
Exploring Adversarial Examples 
in Malware Detection
Octavian Suciu*, Scott E. Coull and Jeffrey 
Johns

1



©2019 FireEye

Machine Learning for Malware Classification

§ Evasion attacks against malware detectors contributed to an arms race spanning decades
§ Extensive work on understanding evasion attempts affecting traditional ML-based detectors
§ Defenders are increasingly employing new approaches such as end-to-end learning

2

Malware
Goodware

We study the robustness of deep learning-based 
malware detectors against evasion attempts



©2019 FireEye

Outline
§ Malware detectors based on deep learning 
§ Domain challenges for evasion
§ Append Attack
§ Slack Attacks

3



©2019 FireEye

Feature Extraction in Static Malware Classification

4

Binary Program\x90\x00\x03\x00\x00\x04\x1C

Code length = 1141 bytes
Touched file = “%WINDIR%\System32\en-
US\wscript.exe”
String = “http://bad.site”

Features



©2019 FireEye

Feature Engineering

5

String = “http://bad.site” Malware

String = “http://lessbad.site” Goodware

Feature Engineering is challenging and time consuming



©2019 FireEye

Automatically Learning Feature Representations

§ ML-based solutions require extensive 
feature engineering
– List of features must constantly evolve to 

capture adaptive adversaries
§ One solution: end-to-end learning
– Automatically learn important features from 

raw data

6



©2019 FireEye

Learning from Raw Data

§ Embeddings: characters mapped to fixed-size vectors
§ Convolutions: receptors for character compositions (e.g. words)
§ Max-pooling: filters for non-informative features (e.g. common words)
§ Fully connected: non-linear classifier

7

Character-level Convolutional Neural Networks for text classification [Zhang+, 2015]



©2019 FireEye

Analogy between Text and Programs

8

Natural Language: Executable programs:

\x90\x00\x03\x00\x00\x04\x1Cthe quick brown fox

text characters bytes

words instructions

sentences functions



©2019 FireEye

Byte-level Neural Networks for Malware 
Classification

9

Program Executable (PE) can be viewed as a sequence of bytes

\x90\x00\x03\x00\x5C



©2019 FireEye

MalConv: Malware Detector based on Raw Bytes

§ 2MB input padding, CNN 128 kernels with size=500 and stride=500
§ Balanced Accuracy: 0.91 AUC = 0.98

10

Embedding
Convolution

Convolution
Gating

Temporal 
Max-Pooling

Fully 
ConnectedSoftmaxP(malware)

\x90\x00\x03\x00\x00\x04\x1C

MalConv: Malware Detection by Eating a Whole EXE [Raff+, 2017]

Is MalConv vulnerable to AML-based evasion attacks?



©2019 FireEye

Training a Robust Classifier
§ Trainin MalConv on a production-scale dataset (FULL)
– 12.5 M training samples with 2.2M malware
– Training & testing sets have strict temporal separation
– Frequent malware families are down-sampled to reduce bias

§ Use published dataset [Anderson+, 2018] (EMBER)
– 900 K training samples
– Used pre-trained MalConv model shared with dataset

§ Sample dataset comparable to prior work (MINI)
– 4,000 goodware and 4,598 malware
– Sampled from FULL

11



©2019 FireEye

Outline
§ Malware detectors based on deep learning 
§ Domain challenges for evasion
§ Append Attack
§ Slack Attacks

12



©2019 FireEye

Evasion Attacks in Image Classification

§ Gradient directs instance across decision boundary
– [Szegedy+, 2014], [Papernot+, 2015], [Carlini and Wagner, 2017]

§ [Goodfellow+, 2015]: Fast Gradient Sign Method
§ Can we apply these attacks directly to the malware detection domain?

13

Toaster+ =

𝐒𝐢𝐠𝐧(𝛁𝒙 𝑱 𝜽, 𝒙, 𝒚 ) 𝒙 + 𝛜𝐒𝐢𝐠𝐧(𝛁𝒙 𝑱 𝜽, 𝒙, 𝒚 )𝒙



©2019 FireEye

Applying AML Attacks to Binaries

14

Existing evasion attacks break the functionality of the executable

Original PE Sample\x90\x00\x03\x00\x00\x04\x1C

Evasive PE Sample

=
\xA3\x45\x03\xB3\x05\x04\x1C

+

Adversarial Noise𝐒𝐢𝐠𝐧(𝛁𝒙 𝑱 𝜽, 𝒙, 𝒚 )

???



©2019 FireEye

Outline
§ Malware detectors based on deep learning 
§ Domain challenges for evasion
§ Append Attack
§ Slack Attacks

15



©2019 FireEye

Append-based Attacks

§ Appended noise preserves functionality by not modifying content of 
original bytes [Kolosnjaji+, 2018]

16

\x90\x00\x03\x00\x00\x04\x1C

+
Adversarial Noise

=
Evasive PE Sample\x90\x00\x03\x00\x00\x04\x1C\xA3\x21\x45\xB3\x05



©2019 FireEye

Naive Benign Append Attack

§ Adversarial bytes are copied from benign samples correctly classified with 
high confidence

17

\x90\x00\x03\x00\x00\x04\x1C

\x90\x00\x03\x00\x00\x04\x1C

Original Sample

Adversarial Noise\x60\xFA\x3B\xC1\x00



©2019 FireEye

Benign Append Results
§ SR on MINI increases linearly with 

number of bytes
– Model overfits benign features due to a 

small dataset used for training a large 
capacity network

18

Consider dataset size when drawing 
conclusions about adversarial attack 

effectiveness



©2019 FireEye

Benign Append Results
§ SR on MINI increases linearly with number 

of bytes
– Model overfits benign features due to a small 

dataset used for training a large capacity 
network

§ EMBER & Full models are robust to the 
attack
– Harder to overcome dataset features by 

appending benign bytes at the end of file

19

Take-away

Consider dataset biases when drawing 
conclusions about adversarial attack 

effectiveness



©2019 FireEye

FGSM Append Attack

§ Adversarial embeddings are generated using the single-step Fast Gradient 
Sign Method [Goodfellow+, 2015]

§ Adversarial bytes are chosen as the L2 closest values in the embedding 
space

20

\x90\x00\x03\x00\x00\x04\x1C

\x90\x00\x03\x00\x00\x04\x1C Adversarial Noise𝐒𝐢𝐠𝐧(𝛁𝒙 𝑱 𝜽, 𝒙, 𝒚 )

Original Sample



©2019 FireEye

FGSM Append Results
§ Larger training set leads to more 

vulnerable model
– Full model encodes more sequential 

features
§ High Success Rate highlights model 

vulnerability
– Ample opportunity to evade MalConv

21

Why is attack so effective?

Upper bound attack performance



©2019 FireEye

Architectural Weakness in MalConv

22

Embedding Non-overlapping 
convolutions

Max-pooling Fully 
Connected



©2019 FireEye

Architectural Weakness in MalConv

23

Embedding Non-overlapping 
convolutions

Max-pooling Fully 
Connected

Adversarial Perturbation

MalConv does not encode positional features



©2019 FireEye

Architectural Weakness in MalConv
§ Larger training set leads to more 

vulnerable model
– Full model encodes more sequential 

features
§ High Success Rate highlights model 

vulnerability
– Ample opportunity to evade MalConv

24

Can we leverage program semantics in 
attacks?

Take-away

Architectural choices may introduce 
vulnerabilities against adversarial attacks

Upper bound attack performance



©2019 FireEye

Outline
§ Malware detectors based on deep learning 
§ Domain challenges for evasion
§ Append Attack
§ Slack Attacks

25



©2019 FireEye

Finding Slack Regions

26

\x90\x00\x03\x00\x00\x04\x1C

Section 1

Section 2

…

Section Header Header contains pointers to sections of executable 

Each Section has RawSize (size in PE file) and 
VirtualSize (size when loaded into memory) 

The compiler may set VirtualSize smaller than RawSize

We could use slack regions to inject adversarial noise 
since they are not mapped to memory 



©2019 FireEye

Slack Attack Results

27

◆Slack FGSM outperforms append strategies at 
smaller number of modified bytes

▶ Attack uses contextual byte information about 
feature importance

▶ But there is a limited number of slack bytes 
available

Effectiveness of Slack FGSM on FULL

Take-away

Reasoning about program semantics 
helps improve attack effectiveness 



©2019 FireEye

Lessons Learned
§ Training set matters when testing robustness against adversarial examples
– Small dataset gives skewed estimates about attack success rates

§ Architectural decisions should consider potential effect of adversarial 
examples
– Models that do not encode positional information can be easily bypassed

§ Semantics is important for improving attack effectiveness
– Reasoning about feature importance helps exploit higher-level learned ones

28



©2019 FireEye

Thank you!

29

Octavian Suciu
osuciu.com
osuciu@umiacs.umd.edu



©2019 FireEye

References
§ [Raff+, 2017] E. Raff, J. Barker, J. Sylvester, R. Brandon, B. Catanzaro, and C. Nicholas, 

“Malware detection by eating a whole exe,”
§ [Anderson+, 2018] H. S. Anderson and P. Roth, “EMBER: An Open Dataset for Training Static 

PE Malware Machine Learning Models,”
§ [Szegedy+, 2014] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. Goodfellow, 

and R. Fergus, “Intriguing properties of neural networks,”
§ [Papernot+, 2015] Papernot, N., McDaniel, P., Jha, S., Fredrikson, M., Celik, Z. B., & Swami, A., 

“The limitations of deep learning in adversarial settings”
§ [Carlini and Wagner, 2017] N. Carlini and D. Wagner, “Towards evaluating the robustness of 

neural networks,”
§ [Goodfellow+, 2015] I. Goodfellow, J. Shlens, and C. Szegedy, “Explaining and harnessing 

adversarial examples,”
§ [Kolosnjaji+, 2018] B. Kolosnjaji, A. Demontis, B. Biggio, D. Maiorca, G. Giacinto, C. Eckert, 

and F. Roli, “Adversarial malware binaries: Evading deep learning for malware detection in 
executables,”


