
Efficient Evaluation of Activation Functions over
Encrypted Data

Patricia Thaine, Prof. Sergey Gorbunov, Prof. Gerald Penn

The utility of our personally identifiable information is pervasive and
we don’t know who it’s being shared with!

WHY PRIVACY-PRESERVING ML?

WHY PRIVACY-PRESERVING ML?

Dropbox

WHY PRIVACY-PRESERVING ML?

With over 2.6 billion records breached in 2017 alone (76% due to
accidental loss, 23% due to malicious outsiders) [1] and a

growing shortage of cybersecurity professionals:
more data privacy = more data security

[1] https://breachlevelindex.com/assets/Breach-Level-Index-Report-2017-Gemalto.pdf

WHY PRIVACY-PRESERVING ML?

https://breachlevelindex.com/assets/Breach-Level-Index-Report-2017-Gemalto.pdf

SOME ML TASKS THAT USE SENSITIVE DATA

Gait Detection
Fingerprint Recognition

Facial Recognition
Authorship Recognition

Machine Translation
Named Entity Recognition

Recommendation Systems
Question Answering

Automatic Speech Recognition
Text-to-Speech

Speaker Recognition
Speaker Profiling

Disease Prediction

WHAT WOULD PERFECTLY PRIVACY-PRESERVING
ML LOOK LIKE?

Sources: https://i.ytimg.com/vi/-1FInW1HCbw/maxresdefault.jpg https://www.ssl2buy.com/wiki/wp-content/uploads/2015/12/Symmetric-Encryption.png

CRYPTOGRAPHY

https://i.ytimg.com/vi/-1FInW1HCbw/maxresdefault.jpg
https://www.ssl2buy.com/wiki/wp-content/uploads/2015/12/Symmetric-Encryption.png

SECURE TWO-PARTY COMPUTATION

Service provider

Suppose we were able to use 2PC to provide input and output data
privacy …

Limitations:
• Could incur very high communication costs
• Data owner could have low computational capacity
• Data owner could be offline

Data
owner

HOMOMORPHIC ENCRYPTION

Service provider

∀"#,"% ∈ ',("# ⊙' "% ← ("# ⊙' (("%)

Data
owner

"#"%

("# , (("%)

(("# ⊙' "%)

"# ⊙' "%

HOMOMORPHIC ENCRYPTION

1. training data privacy;
2. input data privacy;
3. model weight privacy;
4. output data privacy.

!""

!"#

WHY HOMOMORPHIC ENCRYPTION?

Semantically secure probabilistic encryption: “for any function ! and
any plaintext " , and with only polynomial resources [...], the
probability to guess !(") (knowing ! but not ") does not increase if
the adversary knows a ciphertext corresponding to "” (Fontaine and
Garland 2007).

HOMOMORPHIC ENCRYPTION IN PRACTICE

Easy Operations: linear and polynomial

Difficult Operations: non-polynomial

PRIOR WORK

● ! " = "$ used as an activation function instead of ReLU (Gilad-
Bachrach et al., 2016).

● Distant polynomial approximation of sigmoid function used for
training a neural network on encrypted data (Hesamifard et al.,
2016).

DEALING WITH NON-POLYNOMIAL EQUATIONS
IN PRIVATE DEEP LEARNING

PRIOR WORK: Polynomial Alternative to ReLU

! " = "$ used as an activation function instead of ReLU in
CryptoNets. No alternative proposed for sigmoid. 99% accuracy on
MNIST OCR (Gilad-Bachrach et al., 2016).

PRIVATE DL COPING METHOD I

PRIOR WORK: Polynomial Approximation of Sigmoid

Approximation of sigmoid function used for training a neural network
on encrypted data (Hesamifard et al., 2016/2017).

PRIVATE DL COPING METHOD II

CONTRIBUTION

We show how to represent the value of any
function over a defined and bounded interval,
given encrypted input data, without needing to
decrypt any intermediate values before obtaining
the function’s output.

17

PRIVACY-PRESERVING MACHINE LEARNING
PRIVACY-PRESERVING NUMERICAL

COMPUTATION

18

We use the RLWE-based Brakerski/Fan-Vercauteren (B/FV)
homomorphic encryption scheme.

We perform component-wise addition and component-wise
multiplication in the encrypted domain.

We use E(∗) to denote that ∗ is an encrypted value.

We encode floating point numbers by multiplying them by 10& and
rounding to the nearest integer, where ' is our desired level of
precision.

Homomorphic Encryption & NotationOUR SETUP AND NOTATION

HOMOMORPHIC ENCRYPTION OVERVIEW

Component-wise vs. Polynomial Operations

Option #1 Option #2

Addition Multiplication Addition Multiplication

0x⁴ + 4x³ + 6x² + 2x + 5
+ 1x⁴ + 6x³ + 3x² + 5x + 2

1x⁴ + 10x³ + 9x² +7x + 7

0x⁴ + 4x³ + 6x² + 2x + 5
* 1x⁴ + 6x³ + 3x² + 5x + 2

0x⁴ + 24x³ + 18x² +10x + 10

0x⁴ + 4x³ + 6x² + 2x + 5
+ 1x⁴ + 6x³ + 3x² + 5x + 2

1x⁴ + 10x³ + 9x² +7x + 7

0x⁴ + 4x³ + 6x² + 2x + 5
* 1x⁴ + 6x³ + 3x² + 5x + 2

4x⁷+30x⁶+50x⁵+55x⁴+74x³+37x²
+29x+10

1) No information about the inputs provided by the client is revealed
to even a malicious server.

2) Assuming the server is semi-honest, no information about the
inputs is revealed, and the client learns the correct results of its
desired computations.

Homomorphic Encryption & NotationSECURITY, INTEGRITY, AND CORRECTNESS

OUR METHOD WITH A SIMPLE EXAMPLE

Input: an encrypted number ! "# , a function $, and a range of values
(e.g., 1 to 8) with a step between those values (e.g., 1).
Output: %# = $ "#
Step 1: create a vector of indices, ', from the input range, a vector of the
results of $ applied to each of these indices plus 1 denoted by $ ' , and a
vector, (, which has E "# as a repeated value. Say, "# = 4.

' =

0
1
2
3
4
5
6
7
8

, $ ' =

$(1)
$(2)
$(3)
$(4)
$(5)
$(6)
$(7)
$(8)
0

, (=

!(4)
!(4)
!(4)
!(4)
!(4)
!(4)
!(4)
!(4)
!(4)

EFFICIENT TABLE LOOKUP

OUR METHOD WITH A SIMPLE EXAMPLE (CONT’D)

Step 2: subtract.

!(4)
!(4)
!(4)
!(4)
!(4)
!(4)
!(4)
!(4)
!(4)

−

0
1
2
3
4
5
6
7
8

=

!(4)
!(3)
!(2)
!(1)
!(0)
!(−1)
!(−2)
!(−3)
!(−4)

EFFICIENT TABLE LOOKUP

OUR METHOD WITH A SIMPLE EXAMPLE (CONT’D)

Step 3: rotate by one and multiply.

!(4)
!(3)
!(2)
!(1)
!(0)
!(−1)
!(−2)
!(−3)
!(−4)

×

!(−4)
!(4)
!(3)
!(2)
!(1)
!(0)
!(−1)
!(−2)
!(−3)

=

!(−16)
!(12)
!(6)
!(2)
!(0)
!(0)
!(2)
!(6)
!(12)

EFFICIENT TABLE LOOKUP

OUR METHOD WITH A SIMPLE EXAMPLE (CONT’D)

Step 4: rotate by two and multiply.

!(−16)
!(12)
!(6)
!(2)
!(0)
!(0)
!(2)
!(6)
!(12)

×

!(6)
!(12)
!(−16)
!(12)
!(6)
!(2)
!(0)
!(0)
!(2)

=

!(−96)
!(144)
!(−96)
!(24)
!(0)
!(0)
!(0)
!(0)
!(24)

EFFICIENT TABLE LOOKUP

OUR METHOD WITH A SIMPLE EXAMPLE (CONT’D)

Step 5: rotate by four and multiply.

!(−96)
!(144)
!(−96)
!(24)
!(0)
!(0)
!(0)
!(0)
!(24)

×

!(0)
!(0)
!(0)
!(24)
!(−96)
!(144)
!(−96)
!(24)
!(0)

=

!(0)
!(0)
!(0)
!(576)
!(0)
!(0)
!(0)
!(0)
!(0)

EFFICIENT TABLE LOOKUP

Uh oh!

OUR METHOD WITH A SIMPLE EXAMPLE (CONT’D)EFFICIENT TABLE LOOKUP

Step 6 (preamble): We can…

● Simply keep track of a denominator?

Simple in the short term, potentially problematic in the long term.

Or…

● Exploit the fact that RLWE-based cryptosystems use plaintext

moduli!

E.g., 0"# + 4"& + 6"(+ 2" + 5 +
+ 1"⁴ + 6"³ + 3"² + 5" + 2 +
= 1"# + 3"& + 2"(+ 0" + 0 +

OUR METHOD WITH A SIMPLE EXAMPLE (CONT’D)EFFICIENT TABLE LOOKUP

Step 6 (preamble): Since we know !, as well as every possible value
that "# can be, and the plaintext modulus $, we can pre-compute the
following vectors (say p = 65537):

7711
5780
53977
12234
53977
5780
7711
56381
0

×

−5040
1440
−720
39:
−720
1440
−5040
40320
0

=

1 (mod 65537)
1 (mod 65537)
1 (mod 65537)
1 (?@A :33B9)
1 (mod 65537)
1 (mod 65537)
1 (mod 65537)
1 (mod 65537)

0

OUR METHOD WITH A SIMPLE EXAMPLE (CONT’D)

Step 6:

7711
5780
53977
())*+
53977
5780
7711
56381
0

×

.(0)

.(0)

.(0)
.(576)
.(0)
.(0)
.(0)
.(0)
.(0)

=

.(0)

.(0)

.(0)

.(1)

.(0)

.(0)

.(0)

.(0)

.(0)

EFFICIENT TABLE LOOKUP

OUR METHOD WITH A SIMPLE EXAMPLE (CONT’D)

Step 7: Solved in log $ + 2 multiplications!

'(0)
'(0)
'(0)
'(1)
'(0)
'(0)
'(0)
'(0)
'(0)

⋅

-(1)
-(2)
-(3)
-(4)
-(5)
-(6)
-(7)
-(8)
0

= '(- 4)

EFFICIENT TABLE LOOKUP

SECURITY & RUNTIME

Results for over a 256-bit security level, using an Intel Core i-7-8650U

CPU @1.90GHz and 16GB RAM. Runtime increments linearly with

the size of the lookup table.

EFFICIENT TABLE LOOKUP

0

50

100

150

200

250

5 9 17 33 65 129

R
u

n
ti
m

e
 (

s
)

Size of y

Lookup Table Method Runtime

32

0

200

400

600

800

1000

1200

32-bit float *1.0e5 *1.0e4 *1.0e3 *1.0e2 *1.0e1 *1.0e0 *1.0e-1

Losses for VAE on MNIST

Rounded Truncated

● Replacing the 2 ReLU
and 1 sigmoid with our
approximation method.

● Loss minimized at ! = 1
(truncation method).

● Loss at ! = 0 (rounding
method) still reasonable.

EXPERIMENTS: VARIATIONAL AUTOENCODER (VAE)

● Aggregate number of distinct values over 10 epochs input into VAE’s
sigmoid function.

● x-axis: input values; y-axis: quantity of inputs with those values.
● (a) 549301760 many distinct values; (b) 52; (c) 6.
● We only need a lookup table of size 65 for this sigmoid function!

EXPERIMENTS: VARIATIONAL AUTOENCODER (VAE)

EXPERIMENTS: MNIST IMAGE CLASSIFICATION

Resulting losses and number of correct classifications of 10000 test set
images from MNIST with the inputs to its three ReLU activation
functions approximated at various precisions.

TAKEAWAYS

● Using HE for ML is less of an ML problem and more of a NA
problem.

● We can protect users’ private data while continuing to use them for
ML in general.

● When deciding how to implement a neural network using
homomorphic encryption, we need a very clear understanding of
the problem we are solving.

Thank you!

@PrivateNLP

https://medium.com/privacy-preserving-natural-language-processing

https://medium.com/privacy-preserving-natural-language-processing

Brakerski, Zvika. “Fully homomorphic encryption without modulus switching from classical GapSVP.” In Advances in
cryptology 2012, pp. 868-886. Springer, Berlin, Heidelberg, 2012.

Fan, Junfeng, and Frederik Vercauteren. “Somewhat Practical Fully Homomorphic Encryption.” IACR Cryptology ePrint
Archive 2012 (2012): 144.

Fontaine, Caroline, and Fabien Galand. ”A survey of homomorphic encryption for nonspecialists.” EURASIP Journal on
Information Security 1 (2009): 41-50.

Gilad-Bachrach, Ran, Nathan Dowlin, Kim Laine, Kristin Lauter, Michael Naehrig, and John Wernsing. “Cryptonets:
Applying neural networks to encrypted data with high throughput and accuracy.” In International Conference on
Machine Learning, pp. 201-210. 2016.

Hesamifard, Ehsan, Hassan Takabi, and Mehdi Ghasemi. “CryptoDL: Towards Deep Learning over Encrypted Data.” In
Annual Computer Security Applications Conference (ACSAC 2016), Los Angeles, California, USA. 2016.

Hesamifard, Ehsan, Hassan Takabi, Mehdi Ghasemi, and Rebecca N. Wright. “Privacy-preserving machine learning as
a service.” Proceedings on Privacy Enhancing Technologies 2018, no. 3 (2018): 123-142.

Kingma, Durk P., Shakir Mohamed, Danilo Jimenez Rezende, and Max Welling. “Semi-supervised learning with deep
generative models.” In Advances in neural information processing systems, pp. 3581-3589. 2014.

REFERENCES

