
What, exactly, is
different or new about
mobile security?
Dan S. Wallach, Rice University

MOBILE

SECURITY

TECHNOLOGIES

2017

tl;dr

The “computers inside the computer”

Every chip has one or more CPUs inside; they have exploitable bugs

Usability issues

Smaller screens mean fewer security indicators

The death of app isolation

Apps have full Internet access, sensitive privileges, and abuse them

Threat models: physical attacks

Or, defending against the San Bernadino iPhone attack

The computers inside your computer

Have you looked inside a phone lately?

Each chip has an embedded CPU, typically ARM

“Firmware” (i.e., software) baked in by vendor, not part of the OS distribution

(Google Pixel photos via iFixit)

Example: SD card firmware

Flash storage is incredibly complicated

High defect rates, wear leveling / block remapping, etc.

Allows a vanilla filesystem, designed for a hard drive, to “just work”

Cheaper to use a general-purpose CPU

Testing (defect mapping, binning) and runtime (load leveling,

remapping) all done in software

Even if 80% of blocks are dead, can still sell as a lower-capacity card

Quality-control issues?

Andrew “Bunnie” Huang designed the Chumby

“I realized that all the units failing [in quality control] had Kingston

microSD cards from a particular lot code.” (2009)

Quality-control issues?

Andrew “Bunnie” Huang designed the Chumby

“I realized that all the units failing [in quality control] had Kingston

microSD cards from a particular lot code.” (2009)

“One [Shenzhen] vendor … interested me; it was literally a

mom, pop and one young child sitting in a small stall of the

mobile phone market, and they were busily slapping
dozens of non-Kingston marked cards into Kingston retail

packaging. They had no desire to sell to me, but I was

persistent; this card interested me in particular because it

also had the broken ‘D’ logo but no Kingston marking.”

Counterfeit analysis

Bunnie bought a bunch of cheap SD cards in Shenzhen

“Normal”: OEM Toshiba

“Sketchy”: alternate 
OEM codes, etc.

Conclusion: Kingston  
resells lower-quality parts 
at tight margins

Counterfeit analysis

Bunnie bought a bunch of cheap SD cards in Shenzhen

“Normal”: OEM Toshiba

“Sketchy”: alternate 
OEM codes, etc.

Conclusion: Kingston  
resells lower-quality parts 
at tight margins

“Larger vendors will tend to offer more consistent

quality, but even the largest players staunchly reserve

the right to mix and match flash chips with different

controllers, yet sell the assembly as the same part

number — a nightmare if you’re dealing with
implementation-specific bugs.”

SD firmware hacking

Bunnie and Sean “Xobs” Cross (2013)

Discovered firmware  
update command

Able to send 8051 
machine code (no  
code signing, etc.)

☛ MITM attacks from  
your storage?!

SD firmware hacking

Bunnie and Sean “Xobs” Cross (2013)

Discovered firmware  
update command

Able to send 8051 
machine code (no  
code signing, etc.)

☛ MITM attacks from  
your storage?!

“It’s as of yet unclear how many other manufacturers

leave their firmware updating sequences unsecured.”

Same thing for your networking chips

Modern network chips have
embedded CPUs as well

Support “full stack” WiFi

Don’t interrupt the CPU as often

Exploitable from the outside!

No use of protection bits: every page

is RWX (also no stack cookies, etc.)

(Source: Gal Beniamini, Google Project Zero, googleprojectzero.blogspot.com/2017/04/over-air-

exploiting-broadcoms-wi-fi_4.html)

https://googleprojectzero.blogspot.com/2017/04/over-air-exploiting-broadcoms-wi-fi_4.html
https://googleprojectzero.blogspot.com/2017/04/over-air-exploiting-broadcoms-wi-fi_4.html
https://googleprojectzero.blogspot.com/2017/04/over-air-exploiting-broadcoms-wi-fi_4.html

Attacking the main CPU from the NIC

Option 1: Attack the OS kernel

Heap overflow, vulnerable code pointer

Option 2: Direct memory access

PCIe devices can do DMA

IOMMUs not used to limit visible

memory in the kernel

☛ Arbitrary read/write to the OS kernel

(Source: Gal Beniamini, Google Project Zero, googleprojectzero.blogspot.com/2017/04/over-air-

exploiting-broadcoms-wi-fi_11.html)

https://googleprojectzero.blogspot.com/2017/04/over-air-exploiting-broadcoms-wi-fi_11.html
https://googleprojectzero.blogspot.com/2017/04/over-air-exploiting-broadcoms-wi-fi_11.html
https://googleprojectzero.blogspot.com/2017/04/over-air-exploiting-broadcoms-wi-fi_11.html

What about ARM TrustZone?

TrustZone is something of an OS layer
below the kernel

Support for boot locking, DRM, etc.

Of course, it’s exploitable

(Also discovered by Gal Beniamini)

memcpy() buffer overwrite vulnerability

Messy process to build a ROP chain

Shellcode to read/interact with the “secure

file system”

bits-please.blogspot.com/2016/05/qsee-privilege-escalation-vulnerability.html

http://bits-please.blogspot.com/2016/05/qsee-privilege-escalation-vulnerability.html

TrustZone security engineering?

MobileCore (Samsung)

No ASLR, no stack cookies

QSEE (Qualcomm): slightly better

9-bit ASLR, no guard page between stack, BSS, heap

Trustlets: Proprietary code, bugs can linger

Many trustlets directly exposed to userland through proxy services

(Source: Gal Beniamini talk, BlueHat Israel 2017, microsoftrnd.co.il/Press%20Kit/

BlueHat%20IL%20Decks/GalBeniamini.pdf)

https://microsoftrnd.co.il/Press%20Kit/BlueHat%20IL%20Decks/GalBeniamini.pdf
https://microsoftrnd.co.il/Press%20Kit/BlueHat%20IL%20Decks/GalBeniamini.pdf
https://microsoftrnd.co.il/Press%20Kit/BlueHat%20IL%20Decks/GalBeniamini.pdf

Example: Android Full Disk Encryption

KeyMaster app manages keys

Vulnerabilities in other trustlets

☛ Privilege escalation

☛ Lack of separation across trustlets

☛ Master keys can leak

Qualcomm, others support hardware-
fused keys

Not currently used by KeyMaster

Maybe in Android “O”?

Kernel bugs increasingly targeted

(Source: “What’s New in Android Security”, Google I/O 2017.

https://www.youtube.com/watch?v=C9_ytg6MUP0)

https://www.youtube.com/watch?v=C9_ytg6MUP0

What kinds of bugs?

(Source: “What’s New in Android Security”, Google I/O 2017.

https://www.youtube.com/watch?v=C9_ytg6MUP0)

https://www.youtube.com/watch?v=C9_ytg6MUP0

If we used a safe programming language

Plenty of PL and systems

research that addresses

these remaining concerns!

Summary so far

All the computers inside the computer are vulnerable.

All the same attack types (buffer overflow, heap grooming, ROP, etc.)

Less competitive pressure ⇒ less use of standard defenses

OS kernels tend to trust their devices to act reasonably.

An “evil component” has a large attack surface

IOMMUs can help limit this

Unclear whether vendor isolation layer (Android “O” Treble) will help

Challenges so far

All the usual vulnerabilities that come from C programming.

Can we please get rid of C? Is Rust a good alternative?

At least most Android apps and many system services are in Java.

Vulnerability discovery, patch delivery.

If Beniamini can do it, so can others. Are similar vulns being exploited?

Supply chain integrity.

Are you even getting the chips you expect?

The death of app isolation

Default security policies

Every web page has an origin (DNS name, protocol, etc.)

Separation enforced by browser’s same origin policy

Network connections limited (unless the receiving server allows it)

Limited visibility of native OS resources

Android apps have private storage, but unlimited networking

Scan your internal network? Why not?

Easy to abuse privileges

Example: exfiltration of contacts list

Example: exfiltration of contacts list

When asked why Path didn’t give users the choice to
opt-in right from the start, [Path CEO] Morin responded
with the following:

This is currently the industry best practice and the App
Store guidelines do not specifically discuss contact
information. However, as mentioned, we believe users
need further transparency on how this works, so we’ve
been proactively addressing this.

techcrunch.com/2012/02/07/path-uploads-your-iphones-address-book-to-their-servers-without-a-peep/

http://techcrunch.com/2012/02/07/path-uploads-your-iphones-address-book-to-their-servers-without-a-peep/

ADS!

Cost : Free Cost : $2.99

Cost : Free Cost : $2.99

Downloads:
100,000 – 500,000

Cost : Free Cost : $2.99

Downloads:
10,000,000 – 50,000,000

Downloads:
100,000 – 500,000

Ads are widely used

Ads are widely used

(and advertising uses 75% of the power budget - Pathak et al., Eurosys 2012)

Measuring permission usage

Separate library code from application code

Simple static analysis of library code

Stowaway (Felt et al., 2011)

Map API calls to Android permissions

Scout (Au et al., 2012)

Theodore Book, Adam Pridgen, and Dan S. Wallach, Longitudinal analysis of Android ad library
permissions. Mobile Security Technologies (MOST) 2013.

Theodore Book and Dan S. Wallach, A case of collusion: A study of the interface between ad libraries
and their apps. 3rd ACM Workshop on Security and Privacy in Smartphones and Mobile Devices (SPSM),

November 2013.

Internet
Retrieve ads
Report usage

Vibrate
Notifies you about important ads!

Read Phone State
Get IMEI number

WiFi State
Access MAC Address

Check Connection Type

Wake Lock
Video API calls

Network State
Check Connection Type

Access Location

“Dangerous”
Collection of Permissions

“Dangerous” Permissions

“Dangerous” Permissions

Get Tasks
See what else is running

“Dangerous” Permissions

Read History and Bookmarks
What are your favorite web pages?

“Dangerous” Permissions

Get Accounts
your Google ID...

and Facebook, too!

“Dangerous” Permissions

Read Contacts
Getting to know you...

“Dangerous” Permissions

Change WiFi State
Load those video ads!

“Dangerous” Permissions

Record Audio
Just listening!

“Dangerous” Permissions

Camera
Smile!

The Great App Purge of 2013

Google’s actions vs. ad library

Ad Library Percent of Apps Removed

EverBadge 60.5%

Hunt Mobile 45.5%

AirPush 40.7%

SendDroid 31.2%

Waps 29.7%

TapIt 28.4%

Average 11.6%

Ad libraries have sensitive APIs

Goal: enumerate use of these APIs in top libraries from large corpus
of Android apps

Calls vs. Install Count

N
um

be
r o

f c
al

ls
 p

er
 a

pp

Calls vs. Install Count

N
um

be
r o

f c
al

ls
 p

er
 a

pp

Popular apps
benefit from

additional revenue

Calls vs. Install Count

N
um

be
r o

f c
al

ls
 p

er
 a

pp
Top apps can’t get away

with misbehavior

Popular apps
benefit from

additional revenue

Fine, I’ll just deny them permissions

Fine, I’ll just deny them permissions

Fine, I’ll just deny them permissions

Fine, I’ll just deny them permissions

The OS should provide privacy features

Cyanogen / LineageOS have a “PrivacyGuard” feature

Example: Provides a contacts list with zero entries

To root or not to root…

Rooted phones can install ad
blockers (e.g., AdAway)

More control, better security

Rooted phones can violate DRM

Also, malicious apps can abuse

superuser privs

Game cheats as well

FOLLOW ANDROID POLICE

LATEST DEALS

LATEST POLL

RECENT REVIEWS

LATEST ROUNDUPS

RECENT APPS AND GAMES

BLAST FROM THE PAST

134[Update: Netflix confirms] Netflix is vanishing from the
Play Store for some rooted users

Corbin

Davenport
8 hours ago

APPLICATIONS NEWS

You don't see many high-profile apps blocking root users these days, with perhaps the most recent

offender being Pokemon GO. Now it looks like Netflix might be next. According to several reports on

Reddit and other sites), the Netflix app is showing up as incompatible with some rooted devices.

UPDATE 1: 2017/05/13 9:36AM PDT
Unlocked devices without custom ROMs or root also seem to be affected. There's a chance that this could

be unintentional, so perhaps don't get the pitchforks out yet.

UPDATE 2: 2017/05/13 3:24PM PDT
Netflix has confirmed it is blocking unlocked/rooted devices from installing Netflix. See this post for more

info.

Total Shares 398

66 262 70

12

NEW
ARTICLES

Android “O” attestation features

effectively block rooting

What about

Android-native

ad libraries?

Summary so far

Advertising-supported free apps want to make money

More user information = more money

OS permission requests only partially protect users

Some apps really do need to read your contacts or learn your location

Some apps refuse to run if you deny them permissions

Very little that third-party researchers can do here

Usability: trusted path

Old-school idea: trusted path

Unforgeable labels

Prevent apps from spoofing

one another

Trusted user input paths

Uninterruptible path for user

to speak to the system

(Example: Ctrl-Alt-Del in older

Windows NT for login.)

Screenshot: Compartmented Mode Workstation (early 1990’s)

UNCLASSIFIED//FOR OFFICIAL USE ONLY

UNCLASSIFIED//FOR OFFICIAL USE ONLY 41

GDC4S SME PED

UNCLASSIFIED//FOR OFFICIAL USE ONLY

UNCLASSIFIED//FOR OFFICIAL USE ONLY 41

GDC4S SME PED
Trusted path features

UNCLASSIFIED//FOR OFFICIAL USE ONLY

UNCLASSIFIED//FOR OFFICIAL USE ONLY 41

GDC4S SME PED

Separate display, managed by
crypto module

Trusted path features

UNCLASSIFIED//FOR OFFICIAL USE ONLY

UNCLASSIFIED//FOR OFFICIAL USE ONLY 41

GDC4S SME PED

Separate display, managed by
crypto module

Trusted path features

Dedicated mode selectors

OAuth phishing

We want to hide security
indicators

Users probably wouldn’t

notice, even if prominent

Google’s solution?

Better anti-spam features

“Google” in name now special

OAuth phishing

We want to hide security
indicators

Users probably wouldn’t

notice, even if prominent

Google’s solution?

Better anti-spam features

“Google” in name now special

Phishing on mobile

Web browsers try to get out of the way

Less chance for chrome context to help you

Apps are, by nature, full-screen

Home button is still a “trusted path” feature

(Not that this is obvious to users.)

Central control from app stores can help

Misbehaving apps will be globally uninstalled!

Maybe two-factor auth will help?
5/12/2017 After years of warnings, mobile network hackers exploit SS7 flaws to drain bank accounts • The Register

https://www.theregister.co.uk/2017/05/03/hackers_fire_up_ss7_flaw/ 1/3

Security

After years of warnings, mobile network hackers

exploit SS7 flaws to drain bank accounts

O2 confirms online thefts using stolen 2FA SMS codes

Experts have been warning for years about security blunders in the Signaling System 7

protocol – the magic glue used by cellphone networks to communicate with each other.

These shortcomings can be potentially abused to, for example, redirect people's calls and

text messages to miscreants' devices. Now we've seen the first case of crooks exploiting

the design flaws to line their pockets with victims' cash.

O2Telefonica in Germany has confirmed to Süddeutsche Zeitung that some of its

customers have had their bank accounts drained using a twostage attack that exploits

SS7.

In other words, thieves exploited SS7 to intercept twofactor authentication codes sent to

online banking customers, allowing them to empty their accounts. The thefts occurred over

the past few months, according to multiple sources.

In 2014, researchers demonstrated that SS7, which was created in the 1980s by telcos to

allow cellular and some landline networks to interconnect and exchange data, is

fundamentally flawed. Someone with internal access to a telco – such as a hacker or a

corrupt employee – can get access to any other carrier's backend in the world, via SS7, to

track a phone's location, read or redirect messages, and even listen to calls.

In this case, the attackers exploited a twofactor authentication system of transaction

authentication numbers used by German banks. Online banking customers need to get a

code sent to their phone before funds are transferred between accounts.

The hackers first spammed out malware to victims' computers, which collected the bank

account balance, login details and passwords for their accounts, along with their mobile

48

3 May 2017 at 20:02, Iain Thomson

Most read

Spotlight

America 'will ban carryon
laptops on flights from
UK, Europe to US'

Avast blocks the entire
internet – again

Well this is awkward. As
Microsoft was bragging
about Office at Build,
Office 365 went down

PC repair chap lets tech
support scammer log on
to his PC. His Linux PC

Microsoft backtracks: 'We
are going to support .NET
Framework with ASP.NET
Core 2.0'

3D printing and drones are the tech

del día at Spanish startup fiesta

Speaking in Tech: Hacking Microsoft

Windows? That's cute

DATA CENTER SOFTWARE SECURITY TRANSFORMATION DEVOPS BUSINESS PERSONAL TECH SCIENCE EMERGENT TECH BOOTNOTES

Log in Sign up Forums M³ CLL Events Whitepapers The Next Platform

And pairing is a huge problem

Long, complicated instructions

Nest Protect: scan QR code

Nest Thermostat: dial in your WiFi

password

Rachio / Electric Imp: screen

flashing to a light sensor

Needs to be easier!

Threat models

“I’m still clinging to my BlackBerry,” Mr. Obama said

Wednesday [7 Jan ’09]. “They’re going to pry it out of

my hands.”

In person vs. remote attacks

Do we need to defend devices
against “local” threats?

Storage encryption?

Fingerprint vs. PIN?

- Privacy from shoulder surfing

- Privacy from gov’t search

Radio emissions?

Whose job is it to protect you?

The hardware vendor? The OS vendor?
The chipset vendor?

What about your cloud services?

Can the government compel a vendor to
add a backdoor?

Who provides ongoing security updates?

Example: Mirai webcam botnet

ELECTRONIC FRONTIER FOUNDATION
Protecting Rights and Defending Freedom on the Electronic Frontier

4 5 4 S H O T W E L L S T R E E T, S A N F R A N C I S C O , C A , U S A 4 1 5 . 4 3 6 . 9 3 3 3 W W W. E F F. O R G

AT&T’s Role in Dragnet Surveillance of
Millions of Its Customers
INTERNET SPYING IN SAN FRANCISCO1

AT&T’s internet traffic in San Francisco
runs through fiber-optic cables at an AT&T
facility located at 611 Folsom Street in
San Francisco. Using a device called a
“splitter” a complete copy of the internet
traffic that AT&T receives – email, web
browsing requests, and other electronic
communications sent to or from the
customers of AT&T’s WorldNet Internet
service from people who use another
internet service provider – is diverted onto a
separate fiber-optic cable which is connected
to a room, known as the SG-3 room, which
is controlled by the NSA. The other copy of
the traffic continues onto the internet to its
destination.

The SG-3 room was created under the
supervision of the NSA, and contains
powerful computer equipment connecting
to separate networks. This equipment is
designed to analyze communications at
high speed, and can be programmed to
review and select out the contents and
traffic patterns of communications according to user-defined rules. Only personnel with NSA
clearances – people assisting or acting on behalf of the NSA – have access to this room.

AT&T’s deployment of NSA-controlled surveillance capability apparently involves considerably
more locations than would be required to catch only international traffic. The evidence of the
San Francisco room is consistent with an overall national AT&T deployment to from 15 to 20
similar sites, possibly more. This implies that a substantial fraction, probably well over half, of
AT&T’s purely domestic traffic was diverted to the NSA. At the same time, the equipment in
the room is well suited to the capture and analysis of large volumes of data for purposes of
surveillance.

1 This is a brief summary of the testimony of Mark Klein, a former AT&T technician, and of expert witness J.
Scott Marcus, a former Senior Advisor for Internet Technology at the FCC. The complete declaration of Mark
Klein is available at http://www.eff.org/legal/cases/att/SER_klein_decl.pdf. The declaration of J. Scott Marcus is
available at http://www.eff.org/legal/cases/att/SER_marcus_decl.pdf.

Intercepting Communications at
AT&T Folsom Street Facility

AT&T Facility
611 Folsom Street San Francisco

Government
Secret
Network

Millions of communications from
ordinary Americans (AT&T customers)

Millions of communications from
ordinary Americans

A

B

C

D

A

A

B

C

D

B C D

NSA-controlled
Room (641A)

Splitter

5/12/2017 Internet Giants Erect Barriers to Spy Agencies - The New York Times

https://www.nytimes.com/2014/06/07/technology/internet-giants-erect-barriers-to-spy-agencies.html?_r=0 1/6

https://nyti.ms/1k2b8mu

TECHNOLOGY

Internet Giants Erect Barriers to Spy
Agencies
By DAVID E. SANGER and NICOLE PERLROTH JUNE 6, 2014

MOUNTAIN VIEW, Calif. — Just down the road from Google’s main campus here,

engineers for the company are accelerating what has become the newest arms race in

modern technology: They are making it far more difficult — and far more expensive

— for the National Security Agency and the intelligence arms of other governments

around the world to pierce their systems.

As fast as it can, Google is sealing up cracks in its systems that Edward J.

Snowden revealed the N.S.A. had brilliantly exploited. It is encrypting more data as

it moves among its servers and helping customers encode their own emails.

Facebook, Microsoft and Yahoo are taking similar steps.

After years of cooperating with the government, the immediate goal now is to

thwart Washington — as well as Beijing and Moscow. The strategy is also intended to

preserve business overseas in places like Brazil and Germany that have threatened to

entrust data only to local providers.

Google, for example, is laying its own fiber optic cable under the world’s oceans,

a project that began as an effort to cut costs and extend its influence, but now has an

added purpose: to assure that the company will have more control over the

movement of its customer data.

5/12/2017 Internet Giants Erect Barriers to Spy Agencies - The New York Times

https://www.nytimes.com/2014/06/07/technology/internet-giants-erect-barriers-to-spy-agencies.html?_r=0 1/6

https://nyti.ms/1k2b8mu

TECHNOLOGY

Internet Giants Erect Barriers to Spy
Agencies
By DAVID E. SANGER and NICOLE PERLROTH JUNE 6, 2014

MOUNTAIN VIEW, Calif. — Just down the road from Google’s main campus here,

engineers for the company are accelerating what has become the newest arms race in

modern technology: They are making it far more difficult — and far more expensive

— for the National Security Agency and the intelligence arms of other governments

around the world to pierce their systems.

As fast as it can, Google is sealing up cracks in its systems that Edward J.

Snowden revealed the N.S.A. had brilliantly exploited. It is encrypting more data as

it moves among its servers and helping customers encode their own emails.

Facebook, Microsoft and Yahoo are taking similar steps.

After years of cooperating with the government, the immediate goal now is to

thwart Washington — as well as Beijing and Moscow. The strategy is also intended to

preserve business overseas in places like Brazil and Germany that have threatened to

entrust data only to local providers.

Google, for example, is laying its own fiber optic cable under the world’s oceans,

a project that began as an effort to cut costs and extend its influence, but now has an

added purpose: to assure that the company will have more control over the

movement of its customer data.

Eric Grosse, Google’s security chief,

suggested in an interview that the N.S.A.'s

own behavior invited the new arms race.

“I am willing to help on the purely defensive
side of things,” he said, referring to

Washington’s efforts to enlist Silicon Valley in

cybersecurity efforts. “But signals intercept is
totally off the table,” he said, referring to

national intelligence gathering.

“No hard feelings, but my job is to make their
job hard,” he added.

Open challenges

Ease of use

Internet of Things are hard to install

Pre-installed trust (at purchase time)?

Power user features vs. security lockdown

Apple: one app store

Google: you can install a 3rd-party store

The computers inside the computer

Disaggregated computing: Our definition of a computer is changing

Embedded computers need to be exposed, managed

Nasty challenges

What should it mean to “boot” a computer?

What does it mean to not trust one of your own devices?

How to protect vendor “intellectual property”?

Code correctness

Buffer overflows have been known since the 1980’s, maybe earlier.

We have tools that try to make C safe (e.g., Coverity)

Inherently safe systems tend to require GC memory (e.g., Java)

Maybe it’s time to go with something else?

Even tiny embedded CPUs are insanely fast and have lots of RAM*

* If you’re old enough to remember the bad old days.

Code correctness

Buffer overflows have been known since the 1980’s, maybe earlier.

We have tools that try to make C safe (e.g., Coverity)

Inherently safe systems tend to require GC memory (e.g., Java)

Maybe it’s time to go with something else?

Even tiny embedded CPUs are insanely fast and have lots of RAM*

Redox OS: written from scratch in Rust.

* If you’re old enough to remember the bad old days.

We’ve got a lot of work to do

