
A Study of Vulnerability Analysis of Popular Smart
Devices Through Their Companion Apps

*

Davino Mauro Junior
Federal University of

Pernambuco, Brazil

dmtsj@cin.ufpe.br

Luis Melo
Federal University of

Pernambuco, Brazil

lhsm@cin.ufpe.br

Hao Lu
University of

Michigan, USA

harveylu@umich.edu

Marcelo d’Amorim
Federal University of

Pernambuco, Brazil

damorim@cin.ufpe.br

Atul Prakash
University of

Michigan, USA

aprakash@umich.edu

Abstract—Security of Internet of Things (IoT) devices is a well-
known concern as these devices come in increasing use in homes
and commercial environments. To better understand the extent
to which companies take security of the IoT devices seriously and
the methods they use to secure them, this paper presents findings
from a security analysis of 96 top-selling WiFi IoT devices on
Amazon. We found that we could carry out a significant portion
of the analysis by first analyzing the code of Android companion
apps responsible for controlling the devices. An interesting finding
was that these devices used only 32 unique companion apps;
we found instances of devices from same as well as different
brands sharing the same app, significantly reducing our work.
We analyzed the code of these companion apps to understand
how they communicated with the devices and the security of that
communication. We found security problems to be widespread:
50% of the apps corresponding to 38% of the devices did not
use proper encryption techniques; some even used well-known
weak ciphers such as Caesar cipher. We also purchased 5 devices
and confirmed the vulnerabilities found with exploits. In some
cases, we were able to bypass the pairing process and still control
the device. Finally, we comment on technical and non-technical
lessons learned from the study that have security implications.

Index Terms—Security; Internet of Things; Android Apps;
Companion Apps

I. INTRODUCTION

The number of Internet of Things (IoT) devices 1 worldwide

is predicted to reach 20 billion by 2020 [1]. Their security is

a huge concern. As a concrete example, in October 2016, the

Mirai malware compromised millions of IoT devices around

the world and used them to launch the largest DDoS attack

ever recorded [2]. In the scenario of a smart-home, security

vulnerabilities in IoT devices could compromise safety [3] and

availability of systems.

IoT devices are often compatible with multiple cloud-

based software stacks (e.g., SmartApps in the SmartThings

cloud [4], Alexa Skills [5], etc.). Prior work has found security

vulnerabilities introduced by some of these stacks [6], [7].

Unfortunately, devices may have vulnerabilities out-of-the-box

that are independent of security of high-level software stacks.

This material is based upon work supported by RNP and the National
Science Foundation under Grant Nos. 1740897 and 1740916.

1We may refer to IoT devices as smart devices (or just devices) and the
apps that control these devices as companion apps (or just app).

Given the attention that security of IoT devices has already

received, one would assume that vendors of popular devices

(and their customers) take security seriously. To assess how

vendors incorporate security in their IoT products in the real-

world, this paper presents an emperical study of security of

96 popular smart devices on Amazon. To make the analysis

scalable, this paper uses an indirect way of assessing security

of IoT devices by analyzing their companion apps, i.e., apps

available for the Android platform that enable users to control

the devices directly from their smartphones. Our hypothesis

is that the analysis of these apps can throw substantial

light on potential vulnerabilities in devices and even help

security analysts develop proof-of-concept exploits to induce

the device manufacturers to verify the vulnerabilities and fix

them. To validate this hypothesis, we analyze multiple apps for

vulnerabilities and, from that, created proof-of-concept attacks.
An alternative technique for analyzing the security of these

devices would have been to purchase them, extract their

firmware and analyze it to understand their behavior and,

indeed, such techniques have been previously used [8], [9].

But, such techniques can be difficult to scale to a large number

of devices and require significant analysis of low-level systems.

We found that the indirect way of analyzing companion apps

provides a complementary security analysis technique that can

still offer interesting security insights even without analyzing

a device’s firmware.
This study makes the following contributions:

1) We analyzed smartphone apps for 96 top-selling WiFi

devices on Amazon. We found that companion app

analysis can be a useful step in uncovering potential

vulnerabilities. Somewhat to our surprise, we found that

not just one vendor but different vendors sometimes

shared the same app to control the devices; for 96

devices, we found only 32 unique Android companion

apps. For example, during our analysis we found that

devices from eWeLink, Tuya, and YI all used the same

app. We found security problems to be widespread among

these popular devices and their companion apps: 50% of

the apps corresponding to 38% of the devices did some

critical communication without using proper encryption

181

2019 IEEE Security and Privacy Workshops (SPW)

© 2019, Davino Mauro Junior. Under license to IEEE.
DOI 10.1109/SPW.2019.00042



Router/HUB

IoT devices

Cloud
Companion 

Apps

WiFi
Z-Wave
Bluetooth

Pairing

Figure 1: Example of IoT setup.

techniques; some even used well-known weak ciphers

such as Caesar cipher.

2) We did a detailed analysis of companion apps responsible

for controlling 5 of the devices that we purchased from

Amazon. These confirmed the findings from the compan-

ion app analysis using dynamic tests and allowed us to

test potential exploits. We confirmed, for example, that an

Amazon top-seller smart plug from TP-Link [10] shares

the same hard-coded encryption key for all the devices of

a given product line and that the initial configuration of

the device is established through the app without proper

authentication. Using this information, we were able to

create a spoofing attack to gain control of this device.

A video illustrating a counterfeit app in action can be

found here [11]. We found that the attack also worked a

different TP-Link device that shared the same app.

3) We discuss the lessons learned. We expected to find

some vulnerabilities, but the extent of prevalence of

vulnerabilities in devices that are top-selling suggest larger

challenges around inadequacy of customer awareness and

transparency of vendor disclosures related to security

risks. We also found some devices that are designed with

better security and discuss two strategies used in them for

securing communication, as they may offer some guidance

towards developing design patterns for vendors to better

secure their IoT devices and companion apps.

II. CONTEXT, GOAL, AND QUESTIONS

A. Context

Most manufacturers of IoT devices provide a smartphone

application and cloud services to monitor and control their

devices. Communication between the device and its companion

app is often established over the local network using some

wireless protocol such as Zigbee and Z-Wave [12]. Some

WiFi-enabled devices we analyzed require password-protected

WiFi networks as a security measure. Unfortunately, password-

protected WiFi networks alone are not an adequate defense.

For example, WiFi passwords are often shared and users may

also inadvertently download malicious programs or scripts that

can send packets on the same network. It is thus important to
analyze whether the communication between a companion app
and the device is properly secured.

One method for such communication is via the cloud 2. An

IoT app sends the message intended for a device to the cloud

server and the cloud server relays the message to the device.

Similarly, a message from a device can be relayed to the IoT

app through the cloud. Figure 1 illustrates an example setup

involving a router/hub and the cloud. Another method is to use

local communication. In this context, pairing is the process of

establishing a communication channel between an app and a

device. A reasonable assumption that a customer should be

able to make is, once paired, such a channel is secure. Part of

our work tests this assumption.

B. Goal and Questions

To help analyze the security of app-device communication,

we analyzed the companion apps with the following initial

questions to help guide a deeper security analysis:

Q1) Are encryption key(s) hardcoded? A malicious developer

could counterfeit messages if she has access to secret keys. In

some case, those keys could be mined from code (even when

it is obfuscated) and then used to control the device without

pairing with it.

Q2) Does the app use local communication? When the IoT

app and the corresponding device are in the same network, local

communication may be used. Unfortunately, we found potential

problems in that scenario. For example, local communication is

often implemented with protocols such as UDP over broadcast,

enabling an attacker to eavesdrop communication and possibly

replaying packets using the same packet structure. In contrast,

cloud communication usually involves HTTPS/SSL certificates.

Consequently, an attacker would have to make a bigger effort

to forge certificates of the parties involved.

Q3) Does the app send broadcast messages? Broadcast

messages are frequently used in IoT setups to discover devices

and to enable direct app-device communication when there

is no hub/gateway in the setup. Their use, unfortunately, can

put a smart home at risk. Adversaries can, for instance, sniff3

the response of devices to broadcast messages, which often

include sensitive data such as the internal state of the device.

Table I: CVE vulnerabilities in

major IoT protocols implemen-

tations.

Protocol # Vuln. Example

MQTT 13 CVE-2017-9868
SIP 59 CVE-2018-0332
UPnP 346 CVE-2016-6255
SSDP 17 CVE-2017-5042

Q4) Does the app use
any well-known protocol
with vulnerabilities? Differ-

ent protocols tailored to IoT

deployments exist and some

of these protocols are known

to be vulnerable. Table I

shows the number of re-

ported issues and the ID of

an example CVE issue on four highly-vulnerable protocols. For

instance, the UPnP vulnerability CVE-2016-6255 allows remote

attackers to write arbitrary files to the device file system [14].

2Tuya Smart [13] is an example framework where the companion app can
only communicate with the device through the cloud.

3This ability to sniff WiFi messages depends on the distance to the router.

182



III. FINDING AND CONFIRMING VULNERABILITIES

This section details the process of discovering and confirming

vulnerabilities in IoT apps.

A. App Selection Criterion

We started with the top-100 most popular smart hubless

devices from the Amazon website and then restricted the

resulting set to devices that use WiFi for communication. We

found 96 such devices. We then restricted them to devices

from the categories smart plugs, bulbs, or IR controllers that

use Wi-Fi. The rationale is affordability and because Wi-Fi is

popular and provides a potential attack surface if an attacker

executes code anywhere on the same network (e.g., using an

app or downloaded executable code as attack vector). A total

of 54 devices satisfied this criterion. From these 54 devices, we

randomly selected (and purchased) 5 devices to run our analysis.

We found that two of the devices we selected use exactly the

same app (both devices belonged to the same manufacturer,

TP-Link).

We first present results from vulnerability analysis of these

four companion apps. Analysis suggested vulnerabilities in

each. We confirmed the vulnerabilities with proof-of-concept

exploits on the 5 devices, thus validating that analysis of

companion apps can offer significant insights into security

of corresponding devices. We then present findings from the

analysis of entire set of companion apps corresponding to the

96 devices.

B. Vulnerability Analysis

This section describes the method we used to analyze

vulnerabilities. We first analyzed each app with respect to

Section II-B’s questions. Then, for each app, we looked for a

potential attack path and confirmed it by creating a proof-of-

concept exploit. We detail this process below.

1) Basic toolset functionality: We used a toolset to help

answering the questions from Section II-B. The key components

of the toolset are described next.

Encryption Discovery. The encryption discovery compo-

nent looks for functions in the app that encrypt or decrypt the

data exchanged with the smart device. Those functions can

be the first line of attack for adversaries [15] and could be

used to infer the layout of the messages and send unauthorized

commands to the device. This component uses two comple-

mentary heuristics to discover these encryption functions. The

first heuristic applies to the case where developers use existing

Java encryption APIs. The second heuristic covers the case

where developers implement custom crypto functions instead

of building on existing ones; similar to previous work [16],

[17], this component detects custom encryption functions by

computing, for every function declared in the app, the ratio

between the number of arithmetic and bitwise operations over

the total number of instructions.

Network Protocol Discovery. This component extracts

information about the smart device-companion app commu-

nication protocol. It looks for calls to functions related to

communication protocols. For example, for UDP, it looks for

Table II: Potential Threats to Selected Apps.

App Avoid Hardcoded
Keys?

Avoid Local
Communication?

Avoid Broadcast
Messages?

Secure
Protocol?

Kasa Mobile no no no yes
LIFX no encryption no no yes
WeMo no encryption no yes no
e-Control no encryption no no yes

calls to functions from the class java.net.DatagramSocket

and, for TCP, it looks for calls to functions from

java.net.Socket. The output of this component consists

of a mapping from app classes to protocols.

2) Answering the questions: The method used to answer

each of the questions from Section II-B is described next.

Q1) Are encryption key(s) hardcoded? The search for

hardcoded keys initiates from the output of the encryption

discovery component, which reports function likely related to

encryption. When using standard encryption libraries, we are

able to automate the search for secret keys by looking for

javax.crypto.SecretKey, which is the class denoting a

key in the Java standard API. For custom encryption, however,

we manually inspect each method returned by the encryption

discovery, checking if the key is present inside the method

body or in uses of the method. Q2) Does the app use local
communication? In this case, the protocol discovery component

acts as guidance for manual analysis. Based on the function

calls and protocol report, we inspect the code to find whether

or not the app uses local communication. Q3) Does the
app send broadcast messages? Identifying whether broadcast

messages are sent from the app to the smart device is done

by inspecting the classes responsible for making network

calls and looking for well-known broadcast addresses, e.g.,

255.255.255.255. Q4) Does the app use any well-known
protocol with vulnerabilities? Using the network protocol

discovery component, we can also check if the app uses some

vulnerable protocol from the CVE database [18].

Results. Table II shows the answers to these questions for

the four selected apps. For each question, we used the labels

yes or no to indicate a positive answer or a negative answer,

and no encryption for the first question when the app uses no

encryption. The label yes indicates good practice whereas the

labels no and no encryption indicate a potential vulnerability. To

sum up, all four apps are found to use local communication with

the device and three of the apps use broadcast communication.

Three out of the four apps do not use any encryption to secure

communication. One of the selected apps (WeMo) uses an

insecure version of a protocol and does not use encryption.

C. Exploits

To create exploits, we first look for a vulnerable path in the

code and then try to materialize that path. Below, we detail

how we looked for paths and show the exploit created for the

“Kasa for Mobile” app. For space reasons, we do not show

exploits for the other apps. A technical report describes those

exploits, including other devices, in more detail 4.

4http://arxiv.org/abs/1901.10062

183



UDPClient.b() Datagram.send()

AbsSmartDevice.invoke()TPUDPClient.a()

TPClientUtils.encode()

c.a()

...

Encryption call Network call

UI call

Figure 2: Path (simplified) from UI function to a network call.

1 public static byte[] encode(byte[] data) {
2 byte seed = (byte) -85;
3 for (int i = 0; i < data.length; i++) {
4 data[i] = (byte) (data[i] ^ seed); seed = data[i];
5 } return data; }

Listing 1: TP-Link Kasa encryption function.

1) Finding Vulnerable Paths: To craft the exploit, we need

to find a path i.e., a sequence of function calls that connects

an UI call (the source) to a sink, e.g., a network method call.

Figure 2 illustrates a vulnerable path for the Kasa app. To

find this vulnerable path, we start by analyzing the output of

our toolset, i.e., classes and functions related to encryption,

authentication and network protocols. These elements are

potential sources of vulnerabilities. Considering the Kasa app,

for example, we start by inspecting the classes containing

usages of the UDP protocol (related to Q3). We discover that the

UDPClient class declares the network-related method b, which

calls datagramPacket.send(), a method from the standard

Java API to send UDP packets. As the method b includes

a network call, it could be flagged as a sink. Our analysis

shows that this class contains usages of broadcast addresses,

representing a potential attack surface. Then, we analyze the call

chain leading to this function looking for an UI method. In the

process, we found that another method present in the output of

our toolset (related to Q1), TPClientUtils.encode, contains

hardcoded keys that could also be exploited. We also identify

the function TPUDPCLient.a, responsible for building the

UDP packet. This function, while not showing a vulnerability

by itself, is responsible for building the UDP packet to be sent

and reveals the structure of the message. Finally, we discover

the calls to the UI obfuscated method c.a, which is the starting

point of this path. That is possible because of the programming

conventions of Android. More specifically, class c declares

several (button-related) event callback methods.

2) The “Kasa for Mobile” exploit: TP-Link Kasa is the

official app for controlling TP-Link-manufactured devices from

the Kasa smart home product line [19]. Our exploit consists of

a rogue app that enables an attacker to take control of a TP-Link

smart plug as well as other TP-Link devices. Albeit the app

targets a smart plug, it can control all devices from TP-Link

given that they are on the same network as the smartphone.

Answering the questions. Q1) Are encryption key(s) hard-
coded? The Kasa app uses a custom encryption function,

Caesar cipher [20], that is known to be easy to break. Listing 1

shows this function as it appears in the app. Line 2 shows the

hardcoded seed to encrypt the data. Identifying the encryption

function and its hardcoded seed gave us hope of replicating

the function in a rogue app on the same network to control

the device arbitrarily. Q2) Does the app use local communica-
tion? By using the network discovery component and manually

inspecting the code, we identified classes containing calls to

UDP-related methods and confirmed that the methods that make

these calls are involved in the discovery and control of the

TP-Link devices on the local network. For instance, Listing 2

exhibits the function that discovers TP-Link devices in the local

network. Q3) Does the app send broadcast messages? During

our analysis, we found the Kasa app uses broadcast messages to

discover and control the TP-Link devices. Line 1 from Listing 2

declares a constant variable holding a well-known broadcast

IPv4 address. This variable is then used in Line 4 to discover

TP-Link devices on the network. Q4) Does the app use any
well-known protocol with vulnerabilities? For this case, we did

not find uses of protocols with documented vulnerabilities.

1 public static final String UDP_ADDRESS="255.255.255.255";
2 public void discoverLocal() {
3 String requestId = DiscoveryUtils.a();
4 tpDiscovery.broadcastDiscovery(...,UDP_ADDRESS,...);
5 ... }

Listing 2: TP-Link Kasa function (simplified) used to

discover devices on the local network.

Confirming Vulnerabilities. We designed a proof-of-

concept exploit to confirm vulnerabilities; the exploit consists

of a rogue app running on the same network. To create the

attack we followed these steps: 1) find a vulnerable path and

encryption function, 2) discover the structure of exchanged

messages, 3) discover what protocol is used to exchange

messages, and 4) implement pairing.

From a vulnerable path of the Kasa app, we obtained access

to the app’s encryption function. We created a test script that

trivially broke the cipher and monitored the network traffic,

reading the contents of messages, extracting their structure,

and the IP addresses used. We also found that broadcasting

was used through a single address. Finally, it was necessary

to analyze the pairing process. To our surprise, we found by

inspection that a pairing process was only used to maintain the

profile of users on TP-Link devices, but not for their control.

Monitoring the Network. We used the popular traffic

analyzer Wireshark [21] to monitor the packets exchanged

between the Kasa app and the device. As the traffic was

encrypted we needed to implement a script to decrypt the

monitored messages; the script uses the symmetric cipher

function from Listing 1. This monitoring tool was used in two

important stages: (i) during the app-device pairing process and

(ii) while the app interacted with the device, e.g., turning

the plug “on” and “off”. During the pairing process, we

found that broadcast messages were exchanged while the app

was connected to the hotspot created by the device. We also

monitored the network when interacting with the device through

the app’s UI. Specifically, we repeated the “Turn Off” and

“Turn On” operation multiple times, observing that the contents

of the network packets did not change, confirming the use of

a hardcoded key (with a poor encryption method). We also

observed the use of broadcast messages during device usage

after pairing. We also found that the app uses the following

message to discover and obtain the current status of the device–

{"system":{"get_sysinfo":}{}}. Likewise, we found

that {"system":{"set_relay_state":{"state":0}}}

184



was the message used to turn the device on/off.

Based on the info we collected, we created a rogue app to

control the TP-Link smart plug. To sum up, static analysis

assisted in the discovery of vulnerable paths whereas dynamic

analysis helped in understanding the communication protocol

and the messages exchanged. Recall that, during our analysis,

we noticed that the pairing process was not needed to control

the device. This is a severe flaw as the user would not even be

aware of an attack—the official app would still work as intended

even with a rogue app controlling the device simultaneously.

A video demonstrating the exploit is available online [11].

Vulnerability disclosure. We disclosed the vulnerabilities,

along with scripts for exploits, to the manufacturers of the five

devices exploited in October 2018. All of them acknowledged

the disclosures but, to the best of our knowledge, have not

released patches to address the disclosures.

D. Vulnerability Analysis on a Larger Set of Apps

This section describes findings from the study of all the apps

corresponding to the 96 devices we have originally identified,

as discussed at the beginning of Section III-A. In this case,

we did not purchase devices, so these findings are indicative

of the potential extent of vulnerabilities, but require further

confirmation. IoT devices included cameras, locks, and alarms.

including the 5 devices that we previously purchased and

analyzed in Section III-A. These 96 devices only correspond

to 32 companion apps, saving us significant analysis effort

compared to analysis of devices themselves.

Figure 3 shows, as pie charts, the distribution of answers

to the questions for the apps analyzed. Of the 32 apps, we

found only 4 apps using encryption without hardcoded keys,

not using local communication, not using broadcasts, and not

using known insecure protocols. All their communication was

via the cloud service, likely over SSL. The four apps include

the popular Nest app. With respect to attacks considered in this

paper, this is a relatively secure way to communicate. But it

does have a privacy tradeoff in that the cloud service has access

to the commands and data sent to the device. Consequently,

a potential long-range privacy and security risk exists if the

cloud service is ever compromised [22].

IV. LIMITATIONS OF OUR STUDY

Both static and dynamic analysis techniques are funda-

mentally limited. They could have failed to detect use of

encryption that is obfuscated in some way, for example, a

custom Java implementation or implemented in native libraries

(JNI). We did look for both custom implementations and calls

to crypto functions via JNI when inspecting the code manually

along potentially vulnerable paths to the extent feasible. The

custom crypto implementations were generally worrisome – the

ones we found were implementing weak ciphers, for example,

the Caesar cipher. We found 5 of the apps that appeared to

invoke encryption functions via JNI. Further analysis would

be required to determine if those encryption functions were

used properly and what exactly they did.

(a) By encryption. (b) By local communication.

(c) By broadcast messages. (d) By security in protocols.

Figure 3: Distributions of apps by features.

V. DISCUSSION AND LESSONS LEARNED

We were somewhat surprised to find the extent to which

insecure devices were among top selling IoT devices. For

example, at the time of our analysis, TP-Link’s smart plug was

a top-seller with over 12K customer reviews on Amazon [23]

and a rating of 4.4 out of 5 stars.

It is apparent that consumers do not have a good way to

shop for devices based on security considerations. Kasa Smart

Plug does require a password-protected WiFi network, but one

customer commented on that on Amazon: “Forced to use a
password on WiFi router. Live in the middle of nowhere and
no need for this security. No reason for this manufacturer
to force this security.” We clearly have a long road ahead in

securing IoT systems – not just technically but also in creating

user awareness around security and in developing appropriate

disclosure policies for vendors to follow.

The app-device communication strategies that survived our

checks may offer some guidance. Nest thermostat’s companion

app does not talk directly to the device; instead, the user creates

a free account on the Next cloud service and then signs into

that using the companion app over SSL. Furthermore, the

thermostat and the cloud service can also mutually authenticate

each other and establish a shared secure link. No shared keys

between the companion app and the thermostat are required

since, from then on, the communication between the companion

app and the thermostat happens over SSL links to the cloud

service. The EZVIZ uses a different strategy. Unlike Nest, it

supports local communication between the companion app and

the device over the local network. The shared encryption key

is enclosed in the box in the form of a QR code and must be

scanned by the companion app. This strategy is better than

185



hardcoded keys provided the key in the QR code is of sufficient

length, random, and strong crypto library is used.

VI. RELATED WORK

Denning et al. [3] presented potential security attacks against

smart home devices, pointing that common attacks to traditional

computing platforms, like denial-of-service and eavesdropping

on network, could also be used in a smart home context.

Komninos et al. [24] also analyzed smart home devices,

presenting a survey that categorized potential threats in this

domain, e.g., device impersonation.
Focusing on IoT platforms, Fernandes et al. [6] analyzed

over 499 apps on SmartThings and found out that 55% of those

are over-privileged largely due to design flaws in the privilege

model of the platform. The authors also demonstrated how to

take advantage of this with four proof-of-concept attacks, both

remote and local. Jia et al. proposed a context-based permission

system for appified IoT platforms with fine-grained context

identification and runtime prompts [25].
Android apps have been analyzed for a variety of security-

related issues, such as cryptographic misuse [15], [26]. For

example, Egele et al. [15] analyzed the violation of six rules

including the use of ECB mode and constant keys. Wei et

al. [26] designed a static analysis tool for security vetting of

Android apps and used it to detect the use of the weak ECB

mode for encryption; the analysis is intra-procedural and thus

limited in scope.
In 2015, the Veracode team published a white paper on secu-

rity analysis of six IoT devices to examine vulnerabilities such

as non-use of cryptography and lack of strong passwords [27].

They used both network monitoring and reverse engineering

techniques. Our work differs in that it focuses on a different set

of vulnerabilities, presenting a detailed analysis of companion

apps to show how such vulnerabilities can be discovered.

VII. CONCLUSIONS

Securing communication between IoT devices and the mobile

apps responsible for controlling them is crucial for security

and even safety, depending on the types of IoT devices

on a network. In this study, we showed that analyzing the

smartphone companion apps that are released for the device

can provide important clues for potential vulnerabilities in the

devices. We analyzed 32 companion apps corresponding to

96 popular IoT devices to assess whether the communication

between the devices and their communication app is properly

secured. We found significant concerns. For instance, we found

that 31% of the apps do not appear to use any crypto to protect

the device-app communication and that 19% use hardcoded

keys. We also purchased five devices. From insights offered

by analysis of their companion apps, we were successful in

creating exploits for all five devices and able to control them.

The study suggests that there may be a long road ahead in

securing IoT systems – issues are not just technical but also non-

technical, such as creating mechanisms for consumer awareness

of security features and risks when they purchase IoT devices.

REFERENCES

[1] Gartner Group, “Gartner says 8.4 billion connected "things" will be
in use in 2017, up 31 percent from 2016,” 2016. [Online]. Available:
https://www.gartner.com/newsroom/id/3598917

[2] J. Scott and D. Spaniel, “Rise of the Machines,” http://icitech.org/
wp-content/uploads/2016/12/ICIT-Brief-Rise-of-the-Machines.pdf, In-
stitute for Critical Infrastructure Technology (ICIT), 2017.

[3] T. Denning, T. Kohno, and H. M. Levy, “Computer security and the
modern home,” Commun. ACM, vol. 56, no. 1, pp. 94–103, Jan. 2013.

[4] “SmartThings website.” [Online]. Available: https://www.smartthings.
com/

[5] “Echo & Alexa - Amazon Devices - Amazon Official Site.” [Online].
Available: https://www.amazon.com/Amazon-Echo-And-Alexa-Devices/
b?ie=UTF8&node=9818047011

[6] E. Fernandes, J. Jung, and A. Prakash, “Security analysis of emerging
smart home applications,” in 2016 IEEE Symposium on Security and
Privacy (SP), May 2016, pp. 636–654.

[7] X. Lei, G. Tu, A. X. Liu, C. Li, and T. Xie, “The Insecurity of Home
Digital Voice Assistants - Amazon Alexa as a Case Study,” CoRR, vol.
abs/1712.03327, 2017.

[8] VERACODE, “Use Veracode to secure the applications you build, buy,
& manage,” https://www.veracode.com, 2018.

[9] “Reverse Engineering the TP-Link HS110,” https://www.softscheck.com/
en/reverse-engineering-tp-link-hs110/, SoftScheck GMBH, 2018.

[10] TP-Link, “WiFi Networking Equipment for Home & Business -
TP-Link.” [Online]. Available: https://www.tp-link.com

[11] D. Mauro Junior and L. Melo, “Kasa video exploit,” 2018. [Online].
Available: https://figshare.com/s/d5bc439a7527df358f5f

[12] T. Ambient, “Zigbee vs Z-Wave: Two big smart home standards explored,”
https://www.the-ambient.com/guides/zigbee-vs-z-wave-298, 2018.

[13] “Tuya Smart - World’s leading IoT platform.” [Online]. Available:
http://www.tuya.com/

[14] CERT, 2013. [Online]. Available: https://www.us-cert.gov/ncas/
current-activity/2013/01/29/CERT-Releases-UPnP-Security-Advisory

[15] M. Egele, D. Brumley, Y. Fratantonio, and C. Kruegel, “An Empirical
Study of Cryptographic Misuse in Android Applications,” in CCS, 2013,
pp. 73–84.

[16] J. Caballero, P. Poosankam, C. Kreibich, and D. Song, “Dispatcher:
Enabling Active Botnet Infiltration Using Automatic Protocol Reverse-
engineering,” in CCS, 2009, pp. 621–634.

[17] Z. Wang, X. Jiang, W. Cui, X. Wang, and M. Grace, “ReFormat:
Automatic Reverse Engineering of Encrypted Messages,” in Computer
Security – ESORICS, 2009.

[18] MITRE, “CVE - Common Vulnerabilities and Exposures.” [Online].
Available: https://cve.mitre.org/

[19] TP-Link, “Kasa smart home products.” [Online]. Available: https:
//www.tp-link.com/us/kasa-smart/kasa.html

[20] W. Chapman, “Caesar cipher.” [Online]. Available: https://courses.
physics.illinois.edu/cs125/su2017/mp3_caesarcipher.php

[21] “Wireshark •go deep.” Wireshark Foundation. [Online]. Available:
https://www.wireshark.org

[22] E. Fernandes, A. Rahmati, J. Jung, and A. Prakash, “Decentralized
Action Integrity for Trigger-Action IoT Platforms,” in 22nd Network and
Distributed Security Symposium (NDSS 2018), Feb. 2018.

[23] “Kasa Smart Wi-Fi Plug by TP-Link.” [Online]. Available:
https://www.amazon.com/Kasa-Smart-Wi-Fi-Plug-TP-Link/dp/
B0178IC734?keywords=tp-link&qid=1539182867&sr=8-7&ref=
sr_1_7#customerReviews

[24] N. Komninos, E. Philippou, and A. Pitsillides, “Survey in smart grid and
smart home security,” IEEE Communications Surveys Tutorials, vol. 16,
no. 4, pp. 1933–1954, 2014.

[25] Y. J. Jia, Q. A. Chen, S. Wang, A. Rahmati, E. Fernandes, Z. M.
Mao, A. Prakash, and S. J. Unviersity, “ContexIoT: Towards providing
contextual integrity to appified IoT platforms,” in NDSS, 2017.

[26] F. Wei, S. Roy, X. Ou, and Robby, “Amandroid: A precise and general
inter-component data flow analysis ramework for security vetting of
Android apps,” in CCS, 2014, pp. 1329–1341.

[27] Veracode, “The Internet of Things: Security Research Study,”
https://www.veracode.com/sites/default/files/Resources/Whitepapers/
internet-of-things-whitepaper.pdf.

186


