Spartan Jester: end-to-end information flow control
for hybrid Android applications

Julian Sexton”

MITRE Corporation® Galois, Inc.

Abstract—Web-based applications are attractive due to their
portability. To leverage that, many mobile applications are hybrid,
incorporating a web component that implements most of their
functionality. While solutions for enforcing security exist for both
mobile and web applications, enforcing and reasoning about
the security of their combinations is difficult. We argue for a
combination of static and dynamic analysis for assurance of end-
to-end confidentiality in hybrid apps. We show how information
flows in hybrid Android applications can be secured through use
of SPARTA, a static analyzer for Android/Java, and JEST, a
dynamic monitor for JavaScript, connected by a compatibility
layer that translates policies and value representations. This
paper reports on our preliminary investigation using a case study.

I. INTRODUCTION

In principle, strong information flow control (/FC) is needed
to assure mobile users their privacy and security requirements
are being met. But there remain several challenges to the
widespread use of IFC, one of which we tackle in this paper:
cross-language tracking.

It has become increasingly popular to build mobile apps as
mobile web apps. The Android operating system allows for
the inclusion of locally and externally hosted webpages: the
WebView component allows two-way transfer of information
between Java and JavaScript (JS). IFC tools exist for Java
code (including in Android), for JS (in the browser), and for
other programming languages; but few address flows across
language boundaries. (See Section V for related work.)

Static analysis for JS is especially difficult due to the
dynamic nature of the language, so most work on IFC for
JS relies on monitoring [1]-[4]. Moreover, hybrid apps of-
ten embed changing web pages that are loaded dynamically
(though in some scenarios it may be possible to perform
static analysis on the server prior to serving the page). These
considerations lead us to use dynamic monitoring for JS
in hybrid apps. On the other hand, the high performance
cost of monitoring leads us to eschew it for non-JS app
components. Cross-language and mixed static-dynamic IFC
raises new challenges for connecting different mechanisms and
consistently interpreting policies.

* Partially supported by NSF award CNS1228930

t The author’s affiliation with The MITRE Corporation is provided for
identification purposes only, and is not intended to convey or imply MITRE’s
concurrence with, or support for, the positions, opinions or viewpoints
expressed by the author. Approved for Public Release; Distribution Unlimited.
Case 17-0121.

Andrey Chudnov”

David A. Naumann”
Stevens Institute of Technology

a) Problem statement: In this paper we are concerned
with reasoning about, and enforcing, the end-to-end security of
Android apps which make use of a WebView component. We
consider security requirements that refer to I/O devices and to
UI elements including those in web pages loaded by WebView.
We are interested in fine-grained information flow policies in
which individual form fields or data store elements may be
designated as sensitive. Practical policies inevitably require
downgrading, after sanitization or conditioned on events. A
typical example, for confidentiality, is sending the low four
digits (only) of a CC-number in the clear, after an authenti-
cated transaction is completed. Another example is indicating
on the display whether a login attempt is successful, while not
revealing the actual password or its hash. Our ultimate goal is
to achieve strong IFC for hybrid apps, including the tracking
of implicit flows. The goal in this paper is to investigate an
approach, leading to an agenda for further work. We explore
the challenges through a case study using two existing tools.

b) Approach: For a statically typed language like Java, a
programmer-friendly way to specify fine-grained policies is to
augment declarations with security-annotated types. The anno-
tations can, for example, refer to principals allowed to read or
write (as in Jif [5]). Alternatively, they can refer to input and
output channels such as the microphone and display screen.
In JS, security labels can be associated with input/output API
calls or objects. But JS doesn’t have static type annotations,
so labels need to be specified in a separate file or as additional
meta-data in the HTML page. For enforcement, static analysis
has the advantage of having no runtime cost and the possibility
to find vulnerabilities in advance of deployment. For Java,
we adopt an existing static analyzer tailored to Android:
SPARTA [6]. For the JS part of an app, however, we advocate
dynamic monitoring. We choose inlined monitoring: JEST [4]
performs a source-to-source transformation that instruments
the code to be self-monitoring, avoiding the need to modify
the JS engine (or any other part of the platform).

Because SPARTA provides Android-specific policy features,
we start by formulating our policy using SPARTA. The policy
is then translated into a corresponding JEST policy. Through
the use of facades written in both Java and JS, we preserve
the labels on values as they enter and exit the WebView
component, enabling end-to-end policy enforcement.

¢) Outline and contributions: In this paper, we present
the first system to provide IFC for hybrid apps that uses
dynamic monitoring for JS together with static analysis for

the Java part of the app. As a first step in the evaluation of
our approach, we present an illustrative case study. Section II
describes the case study app, its security requirements, and
our attack model. Section III describes our integration of the
tools, which involves bridging code in Java and JS as well
as policy translation. Section IV discusses limitations of the
work so far and challenges for further development. Section V
reviews some related work and VI concludes.

II. CASE STUDY

The hybrid app in our case study provides a subset of
the functionality of org-mode (http://orgmode.org/). Org is
an extension of GNU Emacs providing personal productivity
tools like calendar, notes, task tracker, etc. The information is
stored in plain text files (org files) with a forest structure and
straightforward syntax, not unlike XML in expressiveness. Our
app parses, interprets, and displays org files. To support an on-
the-go workflow, notes can be captured using the microphone
and Android speech-to-text capabilities. Org calendar events
can be exported to the Android system calendar. Finally, the
app includes a mockup of org-crypt, an org-mode module
that allows encryption of subtrees in org files. For simplicity,
we forgo encryption and instead provide the ability to tag
subtrees as private (using the "NODISPLAY” tag). A password
is required to display these tagged subtrees and to export
tagged events to the calendar. When a voice note is being
captured, it can be tagged as private.

We use HTML and JS to implement the parsing, interpre-
tation and display of org files. However, pure web apps do
not have access to the microphone, speech-to-text, and system
calendar APIs. We use a native Android component (in Java)
to provide these functionalities. It hosts the web component
locally using WebView, which uses WebKit to display HTML
and execute JS. Native components can run arbitrary JS in
the context of the web component’s page, and JS in the web
component can call back to the native component via an
Android object that WebView instantiates in the global scope.
Java methods annotated with @Javascriptinterface become fields
of the Android object and can be called like any JS function.
Lee et al [7] is a good source for more detail on WebView.

a) Security requirements and attack model: In our app,
sensitive information originates from the Android file system,
the microphone, and text input from the user (the password
entry), and it can be displayed to the user or written to the
org file or to the system calendar. We want information to
flow from the microphone to the org file (capturing notes),
and from the file to the user and the calendar. We want to
protect the password and the private subtrees of the org file.
The app should only release information from private subtrees
if the user has provided the correct password. Moreover, no
contents from the org file should ever flow to the network
or to other apps or files; it should flow only to the display,
and calendar entries can flow to the Android calendar. This
set of requirements constitutes a confidentiality policy with

conditional declassification.!

An appropriate strong security property is termination-
insensitive non-interference with downgrading policies that
specify what part of secrets can be declassified under what
conditions. (See, e.g., [8]-[10].) For example, our app de-
classifies the result of a password check, and has other flows
conditioned on successful authentication. We consider that the
adversary knows the program and can observe network- and
device-visible inputs and outputs, but not covert channels like
power consumption and fine timing. Since the attacker knows
the program, they can learn from implicit flow. They also
know the IFC mechanisms in use. We are also concerned
with possible script injections in the WebView, which falls
in the purview of the gadget attacker [11]. A gadget attacker
does not have special network privileges and can only read
messages directed at her own web server. She can introduce
arbitrary JS code in a web page, but we assume the WebView
runtime rejects code that does not comply with ECMAScript
and HTML standards.

We do not trust the app, and use tools to establish its secu-
rity. We do trust the Android system including WebView and
its JS run-time. We assume that they do not have vulnerabilities
that would allow breaking API abstractions and separation
guarantees or the language semantics. We assume that the code
analyzed and instrumented by our tools is installed without
modification.

b) Policy enforcement: Several solutions exist for track-
ing information flow and identifying vulnerabilities in Android
apps, e.g. [12]-[15]. We prefer static analysis of Java, for
the reasons mentioned earlier. For our case study we choose
SPARTA [6], an open-source tool that caters for analysts to
express and check fine-grained policies. It provides a detailed
model of the Android system’s information sources and sinks.
Policies are specified using Java (JSR 308) annotations on
types in declarations, together with a policy file that designates
which sources are allowed to flow to which sinks.

For web apps, there are several implementations of dynamic
IFC [1], [2], [4], [16], [17]. Some are browser modifica-
tions [1], [17], while others are implemented by program
rewriting [2], [4], [16]. There are no dynamic IFC tools de-
signed specifically for WebView, which restricts us to program
rewriting. Of the three inlined monitor systems, JEST [4] has
the best combination of language and browser API support. It
is also open-source.

JEST can instrument scripts in web pages and can work as
an HTTP proxy server or as a command-line tool. Policy can
be specified procedurally, as a JS function, or in JEST’s custom
declarative language (for an example, see Fig. 2). The policy
assigns labels to various sources and sinks of information:
network locations, user input and cookies. The interaction with
the browser APIs is done via fagcades which wrap underlying
APIs and augment them with information-flow tracking. We
modified JEST to include a fagade for the Android object of

'Our implementation uses Google speech-to-text, for simplicity, but this
could be deployed in offline mode so we refrain from formulating a policy
that allows flows to google.com.

RECORD_AUDIO->FILESYSTEM, INTERNET, WRITE_CALENDAR

FILESYSTEM —->INTERNET, WRITE_CALENDAR
INTERNET —>WRITE_CALENDAR
INTENT ->FILESYSTEM, INTERNET, WRITE_CALENDAR

Fig. 1. SPARTA policy file for the case study

WebView: when the monitored JS app loads, the JEST run-
time system scans the existing Android object and recreates
it as a facade with the same structure. We augmented the
policy language to refer to the arguments and return values
of the methods of the Android object as sources and sinks. The
Android facade uses that to assign labels to results and check
labels on parameters.

III. BRIDGING BETWEEN SPARTA AND JEST

a) Security policy: A SPARTA annotation is a set of
sources paired with a set of sinks. Annotations can be as-
sociated with function parameters and return values, variables
and class fields, as in Fig. 3. The policy file defines which
annotations are valid. The policy file is a list of pairs of sets of
sources and sinks, interpreted as: information from each source
element in the pair is allowed to flow to each sink element in
the same pair. (See Fig. 1.2) An individual annotation is valid
if for every sink element there exist pairs in the policy that
collectively list all the elements in the source element of the
type. The tool checks that each annotation is valid, and of
course checks that the annotations are consistent with the data
flows in the program.

SPARTA annotations form a lattice, that is a product of two
free lattices over the sets of sources and sinks respectively.
Lattice join is defined as point-wise set union (for sources) and
set intersection (for sinks). The can-flow relation (i.e., lattice
order) is defined as point-wise subset inclusion (for sources)
and subsumption (for sinks).

JEST policies are based on an arbitrary lattice. We choose
the declarative form of specification, where labels are sets
of so-called principals and the label lattice is a free lattice
of the set of all principals in the policy. The policy maps
principals to channels or principals (see Fig. 2). Information
originating from each channel has a label that is the set of all
the principals that map to it, in addition to all the principals
that occur together with the channel on the right-hand-side.
In the example, all file inputs (channel £ile://) are labeled
with {sourceFTLESYSTEM, sinkEMPTY}. In order to establish a
relationship between our SPARTA (Fig. 1) and JEST (Fig. 2)
policies, we establish a one-to-one correspondence between
labels that preserves lattice ordering and joins (Table I).

We now discuss the Java functions exposed to the HTML/JS
component, shown in Fig. 3. These functions define the

20nly the flows with underlined sinks are due to the security re-
quirements. The rest are due to the SPARTA requirement that flows
in the policy be transitively closed. Capturing notes is enabled by
RECORD_AUDIO —> FILESYSTEM. Loading of the org file into the
HTML module of WebView is enabled by FILESYSTEM —> INTERNET.
Writing events from the org file into the Android calendar is enabled by
INTERNET —> WRITE_CALENDAR, and INTENT —> FILESYSTEM is
for the file selection dialogue.

JEST SPARTA
Principal Sources Sinks
sourceINTERNET {INTERNET} {WRITE_CALENDAR}
sourceFILESYSTEM | {FILESYSTEM} {WRITE_CALENDAR}
sourceUSERINPUT {USER_INPUT} {WRITE_CALENDAR}
sinkEMPTY {ANY} {}

TABLE I

SPARTAJEST LABEL CORRESPONDENCE

interface between the HTML and Java components of the
app. For example, requestPassword returns the password attempt
entered by the user; this information is labeled with the source
of USER_INPUT. The JEST policy counterpart is the channel,
< —func://requestPassword, that denotes the result of calling
Android.requestPassword () from JS. The func:// pseudo-
protocol is our extension to the JEST policy language that
allows to specify policies for calls to the host environment.
According to the policy, the return value is going to be as-
signed the sourceUSERINPUT label, which, according to Table I,
corresponds to ({USER_INPUT}, {}), the SPARTA label
on the return of requestPassword.

Our extension to the JEST policy language also allows us
to talk about flows to the arguments of Java functions. For
example, —>func://scheduleDate@1 is an output (from JS)
channel that corresponds to the first argument passed in the
call to Android.scheduleDate (...) . By studying the correspondence
table, JEST policy and Fig. 3, one can see that the upper bound
on the runtime label checked by JEST before the function call
corresponds to the label on the method scheduleDate.

In addition to bridging between JEST and SPARTA enforce-
ment, the JEST policy is also designed to help refine the policy
relative to what can be expressed in SPARTA concerning the
private subtrees of the org file. The principal sinkEMPTY serves
as a privacy label. There are no Android output channels
assigned to it, but the data read from every file gets labeled
with it. This is to ensure that the private subtrees are not sent
anywhere, not even to the Java component, prior to parsing and
checking the password. The label is downgraded explicitly in
the JS function enforcePolicy . This function parses the org-file,
and filters out the subtrees tagged with NODISPLAY unless
the password matches user’s guess.
=

if (docpassword ==
|| keep)

userpassword && docpassword
newlines += lines[k] + "\n”;
After collapsing implicit flow due to exceptional conditions,
we declassify the result to be sent to the scheduleDate and
scheduleDesc functions in Java.

return declassify (result, ”func://scheduleDate@1”);

b) Compatibility layer: The main challenge of bridging
between SPARTA and JEST stems from the fact that the
former is a static analysis, while the latter enforces the policy
dynamically. In JEST all values are labeled — or boxed, in
JEST parlance. Java code, on the other hand, is compiled and
run as usual; run-time values do not have labels attached to
them. This means that the host component needs to supply
labels for the values it provides to the WebView component to

policy stringset principals {

sourceINTERNET = dom:// nonsense_source_internet , —>func ://scheduleDate@1 ,

—>func :// scheduleDesc@1 ;

sourceFILESYSTEM = dom:// nonsense_source_filesystem , —>func ://scheduleDate@1 ,

—>func :// scheduleDesc@1, dom:// filelnput ,

sourcetUSERINPUT = <—func ://requestPassword;

}

sinkEMPTY = dom:// nonsense_sink_empty, dom:// filelnput ,

file ://%;

file ://x*;

Fig. 2. Policy associating principles with channels in JS code, using JEST’s declarative policy language

@JavascriptInterface
@JavascriptInterface

@JavascriptInterface

public @Source ({”USER_INPUT”}) @Sink ({}) String requestPassword ()

public void scheduleDate (@Source ({”INTERNET”,”FILESYSTEM” })
@Sink ({”WRITE_CALENDAR”})

public void scheduleDesc (@Source ({”INTERNET”,”FILESYSTEM” })
@Sink ({”WRITE_CALENDAR” })

String date)

String desc)

Fig. 3. Signatures of the app’s Java methods that can be called from JS code

fulfill the expectations of JEST. This applies to both function
calls from Java to JS, where the arguments need to be labeled,
as well as to the calls in the reverse direction, where the results
of Java functions need to be labeled.

Labeled values flowing from WebView to Android need
to be checked against the static policy in SPARTA. If the
dynamic JEST label is incompatible with the static SPARTA
label according to the security policy correspondence, a run-
time policy violation needs to be raised.

Calls from JS to Java (Fig. 4 (D), go through the JEST
facade for the Android object. The fagade uses our extensions to
the policy language and JEST run-time policy representation to
query the labels of the parameters of the methods of the Android
object. The facade checks that the label of each argument is
within the upper bound dictated by the JEST policy, which
corresponds to the assumptions made by SPARTA. Then it
unboxes the parameters, extracting the raw JS values from the
argument boxes and passes them to the corresponding method
of the actual Android object (). The WebView run-time routes
the call to the Java function.

Those functions that return a value use an adapter class
WebViewFacade, that we’ve developed (). WebViewFacade in-
spects the SPARTA label on the value to be returned using
Java’s Reflection APIs (and a design pattern to make the
annotations available), and translates it to a set of JEST
channel names. It then encodes the value and channel names
in JSON and returns its string representation ((4)). The Android
object facade parses the string as JSON and extracts the value
and the channel names. It boxes the return value together with
a label that is the join of all the channel names and returns
it to the caller ((3)). Note that since only string values can be
exchanged between Java and WebView, the facades convert
values to and from strings in the JSON format.

The example app does not use calls from Java to JS in We-
bView. However, we have experimented with ways to support
those. Java Reflection can be used in a similar way to what
is used for JS-to-Java calls. However, there is a complication
due to the way JEST wraps inlined code in an anonymous
function closure. This is done to enable JIT optimizations
and to protect the monitor from adversarial JS code, while

maintaining transparency (not altering secure executions) [4].
Details of the solutions explored are omitted for lack of space.

SPARTA’s annotation for the WebView API is coarse
grained: Java functions that call into or are called from the
component are expected to be labeled with the source and
sink of INTERNET, regardless of the origin of the web page.
Furthermore, SPARTA does not check that the result of a
function that could be called from WebView (labeled with
@JavascriptInterface) has the INTERNET sink specified. To get
tighter enforcement, our SPARTA policy file (Fig. 1) does not
allow flow from USER_INPUT to INTERNET. The desired flows
are enabled by judicious use of SPARTA’s “SuppressWarn-
ings” option in connection with the File Chooser callback,
informally justified as an intended declassification.

More detail about bridging SPARTA and JEST can be found
in Sexton’s thesis [18].

IV. DISCUSSION

a) Steps to secure an app: The fagades we created,
to interface between JS and Java in a hybrid app, are not
specific to the case study. Using these facades, here are the
steps needed to secure an app using our approach, once
the informal requirements have been determined. (1) Write a
SPARTA policy file and add SPARTA annotations, to express
policy for the Java code. (2) derive the JEST lattice and
channel mapping based on the SPARTA annotations on the
Java functions marked as @JavascriptInterface . (3) Run SPARTA
to check the Java code. (4) Run JEST on the embedded page
(at build time, or via a proxy server for dynamically loaded
pages).

It should not be difficult to write a translator to automate
step (2) but we did not do that yet. In our experience,
step (3) is not trivial. SPARTA does only intra-procedural
inference of annotations, so manual annotation is needed. And
there are false positives that require fine tuning, workarounds
or manual overrides. Downgrade policies also need to be
written explicitly, using the JEST declassification construct or
documented use of “SuppressWarning” in SPARTA.

JEST also has imprecisions which manifest in false posi-
tives. The combination of ReferenceError exceptions that

Host app

©) [Wenviewracade] @— &
[*|WebViewFacade ‘ >

HTML app

in Java

in JS

(checked by SPARTA)

(rewritten by JEST)

javaFunc(...) ||, - == - - -
H Android object fagade -
@ |

Fig. 4. Data flow in Java-WebView interactions (dashed line indicates Java versus JS)

can be thrown for any property access and the object-oriented
API for string operations has given rise to a number of subtle
implicit flows that have led to both policy and no-sensitive-
upgrade [19] violations. JEST cannot rule out exceptions
thrown by the language run-time statically, so it has to consider
any potential source of them as an implicit flow. This is not
an issue if the exception guards have public labels. However,
our security policy is very strict about where the information
is allowed to flow, so most data has non-public labels. Dealing
with this problem, so that step (4) results in a usable app, has
required adding several upgrade instructions to explicitly
raise labels on variables, and t ry—catch statements to limit
the impact of run-time errors and the implicit flows arising
from them.

b) Security argument and implicit flow: Our aim is
usable means to achieve reasonably high assurance. We would
like to be able to give a security argument along the following
lines. (a) The informal security goals are captured by the
identified channels, their labeling, and the explicit downgrades.
(b) SPARTA and JEST soundly enforce the policy on Java
and JS code respectively. (c) Our technique for interoperation
between SPARTA and JEST, and our specific translation of
policy, ensures sound information flow tracking for executions
that cross the Java/JS boundary. Unlike (a), points (b) and (c)
could, in principle, be formalized. On that basis one could
make a rigorous correctness argument, taking into account the
declassifications, using results in [8] (for static analysis) and
[20] (for monitoring).

Even as an informal security argument, our story currently
has a large gap: like many other tools, SPARTA does not track
implicit flow. The Pidgin [21] and Joana [22] tools for Java,
both based on program dependence graphs, do handle implicit
flow soundly, but are not equipped with the infrastructure
needed for Android.> As explained by Pistoia in his state-
of-the-art tutorial on information flow control [25], implicit
flow checking is also implemented in IBM’s static analysis
tools—but it is rarely used, because for their applications
there are impractically many false positives. As we noted
above, significant manual effort was needed to overcome false
positives due to JEST’s sound implicit flow tracking. The
Checker Framework on which SPARTA is built would enable
modifying SPARTA to enforce the standard Denning rules for
implicit flow (no low writes in high branches) [5], but one
would again have to contend with false positives and explicit
declassifications of intended or unavoidable implicit flows.

3Work is underway to make Joana applicable to Android [23]. The other
Java-oriented IFC tools with implicit flow, Jif [5] and Paragon [24], are
even farther from usability with Android because they make incompatible
modifications to the Java language.

For implicit flow across the Java/JS boundary, our approach
is to check that the Java-to-JS and JS-to-Java function calls are
all in “low contexts”, i.e., not control dependent on sensitive
data. This we have done by manual inspection. Given a
Java analyzer tracking implicit flow, it should be possible to
coordinate the checks with JEST but we have not explored
that in detail.

c) Other open problems: For the mapping between
SPARTA and JEST policies, the label and policy translation
was done by hand. It would be preferable to have a single
policy file that talks about the end-to-end policy for the app
and from which the policies for JEST and SPARTA are gener-
ated. JEST policy is standalone, except for declassifications
in the code, but SPARTA policy is effectively split into a
standalone policy file and type annotations on functions that
are exposed to WebView. The latter are intertwined with
the code, and thus would be hard to generate automatically
from a single policy description. That’s why we believe that
it is most convenient to generate a JEST policy from the
annotations and static SPARTA policy. There are limitations
to this approach: SPARTA labels don’t concern some channels
that JEST supports, i.e. cookies and DOM elements, and
the label on any WebView interaction is very coarse grained
(INTERNET) and could potentially allow interacting with an
arbitrary network location. In our case-study, however, the
JEST policy did not talk about the additional channels, and
the HTML part of the app was not expected to communicate
externally at all.

One issue that deserves further attention is our use of
runtime inspection of Java type annotations. This seems rem-
iniscent of runtime monitors in which labels are a potential
storage channel [26]-[28]. Since SPARTA annotations are
statically associated with types we believe our facades are not
susceptible to this issue, but this merits further investigation.

V. ADDITIONAL RELATED WORK

Two recent works deal with cross-language flows in the
web setting [29], [30]. For hybrid mobile apps, the closest
works are [7] and [31]. Both are built on IBM’s WALA static
analysis framework. Jin et al. [31] target Android mobile apps
using Apache Cordova [32]. Cordova (originally PhoneGap)
is a framework for building cross-platform mobile apps using
HTML and JS. On Android the framework is implemented
using WebView. The goal of [31] is detection and prevention
of cross-site scripting vulnerabilities in such apps; the static
taint analysis Actarus [33] is used for JS. To model interactions
with both Cordova and Android run-times, JS mock-ups of
the Cordova APIs are injected in apps to be analyzed. The
apps are also transformed to make entry points discoverable

by the analyzer. HybriDroid [7] builds an accurate model of
the API layer between Java and JS components of hybrid
apps in Android to enable end-to-end static analysis. It offers
cross-language taint analysis (i.e., explicit flow tracking), again
relying on WALA. The main focus is on explaining and
precisely modeling the control and data flow between the two
languages and the semantics of WebView APIs. Brucker and
Herzberg [34] also use WALA for static analysis, specifically
for Cordova-based hybrid apps. The focus is on detecting
cross-language control flow and using that capability to eval-
vate apps. These works inherit from WALA its limitations
of handling DOM features, as well as the inherent lack of
precision in static analysis for dynamic JS constructs like
“with” for objects with statically unknown scope, and eval.
Their focus is on the important problem of cross-site scripting
vulnerability; they do not handle implicit flow or fine-grained
policies with multi-level lattices and declassification.

VI. CONCLUSION

Despite the significant differences between SPARTA and
JEST, we were able to use them together to enforce a confi-
dentiality policy in a hybrid Android app, across components
written in Java and HTML/JS. To do this, we built a compati-
bility layer that the components use to interact; it is responsible
for adjusting value representations between the two systems
and for translating labels. It uses the Java Reflection API
to read SPARTA label annotations. Use of Java annotations
for policy specification has advantages such as compatibility
with various Java toolchains, and we believe our approach is
compatible with other Java IFC tools using Java annotations.
Although we described our technique in terms of a particular
app, the facades are generic and can be applied to other apps
without changes. To apply our approach to an app, you only
need to specify the policies, use our Java facade, add SPARTA
type annotations in Java components, and add downgrade and
upgrade annotations in the JS components.

ACKNOWLEDGMENT

The authors would like to thank Felipe Fonseca for devel-
oping an early version of the org-mode app.

REFERENCES

[1] A. Bichhawat, V. Rajani, D. Garg, and C. Hammer, “Information flow
control in WebKit’s JavaScript bytecode,” in POST, 2014.

[2] D. Hedin, A. Birgisson, L. Bello, and A. Sabelfeld, “JSFlow: tracking
information flow in JavaScript and its APIs,” in ACM SAC, 2014.

[3] A. Almeida-Matos, J. Fragoso Santos, and T. Rezk, “A secure informa-
tion flow monitor for a core of DOM,” in TGC, 2014.

[4] A. Chudnov and D. A. Naumann, “Inlined information flow monitoring
for JavaScript,” in ACM CCS, 2015, see github.com/achudnov/jest.

[51 A. C. Myers, “JFlow: Practical mostly-static information flow control,”
in ACM POPL, 1999, see Jif at https://www.cs.cornell.edu/jif/.

[6] M. D. Ernst, R. Just, S. Millstein, W. Dietl, S. Pernsteiner, F. Roesner,
K. Koscher, P. B. Barros, R. Bhoraskar, S. Han et al., “Collaborative
verification of information flow for a high-assurance app store,” in ACM
CCS, 2014, see SPARTA tool at https://types.cs.washington.edu/sparta/.

[7]
[8]
[9]
[10]

[11]

[12]

[13]

[14]

[15]

[16]

(17]

[18]

[19]
[20]
[21]

[22]

(23]

[24]
[25]
[26]
(271
(28]
[29]

[30]

[31]

[32]
(33]

(34]

S. Lee, J. Dolby, and S. Ryu, “HybriDroid: Static analysis framework
for Android hybrid applications,” in 31st IEEE/ACM ASE, 2016.

A. Banerjee, D. A. Naumann, and S. Rosenberg, “Expressive declassi-
fication policies and modular static enforcement,” in JEEE S&P, 2008.
A. Askarov and A. Sabelfeld, “Tight enforcement of information-release
policies for dynamic languages,” in JEEE CSF, 2009.

M. Vanhoef, W. DeGroef, D. Devriese, F. Piessens, and T. Rezk,
“Stateful declassification policies for event-driven programs,” in [EEE
CSF, 2014.

D. Akhawe, A. Barth, P. E. Lam, J. Mitchell, and D. Song, “Towards a
formal foundation of web security,” in JEEE CSF, 2010.

S. Arzt, S. Rasthofer, C. Fritz, E. Bodden, A. Bartel, J. Klein,
Y. Le Traon, D. Octeau, and P. McDaniel, “Flowdroid: Precise context,
flow, field, object-sensitive and lifecycle-aware taint analysis for Android
apps,” in ACM PLDI, 2014.

E. Chin, A. P. Felt, K. Greenwood, and D. Wagner, “Analyzing inter-
application communication in Android,” in 9th Int. Conf. on Mobile
Systems, Applications, and Services, 2011.

D. Octeau, P. McDaniel, S. Jha, A. Bartel, E. Bodden, J. Klein,
and Y. Le Traon, “Effective inter-component communication mapping
in Android: An essential step towards holistic security analysis,” in
USENIX Security, 2013.

W. Enck, P. Gilbert, S. Han, V. Tendulkar, B.-G. Chun, L. P. Cox, J. Jung,
P. McDaniel, and A. N. Sheth, “TaintDroid: an information-flow tracking
system for realtime privacy monitoring on smartphones,” ACM Trans.
on Computer Systems, vol. 32, no. 2, 2014.

J. Santos and T. Rezk, “An information flow monitor-inlining compiler
for securing a core of JavaScript,” in ICT Systems Security and Privacy
Protection, 2014.

W. D. Groef, D. Devriese, N. Nikiforakis, and F. Piessens, ‘“FlowFox:
a web browser with flexible and precise information flow control,” in
ACM CCS, 2012.

J. Sexton, “Information flow control for Android applications with
embedded webpages,” 2016, master’s Thesis, see http://www.cs.stevens.
edu/~naumann/pub/SextonMSthesis.pdf.

T. H. Austin and C. Flanagan, “Efficient purely-dynamic information
flow analysis,” in ACM PLAS, 2009, pp. 113-124.

A. Chudnov, G. Kuan, and D. A. Naumann, “Information flow monitor-
ing as abstract interpretation for relational logic,” in IEEE CSF, 2014.
A. Johnson, L. Waye, S. Moore, and S. Chong, “Exploring and enforcing
security guarantees via program dependence graphs,” in PLDI, 2015.
C. Hammer and G. Snelting, “Flow-sensitive, context-sensitive, and
object-sensitive information flow control based on program dependence
graphs,” Int. J. Inf. Sec., vol. 8, no. 6, 2009.

M. Mohr, J. Graf, and M. Hecker, “Jodroid: Adding Android support
to a static information flow control tool,” in Gemeinsamer Tagungsband
der Workshops der Tagung Software Engineering, vol. 1337, 2015.

N. Broberg, B. van Delft, and D. Sands, ‘“Paragon for practical program-
ming with information-flow control,” in APLAS, 2013.

M. Pistoia, “Program analysis for mobile application integrity and
privacy enforcement (tutorial),” in ACM CCS, 2015, pp. 1698-1699.
C. Hritcu, M. Greenberg, B. Karel, B. C. Pierce, and G. Morrisett, “All
your IFCException are belong to us,” in IEEE S&P, 2013.

A. Bichhawat, “Exception handling for dynamic information flow con-
trol,” in ICSE Companion, 2014.

P. Buiras, D. Vytiniotis, and A. Russo, “HLIO: mixing static and
dynamic typing for information-flow control in Haskell,” in /CFP, 2015.
M. Balliu, B. Liebe, D. Schoepe, and A. Sabelfeld, “JSLINQ: building
secure applications across tiers,” in ACM CODASPY, 2016.

J. Yang, T. Hance, T. H. Austin, A. Solar-Lezama, C. Flanagan, and
S. Chong, “Precise, dynamic information flow for database-backed
applications,” in ACM PLDI, 2016.

X. Jin, X. Hu, K. Ying, W. Du, H. Yin, and G. N. Peri, “Code injection
attacks on HTMLS5-based mobile apps: Characterization, detection and
mitigation,” in ACM CCS, 2014.

A. Foundation, “Cordova,” https://cordova.apache.org/.

S. Guarnieri, M. Pistoia, O. Tripp, J. Dolby, S. Teilhet, and R. Berg,
“Saving the world wide web from vulnerable JavaScript,” in ISSTA,
2011.

A. D. Brucker and M. Herzberg, “On the static analysis of hybrid mobile
apps,” in ESSoS, 2016.

