
Seamless In-App Ad Blocking on Stock Android
Michael Backes, Sven Bugiel, Philipp von Styp-Rekowsky, and Marvin Wißfeld
CISPA, Saarland University

Mobile Security Technologies (MoST) Workshop
San Jose, California, May 25, 2017

Motivation

Motivation

Ads allow developers to easily monetize their apps.

Why to block ads on Android?
Ad libraries have shown to exploit host app's permissions to access private data.

Ads can be used to lure users into installing malware.

Streaming media files can be expensive on mobile networks.

Existing approaches lack deployability or effectiveness.

Existing approaches

Existing approaches

AdDroid , Adsplit , Aframe

PEDAL , Apklancet Privacyguard , Adguard

1 Pearce et al., ASIACCS’12 Shekhar et al., Usenix’12 Zhang et al., ACSAC’13

2 Liu et al., MobiSys’15 Yang et al., ASIACCS’14 3 Song et al., SPSM’15

Contribution

Contribution

We developed an in-app ad blocking system, that

• is easy to deploy and runs on-device only.
• effectively blocks ad library code execution.
• has no side-effects on the applications.

Ad library inclusion

Ad library inclusion

Approach

Approach

1. Identification
Find ad library API c lasses inside app pac kage

2. Stub generation
Create matching c lasses that preserve functionality

3. Injection
Have the application use the created stub

Approach: 1. Identification

Approach: 1. Identification
Find ad library API classes inside app package

Task: identify class AdView from included library com.example.ads.

Approach: find class with class name com.example.ads.AdView.

Problem: Identifier Renaming
Build process obfuscates names of classes, methods and fields:

com.example.ads.AdView -> a.b.a.a
com.example.ads.InterstitialAd -> a.b.a.b

... but when referenced in XML or string constants, names are preserved.
• Libraries contain a XML manifest referencing their package name.
• UI classes might be referenced in UI XML.

com.example.ads.AdView -> com.example.ads.AdView
com.example.ads.InterstitialAd -> com.example.ads.a

Task: identify class AdView from included library com.example.ads.

Approach: find class in package com.example.ads with same superclass and members.

Problem: Dead code elimination
Build process removes methods and classes that are not referenced.

Task: identify class AdView from included library com.example.ads.

Approach: find class in package com.example.ads with same superclass and required members.

Filter rules
Must contain for each class: package name, superclass, required members.

package com.example.ads
 class .AdView extends* android.view.View
 method exists void loadAd
 end class
 class .InterstitialAd
 method exists void openAd .AdListener
 end class
 class .AdListener
 method exists void onAdClosed
 end class
end package

Approach: 2. Stub generation

Approach: 2. Stub generation
Create matching classes that preserve functionality

Task: create class replacing InterstitialAd.

Approach: Replace all methods with empty/null-return methods.

Problem: Callbacks
Some method calls must result in callback invocations to preserve app functionality

Task: create classes replacing InterstitialAd.

Approach: Replace all methods with empty/null-return methods or
functionality preserving implementations.

Filter rules
Must contain for each class: package name, superclass, required members, stub generation info.

package com.example.ads
 class .AdView extends* android.view.View
 set filter-action empty-view
 method exists void loadAd
 end class
 class .InterstitialAd
 set filter-action empty-object
 method exists,replace void openAd .AdListener
 end class
 class .AdListener
 method exists void onAdClosed
 end class
end package

Approach: 3. Injection

Approach: 3. Injection
Have the application use the created stub

Use app virtualization (Boxify Backes et al., Usenix'15) to instrument app.

Prepend stub classes to class loader search path, so they are loaded first.

Evaluation

Evaluation

Manual assessment
Created filter rules for 7 large advertisers

Tested against 22 random apps from Play Store (that contained ads)

Ads blocked in 19 apps, 3 failed because of missing filter rules.

No app crashed or misbehaved.

Real-world test
Made end-user version (with more filter rules) publicly available

5.700+ installs, 15.000+ different apps ad-blocked

Less than 200 reported apps that still showed ads.

Limitations

Limitations

• Only third-party libraries. This excludes
• Content ads (ex. Spotify, Facebook)
• Web-based ads (WebView, Browser)

• Dynamic class loading
• Stronger obfuscation
• Red Pill attacks

Summary

Summary

Built in-app ad blocking based on app virtualization.

Demonstrated deployability and efficiency by real-world evaluation.

www.srt-adversary.com

http://www.srt-adversary.com/

