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Abstract—As artificially intelligent humanoids become increas-
ingly prevalent in the home, it is imperative that we develop
secure designs to guard against cyberattacks. The next evolution
of AI-powered home devices, such as Alexa, is to create physical
effectors to enable these devices to alter their environments.
Current humanoids on the market, such as the EZ-Robot JD
and NAO, are examples of artificially intelligent robots that
may one day become common in home environments. If these
humanoids are not designed to be safe against cybersecurity
vulnerabilities, they may be used to cause harm to living spaces
and possibly even the humans living in these spaces. This paper
examines the cybersecurity of two humanoid robots and provides
recommendations for future safe designs and protections in
artificial intelligent social robots.

Index Terms—humanoid, artificial intelligence, social robots,
security vulnerabilities

I. INTRODUCTION

The field of robotics is in an exciting position of rapid
technological breakthroughs, while the barriers to entry are
decreasing significantly. Social robots are becoming increas-
ingly affordable and common not only in universities and
the industry, but also in homes. Currently, there are about
twenty robots that are marketed for households and other
social environments. While there is abundant research in this
booming field, there are few studies on the cybersecurity of
these robots [1]–[4]. As robots become integrated in our daily
lives, the amount of personal information they can access
will increase. Not only will they hold valuable data like our
personal computers, but they will also be able to manipulate
the physical world, making them a useful vehicle to carry out
cyber attacks with the potential to cause physical harm.

Humanoids interact with their surroundings and acquire
large amounts of data through sensors and electrical compo-
nents. If this data is intercepted or redirected to a malicious
system, these systems will be receiving information including
audio, video, actuator movement and interactions the robot
experiences with its surroundings. This data can be used in
countless ways of exploitation. Both robot manufacturers and
code developers need to take into consideration cyber security
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and decide whether current levels of security are adequate for
the use of their product.

In this paper, we analyze the cybersecurity vulnerabilities
of two popular, artificially intelligent humanoids to propose a
safer design. The humanoids we selected are the SoftBank
Robotics NAO version 5 and the EZ-Robot JD. On many
occasions, adding authentication mechanisms improves dras-
tically the cybersecurity properties of the robot. We discuss
the common design decisions that the manufacturers have
taken and observe that, even when their decisions differ on
implementation, cybersecurity does not seem to be a central
part of the design process. We communicated the results of
this study to the robots’ manufacturers and have included their
response.

II. USER PERCEPTION OF CYBERSECURITY DANGERS

Several studies demonstrate a lack of user understanding
of privacy and security risks associated with social robot or
smartphone applications. Balebako et al. examines the user
understanding of privacy leaks of smartphone applications and
the users’ reaction to being aware of the leakage by interview
based focus groups and a data sharing detection app [5]. The
authors find that users are not clear on how much data is shared
through apps and are surprised by the actual data leakage.
However, if the users are informed upon every time data is
leaking, they feel annoyed, which leaves no simple solution to
this issue. R. Kang et al. investigates the practices of security
and privacy among people with different computer science
backgrounds [6]. This study displays diverse mental models
that the end user may have about how the Internet works
and how their privacy might be at risk over the Internet. The
important issue of representing the information to the end users
in a way that makes sense to them remains open. A study of
over 60 users found that people choose applications or services
depending mostly on price, popularity, and recommendations
from friends [7]. However, few people base their decisions
on security and privacy policies, which implies implicit data
sharing with third parties is unlikely to be noticed by end
users.

A robot can have complex interactions with the human
counterpart, and thus be able to serve attacks such as stealth
and eavesdropping. Sometimes people over-trust robots. S.



Booth et al. discovered this phenomenon under the context
of university dormitory security. A large portion of the ob-
served students were willing to help an unknown robot enter
dormitory buildings [8].

III. NETWORK AND CLOUD ATTACKS ON ROBOTS

Denning et al. [1] analyzes the security strength of commer-
cial household robots that were available in 2009 and provides
a systematic discussion regarding possible attacking interfaces
and forms. Finnicum et al [9] proposes a robot model in which
the robot functionality is augmented by a robot application
market. Via this architecture, security and privacy are separated
from the apps and managed by a security kernel.

A wide collection of research papers demonstrates the
vulnerability of Cloud based services. Since social robots
often rely on the Cloud in order to provide services such
as emotion recognition, cloud attacks are relevant to them.
For example, [10] discusses a side channel attack referring
information via data access patterns; [11] demonstrates an
attack in which the malicious party can disclosure data from
encrypted MapReduce job traffic, if it has some control over
the procedure of mapper and reducer. If an adversary can place
a malicious virtual machine (VM) as resident within the same
physical machine with the target guest VM, it is possible to
break the memory isolation enforced by virtualization [12].

Hijacking robots through the local network is another
common approach in cyber attacks. Attacks have already
been demonstrated upon drones, or unmanned aerial sys-
tems(UAS) [13]. A study by J. Pleban et al. reveals that
highly integrated complex systems with limited resources may
suffer from poor implementation of best-practices. In their
study, the Parrot AR.Drone 2.0 system is vulnerable to FTP
and Telnet attacks [14]. Considering the potential cooperation
between robot and smart things of IoT, more interfaces are
open for malicious entities. The “Cross-device dependencies”
illustrated in [15] demonstrates the possibility of altering the
behavior of secured devices by manipulating compromised
devices, which means that a security failure of any device
within a system could have disastrous results.

IV. SELECTING THE NAO AND JD HUMANOIDS

We focused our study on the cybersecurity design decisions
made by two companies that have been highly successful
in manufacturing and selling humanoids to their respective
audiences. One major criterion for our selection was that the
humanoids should be programmable by their user through
desktop applications instead of phone apps only, so that users
can explore the robots at a greater depth.

The NAO robot was introduced to the market by its original
company, Aldebaran Robotics, in 2008 and has since been
used extensively in RoboCup competitions, research projects,
education, and marketing campaigns globally [16]–[18]. Soft-
Bank Robotics acquired Aldebaran in 2013, and with the
sixth version of the NAO in 2018 has expanded the target
audience to include the healthcare industry [19]. We studied

the characteristics of NAO version five and we presented our
first results in a late breaking report [2].

NAO’s price at approximately 9000 USD made us consider
whether there are more affordable options for programmable
humanoids that can still provide a compelling experience to
a more general audience. The JD Humanoid from EZ-Robot
stood out at the impressive price of 430 USD. Although JD
lacks the rich set of NAO’s sensors, JD has sixteen degrees of
freedom, carries a camera, is stable in its walking and dancing,
and has an extensive set of capabilities due to leveraging
Microsoft Cognitive Services, such as emotion and vision.
Both humanoid designs allow the execution of demanding
computations at a different device like a laptop. However, JD
is completely dependent on such a device for its operation,
which allows it to keep its price low, while its battery life is
significantly smaller (approximately one hour long). The two
humanoids also differ in height with the NAO (23 in/58 cm)
being at least twice as tall as JD.

The EZ-B Wi-Fi enabled robot controller is the embedded
processor at the heart of JD. Apart from being the brain in all
of EZ-Robot’s kits, it is also sold separately and marketed
for do-it-yourself (DIY) robotic projects. According to the
manufacturer’s website, EZ-B is powering over 20,000 robots
worldwide. Among the features that we found compelling in
adopting JD, and its EZ-B controller, is the amount of high
quality video tutorials that EZ-Robot provides as technical
support together with its forum community.

V. NAO ARCHITECTURE

The NAO robot is built to interact with its environment and
as a result, there is a complex system of sensors, actuators, and
control systems. Communicating with the CPU are a handful
of microcontrollers which are used to distribute information
to actuators and collect data from sensors. Ethernet, serial,
and USB ports can be located on the back of the head. NAO
is designed to use primarily the WiFi 802.11g protocol to
communicate with network devices and other robots. NAO can
gather and disseminate information through four microphones,
two loudspeakers, two gyrometers, three accelerometers, two
30FPS video cameras, two ultrasonic sensors, and LEDS.

The NAO robot runs on a Gentoo Linux platform under-
neath a proprietary software framework called NAOqi. NAOqi
handles tasks such as parallelism, resource management and
synchronization so developers do not have to worry about such
issues when writing applications for the robot [20]. NAOqi acts
as a broker to organize and locate services so any module can
access them. NAOqi has access to a list of modules, which are
classes in a library to execute certain actions on the robot. By
establishing a connection with a broker, a user gains access to
all of the modules linked to the broker. This broker has root
privileges and can access any hardware device.

Modules use a broker to interact with one another through
proxies. A proxy represents a specific module and acts as a
instance of the module. If proxies share a broker, they are
called local modules, while modules with different brokers
are called remote modules. Brokers can connect to remote



Fig. 1. Ways in which the NAO can be compromised.

modules and other brokers over a network, but they lack the
speed of local modules. Custom modules can be added to the
library the NAOqi broker manages.

Each NAO hosts a personal website on port 80 using nginx
1.3.14. This website prompts for a username and password,
and once inside, a user can edit multiple settings on the
NAO robot and view system information and current running
processes. Other open ports and services include FTP on port
21, SSH on port 22, NAOqi on port 9559 and web services
on 5222.

VI. AUTHENTICATION NEEDS FOR NAO

In this Section, we uncover cybersecurity vulnerabilities
related to the lack of authentication mechanisms in NAO.
Figure 1 summarizes our findings.

A. Programming with Choregraphe

Choregraphe is the official Integrated Development Envi-
ronemnt (IDE) provided by SoftBank Robotics. This applica-
tion provides a simple way to write programs for the NAO
robot either through drag-and-drop modules or by writing
Python code. The software allows a user to upload programs
to the NAO robot, which are then immediately executed.
Programs can also be configured to run on startup.

Choregraphe does not conduct any authorization check
when attempting to upload a program to any given NAO.
The program even locates all NAO robots on the network and
assuming port 9559 is listening, a program can be uploaded
and override the robot’s current task. The executable on the
robot can issue a wide range of instructions including all
available operating system calls.

The only limitation is that each robot can have only one
connection to Choregraphe at any time. If many robots, with
different owners, are connected to the same wireless network,
then each owner needs to make sure that his/her application
is connected to the respective robot at all times, so that there

is no time window for someone else to connect to the robot
and take control of it.

B. Remote Modules

The NAOqi interface allows other devices to access and
instantiate modules on NAO over a network, and these are
referred to as remote modules. In order to send commands to
NAO, a Software Development Kit (SDK) to interface with
the NAOqi software is needed. The SDK can be downloaded
and installed after setting up a free developer account on the
SoftBank Robotics website.

Remote modules bind with port 9559 on the NAO robot
using a TCP connection. Instead of uploading an executable
file to the robot, the remote module makes calls to the robot as
needed and runs on the remote device, not the NAO. To test
this, we ran a simple reverse shell python script, and when
executing simple commands such as ls, the printed directory
list was that of the remote computer. To analyze how the
SDK communicated with the robot, we ran a program that
sent five speech commands with a time delay of two seconds
between each command and used the WireShark packet sniffer
[21] to collect a TCP dump of the interaction. While our
code ran, there was communication to establish a connection
with the NAOqi architecture; then every two seconds the
program would send a command from the remote computer
to the robot, and the command would be executed. Once the
program had completed, the remote socket was closed and the
communication with the robot stopped.

Modules executed over a network require the parameters of
the IP address of a NAO robot and the listening port. Assuming
an attacker is on the same network, this information is easy
to acquire, and with no authorization checks, nothing prevents
one from running remote modules on any NAO within the
same network. When modules are uploaded, they are executed
concurrently with any program that is currently running on the
NAO robot.

C. Monitor Status

Monitor is a program that can be downloaded from the
SoftBank Robotics website and be exploited in a similar
manner to Choregraphe. Monitor allows a user to connect to a
NAO robot without any form of authentication and gain access
to nearly every hardware feature in the robot. Using monitor,
it is possible to:

• view a live video feed from the robot’s cameras;
• view a list of currently running services;
• view current memory usage;
• access the NAO robot’s log.
As the NAO robot is watching around the environment in

which it resides, a malicious party can take advantage of
Monitor and receive the video stream placing the NAO user’s
privacy at stake. Figure 2 shows a screenshot of the Monitor
application including the NAO’s camera view. Depending on
the circumstances, the user’s physical safety may also become
at risk.



Fig. 2. Example of the NAO’s camera view available through the Monitor.

D. Authentication Improvements for NAO

Independent of the mentioned mechanisms that allow a
connection to NAO, a user can also connect to it through SSH.
Every robot is shipped with the same (default) login name
and password for communication through port 22 (SSH). The
manufacturer provides a reasonable way to change the default
password through the website hosted by the robot. Therefore,
in this case, security is up to the prudence of the user.

However, even if the robot owners change the default
password for the default user, they may not realize that an
additional username can be used to access the robot: username
root. The root user comes with its own default password.
Since the robot owners will not necessarily be systems or
cybersecurity experts, it is questionable whether they will ever
think of changing the default password for root. By default,
the root user cannot connect to the robot via SSH. Due to
the lack of authentication mentioned in the previous Section
though, one could execute a program on the robot that adds a
new user, assigns root privileges to it, and enables access via
SSH.

VII. THE JD OPERATION MODEL

The JD humanoid’s heart is the EZ-B robot controller. The
EZ-B has two modes of operation: AP (access point) and
client. In AP mode, the robot acts as an access point to which
the user’s device, such as a laptop, can be connected. The AP
mode is the default. In client mode, the robot connects to a
different access point like a home router.

The EZ-Robot company has designed the EZ-B protocol,
which is used for communication between the robot and
another user device. The programmer writes programs by
installing the EZ-Builder IDE, which is available for Windows
and for mobile devices. The programs are not compiled on
the robot itself, but on the user’s device (running Windows or
a mobile OS). The translated commands are then sent to the
robot for execution according to the proprietary EZ-B protocol.

A. Common Elements in Programming NAO and JD

In both the case of NAO and JD, the manufacturers provide
more than one language for the users to choose and program
the robot. They allow the use of at least one high level
language, which is Python/C++/.NET/JAVA/Matlab/Urbi for
NAO and EZ-Script for JD. According to the company, the
EZ-Script language is similar to Basic and C++. They also
provide the option to program in a drag and drop style that is
more appealing to beginner programmers. In the case of JD,
RoboScratch and Blockly are both available.

Another common characteristic is that both companies have
designed their own IDE, which is the recommended way to
program the robot. Choregraphe is NAO’s IDE and EZ-Builder
is JD’s IDE. It should be noted that EZ-Builder can also be
used to control platforms that do not have the EZ-B controller,
such as a Sphero or an iRobot Roomba.

In order to minimize the load on the robot itself, the man-
ufacturers suggest that users take advantage of the computing
power of different devices in combination with the robot. The
code can be executed remotely on a personal device such as
a laptop or the manufacturer’s cloud. Then, commands can
be sent to the robot over the network, so that it exhibits the
desired behavior. Remote Modules is the way through which
this model is implemented on NAO, while JD leverages by
design the computing power of another user device or the
Microsoft Cognition Services. The Remote Modules model of
NAO is the single model of operation for JD.

Finally, both NAO and JD have tools through which a user
can check the robot status without using the IDE. In the case
of NAO, this is done through the Monitor application and
by remotely connecting through SSH. In the case of JD, the
designers have used the Telnet protocol as we will describe in
greater detail in Section VII-C.

B. Common Vulnerabilities Between NAO and JD

As explored in Section VI-A, Choregraphe does not perform
any authorization check before allowing a user to connect and
program the robot. It is similarly true for JD that any device
running the EZ-Builder software can connect to any EZ-B
controller running a robot from the EZ-Robots family. The
methods through which a user can check and/or control the
robot status outside the IDE do not rely on built-in authoriza-
tion mechanisms. We have explored the authentication needs
of the Monitor application for JD. In the next Section, we
detail the lack of authentication and the degree of control one
experiences with JD.

C. Controlling JD through Telnet

The most striking example of an EZ-B feature that demon-
strates the company’s design philosophy in regards to cyber-
security is the use of the Telnet protocol. The EZ-B processor
runs by default a Telnet server allowing remote login from a
machine that does not need to have any specialized software
installed such as the EZ-Builder. The EZ-B design leverages
Telnet as a tool to extensively monitor and control robot
variables through the command line.



Fig. 3. Control options for JD through Telnet.

Figure 3 lists the options available through Telnet. The user
can change the position and speed of each of the robot’s servos.
The user can find out the IP and MAC addresses of the robot,
observe and/or modify the IP address of the DNS server,
scan for available access points within range, view the list
of sockets. The tasklist command provides information
about the threads running on the robot, such as the TCP
server of the robot’s camera. The available options also include
important operations related to the robot’s memory. Figure 4
shows the result of the memp command, which lists the
amount of memory allocated on the heap for various dynamic
structures together with the start address of the corresponding
memory segment. Using the memdump option, the user can
observe the contents of any memory address, while the user
can also modify memory contents through memset. Apart
from gaining physical control of the robot, the Telnet options
provide a detailed picture of the robot’s status and the ability
to modify network and memory features.

The Telnet protocol is known for its lack of data encryption
and has been widely replaced by SSH. More importantly, a
user that has the right IP address and port number can connect
to an EZ-B robot through Telnet without any authentication.
Obtaining the robot’s IP address and port number is not hard
for a device attached to the same local network as the robot.
For a device outside the robot’s network, the only added
complication is that the router attached to the robot’s network
will often perform Network Address Translation (NAT). How-
ever, this complication can be overcome with techniques that
identify hosts behind NAT boxes [22].

VIII. SMART HOMES

It is important to view the cybersecurity vulnerabilities
in the design of humanoids and other robots in a broader
context. In a DIY smart home setup, a robot enthusiast could

Fig. 4. Heap allocation in JD’s memory.

Fig. 5. Wiring Raspberry Pi Zero to the EZO Conductivity Sensor

use NAO, JD or an EZ-B controlled custom robot as the
central controller of Internet of Things (IoT) enabled devices.
As an example, we connected a Raspberry Pi Zero to an
EZO conductivity sensor as shown in Figure 5 and then sent
the sensor readings to the IoT cloud platform Ubidots. A
robot such as JD, pictured in Figure 6, could be regularly
downloading the readings from the cloud. In a different setup,
the robot acting as a central controller of the smart home
devices could be communicating directly with the IoT enabled
sensors. In the event of abnormal sensor measurements, the
robot could notify the user of the alarming situation (e.g. water
in a house basement diagnosed by a conductivity sensor). The
implications of weak cybersecurity in social robots can quickly
escalate to impact the cybersecurity of systems with a vital role
in a smart home.

IX. INDUSTRY RESPONSE

We communicated our concerns to both manufacturers and
we have summarized their responses. The SoftBank engineer
who responded to our inquiry suggested that NAO is an
educational and research platform for which these cyberse-
curity limitations are known to the company. The engineer
also suggested that the issues have been addressed in more



Fig. 6. JD next to the Raspberry Pi, which is connected to the conductivity
sensor (bottom left).

advanced SoftBank robots. We have not had the opportunity
to verify whether Pepper, the more advanced SoftBank robot,
or even the sixth version of NAO have a different cybersecurity
profile. We believe it is important to enhance the cybersecurity
of these robots, since their use is being expanded in all sectors:
education, research and industries such as healthcare.

The EZ-Robot founder and CEO responded that there are
no security vulnerabilities in JD [23]. The rational behind
his claim is that access to the robot is left completely open
intentionally. If the design included authorization mechanisms,
and those were easy to circumvent, then there would be
potential vulnerabilities. However, since access to the robot is
left open by design, the claim is that there are no cybersecurity
vulnerabilities. We believe that deciding to leave the system
open is by itself a cybersecurity vulnerability. Since EZ-
Robot’s target audience includes individuals who are likely
to be unaware of cybersecurity risks, such as teenagers, we
believe that the design should provide some default cyberse-
curity protections.

X. CONCLUSION

The balance between cybersecurity and usability when
designing a product is not easy to achieve. However, the
increasing attacks on IoT devices [24], [25] leave us no
other choice for the safety and security of consumers. In
this paper, we have analyzed the cybersecurity profile of
two popular humanoids and made recommendations to guard
against cybersecurity vulnerabilities in artificially intelligent
humanoid robots.
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