monitor anomalousness, a value

was predicted by the neural network and compared to the real

value. The distance between those values was calculated, a

high value indicating an anomalous instance. The result of the

LSTM is shown in Figure 7. The first row shows the real values

of water flow, the second row the predicted values and the third

row the absolute error. The fourth row shows the real values

of the water Container 1, the second row the predicted values

and the third row the absolute error. It can be seen that the

LSTM closely follows the process behaviour. Unfortunately,

this also includes the attacks. They are predicted as part of the

Fig. 5. Auto-correlation of Normal Time Series

Fig. 6. Time Series and Matrix Profiles of Malicious Behaviour

process by the LSTM, making detection of the attacks difficult.

Only the frequency of the periodic error behaviour changes,

however, values that clearly indicate attacks would enhance

the detection probability.

VI. DISCUSSION

In this work, we discussed the attack scenarios in indus-

trial environments. From these scenarios, a use case was

derived and implemented. After that, attack scenarios where

introduced to the scenario. Two time series-based anomaly

detection methods were employed to detect the attacks. Matrix
Profiles performed satisfactorily, detecting the attacks easily.

Only one robust hyper-parameter and no supervised training

make it easy to use and transfer between application domains.

The LSTM approach did not work well, it predicted the attack

behaviour as well as the normal behaviour. This behaviour can
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Fig. 7. Time Series, Predictions and Errors Based on LSTMs

derive from over-fitting, as regular time series have a tendency

to teach neural networks to learn certain patterns, but not to

generalise. Context information [28] or methods of machine

learning-based classification [29] might address the issue as

well.

A. An Epilogue on Sophisticated Industrial Attacks

One of the major features of sophisticated industrial attacks

such as Stuxnet is the masquerading of any indicators for

misbehaviour. However, if no trace of malicious behaviour is

simulated, it simply cannot be detected. For the sake of clarity

in this work, only attacks with distinctive characteristics were

used, so that detection was possible. After attacks such as

Stuxnet propagated into the industrial domain, side-channel

detection, e.g. acoustic signals, would be required if standard

field busses were used. Langner claims that any engineer

with experience in the area would have told something was

amiss easily by the sound of the turbines. Unfortunately, such

side-channels are hard to simulate. However, there are works

creating data sets of real-world applications including side-

channel sensor measurements so that they can be used to detect

attacks [21].
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