Exploring Adversarial Examples
in Malware Detection

Octavian Suciu*, Scoftt E. Coull and Jeffrey
Johns

Q)FIREEYE &DATASCIENCE

Machine Learning for Malware Classification

®®
O¢

= Evasion attacks against malware detectors contributed to an arms race spanning decades

= Extensive work on understanding evasion attempts affecting traditional ML-based detectors
= Defenders are increasingly employing new approaches such as end-to-end learning

> Malware

Goodware

We study the robustness of deep learning-based
malware detectors against evasion attempts

C) 2 ©2019 FireEye

Outline

= Malware detectors based on deep learning
= Domain challenges for evasion

= Append Attack

= Slack Attacks

C) 3 ©2019 FireEye

Feature Extraction in Static Malware Classification

Dos MZ Header l \X90\XOO\XO3\XOO\XOO\XO4\X] C i BinOry Progro m

I DOS Stub

PE File Header
l PE Signature]

.
[Image_O ptional_Header

(/‘

Section Table
Array of Image_Section_Headers

~
Data Directories

Sections \
[idata
| rSre
| data

| text

- 3

Code length = 1141 bytes

; Touched file = “%BWINDIR%\System32\en-
- " Features
A ; US\wscript.exe

g

String = “http://bad.site”

C) 4 ©2019 FireEye

Feature Engineering

String = “http://bad site” Al =) Malware

£

|

s
@ @

String = “http://lessbad.site” => Al
(d

ﬁ => Goodware
r

Feature Engineering is challenging and time consuming

‘

C) 5 ©2019 FireEye

Automatically Learning Feature Representations

= ML-based solutions require extensive <OFireEye
feature engineering

Representation Learning for

— List of features must constantly evolve to Malware Classification
capture adaptive adversaries

= One solution: end-to-end learning

DEEP CONVOLUTIONAL MALWARE CLASSIFIERS CAN

— Automatically learn important features from LEARN FROM RAW EXECUTABLES AND LABELS ONLY
r OW d O 1- O gdamk Krédl ! Ondrej Svec; Otakar Jasek min Bilek

Malware Detection by Eating a Whole EXE

Edward Raff'*4, Jon Barker?, Jared Sylvester'?, Robert Brandon'*#
Bryan Catanzamz Charles Nicholas*
!Laboratory for Physical Sciences, 2NVIDIA *Booz Allen Hamilton, *University of Maryland, Balumore County
{edraff jared,rbrandon) @Ips.umd.edu, {jbarker,) om,

o~

— Abstract inside a specially instrumented environment, such as a cus-

=)) tomized Virtual Machine (VM), which introduces high com-

N In this work we introduce malware detection from raw byte se- putational requirements. Furthermore, in some cases it is pos-

- quences as a fruitful research area (o the larger machine learn- sible for malware to detect when it is being analyzed. When

133 ing community. Building a neural network for such a problem e e 15 neing ana yred. |

le) presents a number of interesting challenges that have not oc- ¢ malware detects an attempt to analyze it, the malware
Curred in tasks such as image processing or NLP. In particu- can alter its behavior, allowing it to avoid discovery (Raf-

) Tar, we note that detection from raw byles presents a sequence fetseder, Kruegel, and Kirda 2007; Garfinkel et al. 2007;

N problem with over two million time steps and a problem where Carpenter, Liston, and Skoudis 2007). Even when malware
batch ion apnear to hinder the learnine process We does not exhibit this hehavior_the analvsi; mav

C) 6 ©2019 FireEye

Learning from Raw Data

Character-level Convolutional Neural Networks for text classification [Zhang+, 2015]

Length
|

c
k=
IS
N
=
€
©
S
(o4

Convolutions Max-pooling Conv. and Pool. layers Fully-connected

= Embeddings: characters mapped to fixed-size vectors

= Convolutions: receptors for character compositions (e.g. words)

= Max-pooling: filters for non-informative features (e.g. common words)
= Fully connected: non-linear classifier

C) 7 ©2019 FireEye

Analogy between Text and Programs

Natural Language: Executable programs:

the quick brown fox | \X90\X00\XO3\XO0\XO0\XO4\x1C |
text characters bytes
words instructions
sentences functions

C) 8 ©2019 FireEye

Byte-level Neural Networks for Malware
Classification

Program Executable (PE) can be viewed as a sequence of bytes

\x90\x00\x03\x00\x5C Length
&) |
g 3
o 5
c% s
\
O _ | - - ‘
Convolutions Max-pooling Conv. and Pool. layers Fully-connected

C) Q ©2019 FireEye

MalConv: Malware Detector based on Raw Bytes

MalConv: Malware Detection by Eating a Whole EXE [Raff+, 2017]

Convolution
\X90\X00\XO3\XOO\XOONXO04A\X1C ->| Embedding Gonng
Convolution

Fully Temporal
P(malware
() <-I Soffmax I‘_ Connected Max-Pooling

= 2MB input padding, CNN 128 kernels with size=500 and stride=500
= Balanced Accuracy: 0.91 AUC =0.98

Is MalConv vulnerable to AML-based evasion attacks?

C) 10 ©2019 FireEye

Training a Robust Classifier

= Trainin MalConv on a production-scale dataset (FULL)
— 12.5 M training samples with 2.2M malware
— Training & testing sets have strict temporal separation

— Frequent malware families are down-sampled to reduce bias
= Use published dataset [Anderson+, 2018] (EMBER)

— 900 K training samples

— Used pre-frained MalConv model shared with dataset
= Sample dataset comparable to prior work (MINI)

— 4,000 goodware and 4,598 malware
— Sampled from FULL

C) 11 ©2019FireEye

Outline

= Malware detectors based on deep learning
= Domain challenges for evasion

= Append Attack

= Slack Attacks

C) 12 ©2019 FireEye

Evasion Attacks in Image Classification

X Sign(V,J(0,x,y)) x + €Sign(V, J(0,x,y))

= Gradient directs instance across decision boundary

— [Szegedy+, 2014], [Papernot+, 2015], [Carlini and Wagner, 2017]
= [Goodfellow+, 2015]. Fast Gradient Sign Method

= Can we apply these attacks directly to the malware detection domaine

C) 13 ©2019 FireEye

Applylng AML Attacks to Binaries

A\XP0\X00\X03\x00\x00\x04\x1C l Original PE Sample

+

Sign(V,.J(0,x,y)) Adversarial Noise

?7?7? <:| \XA3\x45\Xx03\XB3\X05\x04\x1C | Evasive PE Sample

Existing evasion attacks break the functionality of the executable

C) 14 ©2019 FireEye

Outline

= Malware detectors based on deep learning
= Domain challenges for evasion

= Append Aftack

= Slack Attacks

C) 15 ©2019 FireEye

Append-based Attacks

\X90\X00\X03\X00\XOO\X0A\X1C |

+

Adversarial Noise

A\XP0\X00\X03\X00\X00\Xx04\x T C\XxA3\x21\x45\xB3\x05 l Evasive PE Sample

= Appended noise preserves functionality by not modifying content of
original bytes [Kolosnjaji+, 2018]

C) 16 ©2019 FireEye

Naive Benign Append Attack

A\XZ0\x00\X03\X00\x00\x04\x1C ? Original Sample

‘ ©

\XP0\X00\Xx03\x00\x00\x04\x1C \X60\XFA\X3B\XC1\x00 I Adversarial Noise

= Adversarial bytes are copied from benign samples correctly classified with
high confidence

C) 17 ©2019 FireEye

Benign Append Resulis

= SR on MINl increases linearly with
200] e mini number of bytes

175 — Model overfits benign features due to a
small dataset used for training a large

15.0 capacity network
X
=125
3
e
10.0
0n ’.
() -
S 7.5 -
> ’—
n ____,a

5.0 -

”
2.5
0.0

0 2000 4000 6000 8000 10000
Number of modified bytes

C) 18 ©2019 FireEye

Benign Append Resulis

20.0| == Mini
o= EMBER

== Fyll

17.5

= =
N ul
u o

Success Rate (%)
=
o
o

-
75 PP o
—‘.”
5.0 ’,"
2.5 === =
00| mEZdme==T®TTTTTTTS -
0 2000 4000 6000 8000 10000

Number of modified bytes

CJ 19 ©2019 FireEye

= SR on MINI increases linearly with number
of bytes

— Model overfits benign features due to a small

dataset used for training a large capacity
network

= EMBER & Full models are robust to the
attack

— Harder to overcome dataset features by
appending benign bytes at the end of file

Take-away

Consider dataset biases when drawing

conclusions about adversarial attack
effectiveness

FGSM Append Aftack

A\XP0\Xx00\x03\X00\x00\x04\x1C Original Sample
A\XP0\X00\X03\x00\x00\x04\x1C Sign(V,J(0,x,y)) I Adversarial Noise

= Adversarial embeddings are generated using the single-step Fast Gradient
Sign Method [Goodfellow+, 2015]

= Adversarial bytes are chosen as the L2 closest values in the embedding
space

C) 20 ©2019 FireEye

FGSM Append Results

Upper bound attack performance = Larger training set leads to more
80 vulnerable model
=== EMBER

70, —= Full _-" — Full model encodes more sequential

o _-” features
_ _-7 » High Success Rate highlights model
50 - vulnerability
e 7/
© y
40 // — Ample opportunity to evade MalConv
v ®
0 30 e m———"
@ // - -1”

;-
20 e

=
o

Why is attack so effective?

0 2000 4000 6000 8000 10000
Number of modified bytes

21 ©2019 FireEye

Architectural Weakness in MalConyv

Embedding Non-overlapping Max-pooling Fully
convolutions Connected

() 272 ©2019 FireEye

Architectural Weakness in MalConyv

Embedding Non-overlapping Max-pooling Fully
convolutions Connected

Adversarial Perturbbation

MalConv does not encode positional features

C) 23 ©2019 FireEye

Architectural Weakness in MalConyv

Upper bound attack performance

80

70

Success Rate (%)
w AN (0] [e)]
o o o o

N
o

=
o

== EMBER

—m= Fyl|

0
0 2000

4000 6000 8000
Number of modified bytes

24 ©2019 FireEye

10000

= Larger fraining set leads to more
vulnerable model

— Full model encodes more sequential
features

= High Success Rate highlights model
vulnerability

— Ample opportunity to evade MalConv

Take-away

Architectural choices may intfroduce
vulnerabilities against adversarial attacks

Can we leverage program semantics in
attacks?

Outline

= Malware detectors based on deep learning
= Domain challenges for evasion

= Append Attack

= Slack Attacks

C) 25 ©2019 FireEye

Section Header

Section 1

Section 2

C) 26 ©2019 FireEye

Header contains pointers to sections of executable

Each Section has RawsSize (size in PE file) and
VirtualSize (size when loaded into memory)

The compiler may set VirtualSize smaller than RawsSize

We could use slack regions to inject adversarial noise
since they are not mapped to memory

Slack Attack Resulis

Effectiveness of Slack FGSM on FULL

40| == Benign Append
=== FGSM Append
=== Slack FGSM

Success Rate (%)
N w
o o

=
o

< “
0"""" 500 1000 1500 2000
Number of modified bytes

C) 27 ©2019 FireEye

Slack FGSM outperforms append strategies at
smaller number of modified bytes

» Attack uses contextual byte information about
feature importance

» But there is a limited number of slack bytes
available

Take-away

Reasoning about program semantics
helps improve attack effectiveness

Lessons Learned

= Training set matters when testing robustness against adversarial examples

— Small dataset gives skewed estimates about attack success rates
= Architectural decisions should consider potential effect of adversarial
examples

— Models that do not encode positional information can be easily bypassed
= Semantics is important for improving attack effectiveness

— Reasoning about feature importance helps exploit higher-level learned ones

C) 28 ©2019 FireEye

Thank you!

Octavian Suciu
OSUCIU.COM
osuciu@umiacs.umd.edu

C) 29 ©2019 FireEye

References

[Raff+, 2017] E. Raff, J. Barker, J. Sylvester, R. Brandon, B. Catanzaro, and C. Nicholas,
“Malware detection by eating a whole exe,”

[Anderson+, 2018] H. S. Anderson and P. Roth, “EMBER: An Open Dataset for Training Static
PE Malware Machine Learning Models,”

[Szegedy+, 2014] C. Szegedy, W. Zarembaq, |. Sutskever, J. Bruna, D. Erhan, |. Goodfellow,
and R. Fergus, “Intriguing properties of neural networks,”

[Papernot+, 2015] Papernot, N., McDaniel, P., Jha, S., Fredrikson, M., Celik, Z. B., & Swami, A.,
“The limitations of deep learning in adversarial settings”

[Carlini and Wagner, 2017] N. Carlini and D. Wagner, “Towards evaluating the robustness of
neural networks,”

[Goodfellow+, 2015] I. Goodfellow, J. Shlens, and C. Szegedy, “Explaining and harnessing
adversarial examples,”

[Kolosnjaji+, 2018] B. Kolosnjaiji, A. Demontis, B. Biggio, D. Maiorca, G. Giacinto, C. Eckert,
and F. Roli, *Adversarial malware binaries: Evading deep learning for malware detection in
executables,”

©2019 FireEye

