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Byte-based Malware Classifiers

= Feature engineering for malware classification
tasks is hard. Can deep learning do it for us?

= Convolutional neural networks (CNNs)
automatically and efficiently learn feature
representations directly from data

= Recent work has shown promising results
competitive with (though not better than)
traditional machine learning

— Accuracy: 90-96%, AUC: 0.96-0.98
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CNN Models
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= Baseline

— 15.6M Windows PEs (80% goodware)
— July 2015 to July 2017
— Stratified sampling

= Small

— 7.3M Windows PEs (50% goodware)
— July 2016 to November 2016
— No sampling

= Baseline+Dropout

— Same data as Baseline

— Dropout layers before convolutional layers



Model Evaluation

Train Data Test Results

Model Size Mal:Good F1 AUC
Small 7.27TM 50:50 0943 0098
Baseline 15.62M 20:80 0919 096
Baseline+Dropout | 15.62M 20:80 0.869  0.87

16.55M binaries (50:50) from June 1, 2018 to August 31, 2018

Model frained on small dataset performs noticeably better
despite older data and fewer samples

()@201 9 FireEye



What are byte-based malware classifiers learning?

What is the impact of dataset volume and
regularization on learned featurese



Analysis Overview
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Byte Embeddings
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beddings
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Increase in number of outliers with more data/regularization
Learned features appear to be less flexible




Low-Level Feature Detectors

Some unused filters
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Distribution of Top-100 Activations Across First-Level Filters
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Low-Level Feature Detectors

Distribution of Top-100 Activations Across First-Level Filters
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More data and regularization appears to lead to more features
that are equally applicable across the two classes

Supports earlier observation about feature specificity
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Low-Level Feature Detectors

Loose filters

Specific filters v
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Features
Model Strings Instructions
Small Filter 71: ‘C’, ‘r’, ‘@’ Filter 16: Push sequences
(0x40f0c8L): tGenKey. (0x10007edbL): je,0x10007{f1
(0x40f0dOL): CryptDec (0x10007eelL): push,0xff
(0x40f0d8L): rypt.... (0x10007ee6L): push,edi
(0x40f0eOL): CryptEnc (0x10007ee7L): push,0x10007ca5
(0x40f0e8L): rypt.... (0x10007eecL): push,0x4
Baseline Filter 83: ‘r’, ‘s’ Filter 57: Function calls
(0x40d850L): ....GetP (0x4046b4L): push,0x0
(0x40d858L): rocAddre (0x4046b6L): push,0x0
(0x40d860L): ss..R.Lo (0x4046b8L): push,0x1
(0x40d868L): adLibrar (0x4046baLl.): push,0x0
(0x40d870L): yA....Gl (0x4046bcL): call,dword, 15042
e Dropout Filter 11: ‘Directory’ Filter 61: mov sequences
(0x40d9e0L): ctoryW.. (0x408d65L): je, 0x408d6a
(0x40d9e8L): N.Create (0x408d67L): mov, dword , edx
(0x40d9f0L): ,Director (0x408d6al.): mov, esi, dword
(0x40d9f8L): yW....Ge (0x408d6dL): mov, dword, esi
(0x40da0OOL): tTempPat (0x408d70L): mov, ecx, dword
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End-to-End Features

SHAP Values for WannaCry Worm
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End-to-end features map closely to

Chomors resye manual feature engineering



End-to-End Features

SHAP Values for WannaCry Worm
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Model appears to learn presence/absence of structural features



The Case of the Rich Header

= Rich header is added by Microsoft’s linker and
contains metadata about the binary

= Should be effectively ‘random’ due to XOR
encryption using key derived from checksum

= Hypothesis: Hierarchical pooling can detect
presence of fixed bytes around header (e.g., ‘Rich’)

= Proxy for whether non-Microsoft compiler was used,
which is common in malware
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1% HxD - [CAWindows\System32\calc.exe]
) File Edit Search View Analysis Extras Window ?
Jvll| i o] ans [ hex [

) calcexe |

Offset (h) 00 01 02 03 04 05 06 07 08 09 OA 0B OC OD OE OF

00000000 4D SA 90 00 03 00 00 00 04 00 00 00 FF FF 00 00

00000010 B8 00 00 00 00 00 00 00 40 00 00 00 00 00 00 00

00000020 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ..
00000030 00 00 00 00 00 00 00 00 00 00 00 00 D8 00 00 00 cee@...
00000040 OE 1F BA OE 00 B4 09 CD 21 B8 01 4C CD 21 54 68 fr,.LitTn
00000050 69 73 20 70 72 6F 67 72 61 6D 20 63 61 6E 6E 6F is program canno
00000060 74 20 62 65 20 72 75 6E 20 €9 6E 20 44 4F 53 20 t be run in DOS
00000070 6D 6F 64 65 2E OD OD OA 24 00 00 00 00 00 00 00 mode....$.......
00000080 (08 73 A6 53 4C 12 C8 00 4C 12 C8 00 4C 12 C8 00| (.s|SL.E.
00000090 |45 6A SD 00 45 12 C8 00 4C 12 C9 00 D& 13 C8 00| [Ej].E.E.
000000A0 |45 6A 5B 00 6D 12 C8 00 45 6A 4B 00 57 12 C8 00| [Ej[.m.E.
00000080 |45 6A 4C 00 CE 12 C8 00 45 6A SC 00 4D 12 cg8 00| [EJL.I.E.
000000CO 45 6A 59 00 4D 12 C8 00 52 69 63 68 4C 12 C8 00| [E3Y.M.E
000000D0 (00 00 00 00 00 00 00 00(SO 45 00 00 4C 01 04 00

000000E0 00 00 00 00 EO 00 02 01

000000F0 OB 01 09 00 00 2E 05 00 00 A6 06 00 00 00 00 00

00000100 6C 2D 01 00 00 10 00 00 00 20 05 00 00 00 00 01

00000110 00 10 00 00 00 02 00 00 06 00 01 00 06 00 01 00

00000120 06 00 01 00 00 00 00 00 00 00 OC 00 00 04 00 00

00000130 30 BD OC 00 02 00 40 81 00 00 04 00 00 20 00 00

00000140 00 00 10 00 00 10 00 00 00 00 00 00 10 00 00 00

00000150 00 00 00 00 00 00 00 00 FC 1A 05 00 54 01 00 00

00000160 00 90 05 00 98 27 06 00 00 00 00 00 00 00 00 00

00000170 00 00 00 00 00 00 00 00 00 CO OB 00 3C 3B 00 00

00000180 44 3C 05 00 38 00 00 00 00 00 00 00 00 00 00 00

00000190 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00000120 30 04 03 00 40 00 00 00 70 02 00 00 54 01 00 00

000001BO0 00 10 00 00 30 06 00 00 78 1A 05 00 40 00 00 00

NNONNICO 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

Offset: 10 Overwrite




Summary

= CNN architectures can learn meaningful features

— Imports, presence of Rich header, incorrect checksums, etc.
— Many features mimic manually-derived features from traditional ML models

— Partly contradicts findings by Demetrio et al. on MalConv#

= Model depth, dataset, and hierarchical pooling appear to be key

= Malware classification performance relies on detecting malware indicators

— Increased data and regularization lead to more specific features that were equally
applicable across the two classes but worse detection performance
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FireEye Data Science is Hiring!

= Data scientist positions open at the Senior, Staff, and Principal level
= Perform cutting-edge ML research and apply it to cybersecurity problems

= Work on problems from across the entire cybersecurity spectrum!
— Threat Inteligence, Email, Network, Endpoint ...
Thank you!
© scoftt.coull@fireeye.com
W @DrScottCoull
' https://scottcoull.com
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