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Abstract—Recent pushes to replace human decision-makers
with machine learning models have surfaced concerns about al-
gorithmic fairness. These concerns have led to a quickly growing
literature on defining fairness and making models transparent.
In practice, the data scientist building the model necessarily
must make difficult tradeoffs choosing between imperfect models,
balancing different definitions of fairness with accuracy and other
considerations. Because these choices have ethical dimensions,
there is a need to better support these choices and both document
and justify them for the public. We outline a research agenda
towards better visualizing difficult fairness-related tradeoffs be-
tween competing models, empirically quantifying societal norms
about such tradeoffs, and documenting these decisions. We
outline how the best practices that result could enable a consumer
protection framework for accountable fairness.

I. INTRODUCTION

In recent years, the rise of artificial intelligence and big
data has led to increased deployment of automated decision-
making systems. Companies and governments have begun to
rely on predictive models to make automated decisions about
who gets things like jobs, loans, or bail. Automated decision
systems seem attractive because they have the potential to
make better decisions than a human decision-maker. At the
same time, because these sorts of decisions can seriously
impact someone’s life, there are concerns about whether these
systems can make these decisions ethically.

At the core of these automated decision systems are pre-
dictive models created by data scientists to estimate outcomes
related to the task. For example, data scientists trying to auto-
mate loan decisions may create a model predicting the profit
from granting a particular loan. When automating a decision,
a data scientist creates many different models and compares
them, tinkering with what data to include or exclude, what
machine learning algorithm to employ, and what parameter
settings to use. We further detail this workflow in Section II.

The widespread impact of automated decision systems has
raised questions about the fairness of the data and models they
use. Specifically, the question of how to evaluate a model’s
fairness has generated a large literature of competing proposals
for how to define fairness statistically (Section III).

A data scientist in pursuit of a ‘fair’ model must make
a series of key decisions about how to define fairness and
how to balance fairness with other considerations. A model
might maximize fairness by one definition at the cost of
another [1]. Further, a data scientist must weigh the model’s

fairness against its other properties, like its overall accuracy
or computational cost.

A data scientist should be aware of the tradeoffs they are
making and also be able to clearly communicate and de-
fend these decisions. Existing tools for “explaining” machine
learning models focus on enumerating how a particular model
makes decisions (Section IV), rather than highlighting nuanced
comparisons between competing models.

In this paper, we outline our vision for empowering data
scientists to understand, communicate, and document the ten-
sions and tradeoffs made in model selection for automated
decision-making. In particular, we highlight in Section V why
the following steps are crucial for a framework of consumer
protection that builds fairness into the data science workflow:

1) Creating information visualizations that compare com-
peting models by fairness and other considerations.

2) Conducting empirical studies collecting opinions about
tough tradeoffs made in model selection.

3) Creating protocols and interfaces for documenting why
particular decisions were made in model selection.

4) Codifying best practices into a consumer protection
framework for fairness in automated decision systems.

II. FAIRNESS IN THE DATA SCIENCE WORKFLOW

While much of the literature on fair machine learning
focuses on quantifying fairness (see Section III), we take
a pragmatic view of how fairness will be evaluated and
balanced in practice. Fairness, as defined in one particular way,
will almost certainly be in tension with other considerations,
ranging from model accuracy to other definitions of fairness.
In other words, it is highly unlikely that a single model can
optimize for every possible definition of fairness, accuracy,
computational cost, and all other considerations. The key
questions in this paper revolve around how a data scientist
would – and should – balance these tradeoffs. Below, we
describe the typical data science workflow and then give a
simulated example of how fairness may have been considered
in one well-studied case.

A. The Structure of the Data Science Workflow

Even when fairness is not a design concern, model building
is an iterative process. A typical data science workflow consists
of four main phases: preparation of data, analysis and reflec-
tion of outputs (of data analysis scripts), and dissemination
of results, including the model [2]. When using data science
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(b) Balancing the false positive rate.
Fig. 1: A hypothetical choice Northpointe may have faced when deciding which model to use.

to create a predictive model, a data scientist cycles through
analysis and reflection phases in a process of trial and error.
They create multiple models from prepared data, compare their
outputs, tweak the model or create new models according to
their findings, and repeat. This tweaking may involve sampling
the data in a different way, tuning parameters, or changing the
model architecture or loss function.

It is often impossible to maximize all of a model’s desirable
qualities at once. Thus, a data scientist must prioritize certain
metrics above others. These choices may reflect engineering
(computational costs) or statistical (accuracy) considerations.
However, when the model is being used for a socially sig-
nificant function, fairness may also be critical. Despite the
importance and nuance of these tradeoffs, descriptions of these
choices and how they were made are rarely communicated.

B. COMPAS Decisions

To illustrate the difficulty of communicating these choices,
consider COMPAS, a predictive model used by judges nation-
wide to assess defendants’ risk of committing more crimes [3].
The fairness of COMPAS was called into question when, in
May 2016, ProPublica published an investigation arguing that
the model was biased against African Americans [4]. Specif-
ically, their analysis found that the COMPAS algorithm had
a higher false-positive rate for African-American defendants
than for white defendants. While COMPAS is an archetypal
example of algorithmic bias, to our knowledge it has not been
analyzed through the lens of model selection.

Northpointe (now Equivant), the company who designed
COMPAS, defended their model in a report they published
a month later [5]. Their argument relied on the concept of
“accuracy equity.” That is, they argued COMPAS was fair
because it was accurate in predicting recidivism for black
and white defendants at similar rates. Thus, it becomes clear
that researchers at ProPublica and Northpointe had different
definitions of fairness that could not both be satisfied at once.

This raises key unanswered questions: how and when did
Northpointe choose their definition of fairness, and what
alternatives did they consider? We know from Northpointe’s
rebuttal that they decided to make the accuracy of their
model the same between racial groups. Presumably, at some
point Northpointe chose between an equalized accuracy model
and models subject to other constraints. Descriptions of, or
comparisons to, alternative models are absent from their report.

Hypothetically, Northpointe may have been confronted with
the following two options:

1) Equalize accuracy, and accept the consequence of a
higher false-positive rate for African-American defen-
dants than for white defendants (see Figure 1a).

2) Constrain the number of false positives, and accept the
difference in accuracy between African-American and
white defendants (see Figure 1b).

The alternative option in Figure 1b is entirely hypothetical.
The option in Figure 1a is accurate only insofar as it was re-
ported that Northpointe equalized accuracy across groups. The
public does not know what other model options Northpointe
considered, nor why they decided that equalizing accuracy was
the correct way to balance their considerations.

Even this relatively constrained scenario is already some-
what complex. There are eight discrete values to keep track of,
some of which are comparable to one another, some of which
are not. We have not included other arguably pertinent values
like false negative rates. We also have limited the number of
groups to two and the pertinent category to race. In reality, a
data scientist will likely have more than two discrete options.
This is why considering and communicating alternatives poses
a significant research challenge.

To reason about choices Northpointe made, we argue that
data scientists, regulators, and consumers ought to have a clear
understanding of the tradeoffs between alternative models
and an explanation of how tough choices were made about
them. Further, understanding society’s beliefs about how these
decisions should be made in different contexts will enable
data scientists to make better decisions about models, while
establishing best practices for documenting these choices
could enable a consumer protection framework for fairness.

III. QUANTIFYING FAIRNESS

Fairness is one dimension a data scientist should con-
sider in model selection. Many recent efforts have aimed to
characterize and statistically quantify fairness in automated
decision systems. There are three aspects of the data science
workflow where fairness considerations may be relevant: in the
problem construction, the choice of a fairness definition, and
the degree of adherence to that definition. Researchers have
proposed a number of competing definitions of fairness that
imply different, possibly mutually exclusive, understandings of
fairness [6]. Whether the application of one of these definitions
achieves fairness in practice depends on not just selecting the
right definition, but also on applying it sufficiently and in the
right context.



A. Problem Construction

A data scientist evaluating a model for fairness needs to
decide on more than a metric. They need to identify the
groups to whom they are concerned about being fair. Both
ProPublica and NorthPointe agreed that race was a meaningful
lens through which to examine COMPAS. A data scientist
who evaluates a model for fairness with respect to race, but
not income or disability, implicitly makes a determination that
race is a salient concern, yet income and disability are not.
Regardless of whether such assumptions are warranted, they
should be made clear.

While the groups chosen for evaluation constitute a highly
visible example of how problem construction can influence
fairness decisions, it is by no means the only one. Mitchell
et al. discuss other aspects of problem construction that can
impact fairness [7]. The learning task and the set of outcomes
can also affect the fairness of the model.

B. Definition Choice

Several different metrics can be used to measure the fairness
of a model. A data scientist seeking to evaluate these must
select some subset of these spproaches to apply.

1) Individual Fairness: Individual fairness defines fairness
in terms of individual decisions, requiring that similar indi-
viduals be treated in a similar fashion [8]. The disparity in
outcomes between similar people should then be measured and
limited. What constitutes similarity depends on the specific
type and context of the data, and it effectively determines
the outcome. Individual fairness thus requires a metric of
similarity between individuals. For example, a credit score
purports to measure a person’s creditworthiness, so one can
compare two people’s creditworthiness by comparing their
credit scores. Dwork et al. note that the similarity metric
chosen can be controversial [8].

Other definitions of fairness, detailed below, do not neces-
sarily imply individual fairness. The use of a group fairness
criterion neither implies that individual fairness is upheld nor
that it is violated. However, if individual fairness is achieved,
some group fairness criteria may be impossible to achieve.

2) Group Fairness: Group fairness is concerned with out-
comes with respect to groups, not individual decisions. For
example, while individual fairness might highlight that a
particular white individual and a similar black individual
receive very different criminal sentences, group fairness might
highlight that black defendants have a higher probability
of receiving harsh sentences than white defendants. Several
methods, including the three below, capture different moral
intuitions in group fairness.

Disparate impact is based on the notion in employment
discrimination law that a facially neutral test may be dis-
criminatory if it excludes more of one group than another.
Feldman et al. show how disparate impact implies a bound
on the statistical predictability of the sensitive attribute from
the classification [9]. In disparate impact, it is the distribution
of outcomes over groups that matter, which is to say that the
accuracy of the classifier is potentially ignored.

Hardt et al. instead propose that fairness should consist
of equalizing the probability of accurate prediction within
subgroups [10]. Zafar et al. generalize this approach by
segregating sensitive data to only be necessary when training
the model [11]. Heidari et al. have attempted to put various
forms of group fairness into a Rawlsian notion of equality of
opportunity [12]. Depending on the nature of the underlying
population distributions and which specific odds are consid-
ered, equalized odds may or may not be reconcilable with
disparate impact or individual fairness.

In addition to encoding different notions of what constitutes
fairness, certain of these notions are incompatible. Kleinberg
et al. found it is only possible to achieve equally accurate risk
scores across groups and equally balanced risk quantiles across
groups under very specific conditions [13]. Fairness cannot be
achieved by applying as many definitions as one can think of.
The data scientist will need to make a decision.

3) Process Fairness: In contrast to group and individual
fairness, Grgić-Hlac̆a et al. define fairness based on the process
by which decisions are made, rather than the outcomes [14].
This notion of process fairness is achieved if the only predic-
tive features used in a model are those that people believe fair
to use, quantified empirically via a survey. The survey asks if
the respondent deems a particular feature fair to use, fair to
use if it increases accuracy, and fair to use even if it increases
the likelihoods of false positives for one group. The authors
find that one can sometimes achieve both process fairness and
outcome fairness, but at an accuracy cost. Process fairness
departs from other definitions by explicitly considering input
from the general public. Follow-up work seeks to understand
why particular features are considered fair or unfair [15].

C. Definition Adherence

Having selected a definition or definitions, the data scientist
also needs to determine how strictly the model must adhere
to the definitions. Many, if not all, of the algorithmic tools
available to achieve a particular fairness definition fulfill the
definitions only approximately. In many cases, the closeness
of the result to a definition is configurable. For example,
the disparate impact measure used by Feldman et al. has a
parameter τ , which controls the acceptable difference between
positive selection for the majority group and positive selection
for the minority group [9]. It is suggested that τ be set to be
80% to be in line with the Equal Employment Opportunity
Commission’s guidance on disparate impact claims. However,
a data scientist who sets it at that level may still create an
unfair outcome. Courts have found instances where differences
of 1% were sufficient to create a claim under employment anti-
discrimination law [16].

Even in instances where the adherence is not directly
configured, the data scientist may choose the degree of ad-
herence inadvertently through their pre-processing choices.
Friedler et al. conducted a benchmark of various fairness tools
and measures, finding that there are significant differences
in accuracy and fairness depending on the pre-procecssing
methods and algorithms being applied to the data [17].



Fig. 2: Google’s What-If tool visualizes experiments on ma-
chine learning models, aiding in model selection.

Fig. 3: A portion of a report from the Aequitas tool on the
fairness of a given model.

IV. COMMUNICATING FAIRNESS

Using any one definition of fairness is itself a decision.
Certain definitions may or may not be compatible with others.
They may also introduce tradeoffs between equitable outcomes
and a model’s overall accuracy. In making such decisions, the
data scientist may want to consider what the public thinks
of these tradeoffs. Once the data scientist has made their
decision, they may want to communicate the rationale behind
their decision and document the alternatives they considered.

While prior work investigates explaining a given model, to
our knowledge no work focuses on how to justify fairness-
relevant decisions in model selection. Prior work on model
transparency aimed to elucidate how a given model operates,
whereas our goal is to communicate why one model was
chosen over other options. Understanding what a model is
doing is the first step, while we are concerned with the subse-
quent step. In this section, we summarize current research into
model transparency and model explanations, showing why it
is insufficient on its own for our ultimate vision.

A. Visualizations of Fairness

An example of a fairness visualization aimed at data scien-
tists is Google’s What-If tool [18], shown in Figure 2. The tool
facilitates exploratory analysis in model selection, highlighting
the impacts of tuning hyperparameters and excluding particular
variables on model accuracy. Its visualizations of how these
considerations impact different demographic groups can be

Fig. 4: IBM’s AI Fairness 360 tool at the bias-detection stage.

used to analyze fairness in part. Because it is an exploratory
tool, it does not attempt to communicate any sort of set of
alternatives, nor is it designed to engage non-expert users.

In contrast, the Aequitas tool focuses on reporting the
biases of a model [19]. Given a single model, Aequitas runs
tests for a set of fairness definitions like those discussed in
Section III-B2. While more straightforward for a non-technical
person to understand (see Figure 3), Aequitas reports only
on a single model. An Aequitas report does not clarify why
the data scientists who built the model made the decisions
that led to particular outcomes. Our vision instead requires
that future work develop expanded tools for comparing among
many models and documenting the difficult decisions made.

Last year, IBM launched AI Fairness 360 (AIF360), an
open-source collection of tools that, like Aequitas, run tests for
fairness metrics, but also include a suite of possible algorithms
for mitigating bias [20]. Along with the toolkit code, the
AIF360 website hosts interactive demos of the tools in practice
(see figure 4). We observe that the comparisons presented in
these demos are limited to pairwise “before and after” views of
a model after a single mitigation step. Comparisons between
mitigation steps are absent.

B. Transparency and Explanations

Another line of research focuses on making models more
transparent. For example, QII quantifies the relative influ-
ence of particular variables over the output of a black-box
model [21]. For example, QII can show how much race
influences the model’s decision, and how that compares with
the effects of gender. Another transparency tool is Locally
Interpretable Model Explanations (LIME) [22]. LIME fits an
interpretable model to the area directly around a particular data
point. The interpretable model can then be used to explain how
the more complicated model made its decisions.

Explaining a single model usually does not provide a mech-
anism on its own for contrasting different models. Ribeiro et
al. conducted a limited user study in which participants used
LIME to choose between two models. However, the decision
was between a model that generalizes well and one that does
not; no ethical choice was involved. We instead propose that
when communicating the choice of one imperfect model over
other imperfect alternatives, the data scientist should carefully
document and justify their choice.



C. Usability of Explanations

Work has started to consider how users understand and in-
terpret model explanations. This literature focuses on effective
explanations for individual classifications, whereas any choice
a data scientist makes will necessarily be about distributions
of classifications. For example, Binns et al. examined whether
the type of explanation a person received about a decision
affected how they perceived the justness of that decision [23].
They tested explanations based on QII, the amount the input
would need to change to affect the output, the most similar
case in the training data, and aggregate statistics by category.
They found that the style of the explanation only affected
perceptions of justice when someone was exposed to multiple
different explanations. Unfortunately, an explanation for a
single classification on its own communicates little about the
choices the data scientist made.

Krause et al. tried to bridge the gap between individual
explanations and overall patterns by aggregating explanations
provided by LIME [24]. They validated their interface by test-
ing whether participants could identify a deliberately biased
model. Aggregating explanations may play a role in comparing
two models, but is again insufficient on its own for justifying
difficult decisions in model selection.

V. AN AGENDA FOR ACCOUNTABLE MODEL SELECTION

To remedy the lack of attention paid to supporting, docu-
menting, and communicating data scientists’ difficult fairness-
related decisions in model selection, we propose four lines of
research. First, we propose further research into how to best
visualize choices data scientists must make between models.
Second, we suggest that data scientists be better supported in
these difficult choices by quantifying public opinion and social
norms through empirical user research. Third, we propose
documentation requirements for explaining and justifying the
selection of a particular model based on these visualized
tradeoffs. Fourth, we highlight how these techniques can form
the basis of a consumer protection framework.

A. Visualizing Model Choices

A first step in our proposed agenda of future work is to
develop visualizations for model comparisons that efficiently
convey key tradeoffs to a data scientist. A related requirement
is determining how to convey differences in the effects of
different fairness criteria. For example, a data scientist may
want to compare the effect of applying process fairness with
the effect of applying equalized odds. What aspects of the
model does this data scientist care about? Do we need to
compare process fairness in terms of equalized odds, and vice
versa? Do the answers to these questions change depending
on where one is in the data science workflow? What aspects
of the model are most relevant to the public, and how can we
emphasize those?

Furthermore, visualizations that are useful for a data sci-
entist may be less helpful for a non-technical audience. Data
scientists exploring alternative models may want to have things
like counterfactuals or information about the training data

available to them. These aspects may be confusing or irrelevant
to a non-technical audience.

There are two possible approaches to identifying and elic-
iting these sorts of considerations. One could approach it as a
scientific question, by seeking to develop generalizable rules
about how specific kinds of tasks are considered. Another
approach is through a design process. In contrast to a sci-
entific approach, a design process elicits considerations for a
particular context through iteration and dialogue between the
designers and the user base.

Because we expect fairness considerations to be fairly
context dependent, a design process is in some ways ideal.
However, from a regulatory perspective design processes are
harder to assess. How would a regulator be able to identify
when a design process properly balanced competing interests,
for example? One possible synthesis of these approaches
would be to use scientific methods in making a prima facie
case of a hypothetical violation. For example, a data scientist
documenting the decision in a manner that contravened scien-
tifically produced guidance would be subject to a presumption
of illegality. This presumption could be rebutted by producing
evidence of a design process.

Pursuant to this goal, we suggest that it should be a research
priority to identify what aspects of a machine learning model
matter to the general public, and when. There is a strong
expectation that the salient fairness qualities in things like bail
decisions are different from the salient fairness qualities in
an employment context. While the diversity of contexts may
seem to make this task difficult, it need not. Employment, the
criminal justice system, and credit issuance are all examples
of contexts that likely differ in dynamics. While the particular
learning task may differ from instance to instance, a broad
investigation of the qualities that are significant in fairness
assessments in those contexts could guide the investigation.
An experimental result on the sorts of salient qualities could
then be used by the enforcing agency to identify instances
where the documentation is insufficient.

B. Empirically Supporting Difficult Choices

Grgić-Hlac̆a et al.’s idea of process fairness encodes the
intuition that a diverse group of voices may be able to make
better determinations about fairness than a small group of data
scientists. While they focused on usings surveys to document
whether laypeople considered different predictor variables fair
in a particular decision, we propose extending their idea
to empirically documenting laypeople’s attitudes concerning
the difficult decisions the data scientist will necessarily face.
For example, given the choice between 5% greater accuracy
overall (with higher inter-group disparity) or lower inter-group
disparity (with lower accuracy), which does the public find
more fair? The results of such empirical studies could be built
into our proposed comparison interfaces to better ground data
scientists’ difficult decisions in data.

Supporting a decision with data is not the same as deter-
mining a decision with data. The public writ large may have
biases and prejudices that indicate an ethically impermissible



course of action. Choice documentation is meant to facilitate a
dialogue between the data scientist and the affected population.
Building an understanding of how the public feels, and why,
will enable the data scientist to make and justify decisions that
go against general public sentiment.

C. Explaining Decisions

Being able to effectively document and rationalize difficult
choices in model selection will facilitate better communication
with laypeople potentially affected by the model’s decisions.
With visualization tools to explain differences between mod-
els, data scientists can solicit and use findings on public
opinion about model fairness tradeoffs to justify their choices.

Model selection explanations could also be incorporated to
improve classification explanations. For example, the plausible
explanation “you were classified as a high insurance risk
because you are a man, are between the ages of 18-22, and
were born in April” communicates that gender, age, and birth
month were the criteria used to determine his insurance risk,
but fails to explain why those criteria were used. Including
descriptions of the decisions made between model alterna-
tives could make this explanation more satisfying. A better
explanation could say, for example, that a data scientist chose
to include birth month as a variable in their model because
its inclusion equalized accuracy between men and women
compared to other models that were otherwise similar.

While explanations can empower users, they can also
mislead them. Lying with statistics, and in particular with
statistical visualizations, is a well-known phenomenon. Data
scientists fearing backlash may seek to mislead the public
to obscure or reframe the decisions they made in a positive
light. Notably, researchers have found that most Facebook ad-
targeting explanations are incomplete and vague [25].

A related line of investigation should thus focus on identi-
fying techniques that could be misused to present a decision in
misleading ways. While heavily implicated in the visualization
of the model qualities, this investigation needs to also look
beyond the way the information is presented to the choice of
information being presented. For example, one could imagine
specifically choosing bad models to present next to the one
ultimately chosen to take advantage of anchoring.

VI. CONSUMER PROTECTION FOR FAIRNESS IN ML

Research into tradeoff visualization, empirical support of
difficult decisions, and decision documentation can form the
basis of a series of best practices for accountably fair model
selection. Best practices crafted along these dimensions could
then be used by regulators, legislators, and courts as part of
a consumer protection framework for fairness in automated
decision-making. In the presence of a rule requiring a good-
faith process of discrimination mitigation, insights into com-
municating about fairness considerations could be used as a
template. Furthermore, research into best practices will give
regulators and civil society groups a point of comparison
when bringing complaints. Even absent regulatory interven-
tion, companies seeking to voluntarily engage in best practices

could benefit from inquiry into these questions. A company
may seek to dispel concern about fairness in their products
by demonstrating the steps and considerations they have used.
These benefits can be distilled into two related, but distinct,
objectives: effective process documentation and understanding
consumer fairness expectations.

A. Process Documentation

Documenting the process by which data scientists selected
a particular model for automated decision-making is crucial
for transparency. Even if affected individuals receive an ex-
planation of why the model made a given decision the way
it did, they may very well ask why they were subject to a
decision by that model, and not an alternative model, in the
first place. Without an explanation of why this specific model
was used, the picture provided to the public will necessarily
be incomplete. In our research agenda, best practices for
model comparison and choice documentation would form the
basis for regulatory intervention. The communication practices
we propose will facilitate regulatory scrutiny into whether
data scientists’ judgments erred, or whether the data scientist
picked a reasonable model from among a suite of imperfect
alternatives. The documentation can also form the basis of a
preemptive defense for the data scientists.

In order to fulfill this role, the documentation must be under-
standable by a non-technical public. If the fairness decisions
the data scientist made are obscured, the only way to convince
a data subject that the model is actually correct is by appealing
to the data scientist’s wisdom and knowledge. This is likely
to be unconvincing. Alternatively, the data scientist may have
misjudged the correct course of action. Clear and publicly
available process documentation will assist in discovering and
correcting these misjudgments.

B. Consumer Fairness Expectations

Effective communication about model decisions will not
only help data scientists explain their decisions, but also help
them make these decisions. In a situation where the data
scientist is faced with multiple imperfect options, it may
be useful for them to be shown empirical documentation of
public opinion on a similar choice in order to inform their
decision. Understanding consumer fairness expectations will
help them avoid situations where the behavior they encode
does not match public beliefs about how the model should
operate. Because the decision the data scientist is faced with
balances many factors, effective communication about the
decision is necessary to gather meaningful feedback. Soliciting
opinions can play an additional role in process documentation,
increasing the accountability of the process to public opinion.

VII. CONCLUSION

As data scientists build automated decision systems for
widespread deployment, they make a number of decisions in
model selection that are opaque to the public and may encode
only the data scientist’s expectation of fairness, rather than
empirically documented societal norms. We have proposed a



research agenda for supporting, documenting, and regulating
fairness-related decisions as part of the complex process of
model selection in the data science workflow. The best prac-
tices we expect to be identified can then support a consumer
protection framework for algorithmic fairness.
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