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Background Repackaged Malware Machine Learning

üMotivation:

üSolution:

üExperiment:

Repackaged	malware	skews	machine	learning	
results

Partition	+	Machine	learning	classification

30-fold	improvement	in	False	Negative	than	
non-partition	ML-approach!



Repackaged	Malware

Background Repackaged Malware Machine Learning

Android	Malware	writers	are	repackaging	legitimate	
(popular)	apps	with	malicious	payload[1].

[1]	http://www.zdnet.com/article/android-malwares-dirty-secret-repackaging-of-legit-apps/

Original	Apps

Injecting	
Malicious	
payload
&
Re-assembling

Disassembling	
Front Back

Stealing	SMS
Info.

Game	activity
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FakeAngryBird.apk



Conventional	Machine	Learning	for	Malware	
Classification

Background Repackaged Malware Machine Learning

A	huge	Dataset Extract	Feature	vectors

Train	and	Classification
Benign	&
Malicious

DroidAPIMiner :	Sensitive	APIs	
Drebin :	APIs,	constant	strings,	URLs
Peng et	al.:			Permission
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Background Repackaged Malware Machine Learning

No	– What	the	specific	challenges	and	solutions?
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Benign	
behaviors

Malicious	
behaviors

Motivation Code	Heterogeneity Challenges

Existing machine learning techniques extracts features 
from the entire app, repackaged malware skews 
classification results (i.e., introduce false negatives) 

Heterogeneous	
Code:
Code	with	different	
Security		behaviors	
in	different	code	portions

Research Question: How to recognize 
heterogeneity in code?
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FakeAngryBird.apk



Motivation Code	Heterogeneity Challenges

• How to partition the code?
• How to extract efficient features?
• How to calculate the malware score?

1 4 5 2 0 6 4 2

0 1 1 0 0 1 2 0

1 3 4 2 0 5 2 2

{0,1}

Malware
Score	r	

Ours:

Non-partition

Tasks:
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Motivation Code	Heterogeneity Challenges
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First	Attempt:		partition	based	on	direct	method	
call	relations

Class	A
Class	B

Class	C

OnCreate

OnPasue

b1

OnCreate

OnStart

c1 c2c3

Directed	callDirect	call



Motivation Code	Heterogeneity Challenges
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Class	A
Class	B

Class	C

OnCreate

OnPasue

b1

OnCreate

OnStart

c1 c2c3

Directed	call

implicit	life-cycle	call

Data	field	used

ICC	call	

Missed	implicit	
dependence	
relations!

Direct	call

First	Attempt:		not	wok	well



2-level	graph

Solution Feature ExtractionGraph Generation Partition&Mapping

Class-level	Dependence	Graph	(CDG)	to	capture	
event	(activity)	relations.		

A	Class
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Method-level	Call	Graph	(MCG)	for	subsequent	
feature	extraction.	



Class-level	Dependence	Graph	(CDG)

ü Class-level	call	dependence.
ü Class-level	data	dependence
ü Class-level	ICC	dependence.

Class	A

Class	B

Class	C

Class	D

Class	E

Class	F

Inferring	from	static	analysis	

invoke

iget

invoke

startActivity
(explicit	ICC)

Solution Feature ExtractionGraph Generation Partition&Mapping

call

data
iget

ICC
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Can	feature	extraction	be	done	on	class-level	
call	graph?

No.	Why?
Class-level	call	graph	is	too	coarse-grained,	lacking	
useful	method	information.	Need	method-level	
details
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So	far,	we	got	code	partitioned	at	class-level	
dependence	graph



Solution Partition&Mapping Feature ExtractionGraph Generation

Mapping	Through	Projection	(to	prepare	for	feature	extraction)

Class	D

Class	F

Dependence
Region	1

a b c

f1 f2 f2 f3 f2 f4

f1 3*f2 f3 f4 …

Aggregation	features	
in	each	region
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Solution Feature ExtractionGraph Generation

Feature	Extraction	for	Regions

ü Type	I:	User	Interaction	Features
*user-related	functions	and	the	graph-related	impact	features	

ü Type	II:	Sensitive	API	Features.
*sensitive	Java	and	Android	APIs

ü Type	III:	Permission	Request	Features.
*permissions	used	in	each	region

1.Features	are	used	to	profile	the	region’s	behaviors.
2.Combined	with	traditional	features,	user	interaction	and	
graph	properties

Partition&Mapping
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Solution Partition&Mapping Feature ExtractionGraph Generation

Classification	of	Apps

• Binary	Classification	for	each	dependence	region.	
• Computing	the	malware	score	for	an	app	based	on	

results	from	all	regions.

𝑀𝑎𝑙𝑤𝑎𝑟𝑒	𝑠𝑐𝑜𝑟𝑒	𝑟+
	 Malicious	regions

Total	regions	in	the	app

Continuous	value in	[0,1]
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• Graph	Accuracy.		-- More	accurate	program	analysis
• Dynamic	Code			-- Native	Libraries
• Integrated	Malware	– Hard	to	partition

Limitations	:

Solution Partition&Mapping Feature ExtractionGraph Generation

• (Partition)	Partition	the	app	into	different	Regions	–>	
Class-level	Dependence	Graph	(CDG)

• (Feature)	 Independently	classify	each	Region	–>		Method-
Level	Call	Graph(MCG)

• (Classification)	Mapping	the	features	through	projection,	
calculating	Malware	Score

Solution	summaries:



Experiment Partition&Mapping Feature ExtractionGraph Generation

Classification	of	non-repackaged	Apps

• Each	of	apps	contains	just	a	single	region	
(dependence	region).	

• The	region	is	labeled	as	benign	or	malicious	from	
dataset

• Used	to	evaluate	the	features	and	get	trained	
classifiers

Single-region	 apps	
dataset	

Train	classifiers Classify	multiple-region	 apps
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Experiment Ads Library

Classification	of	non-repackaged	Apps
Random	
Forest	
performs	
Best

Use	Random	Forest	as	
the	standard	classifier	to	test	
repackaged	malware

Non-repackaged app Repackaged app
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All	three	types	of	
features	are	
effective	



Experiment Partition&Mapping Feature ExtractionGraph Generation

Classification	of	Repackaged	Malware

Use	the	Same trained	Random	Forest	to	test

Test	three	repackaged	
malware	families:
1 Geinimi
2 Kungfu
3				AnserverBot

Comparison:
1	Entire-app	classification	(Basic)
2	Our	partition	classification

our	FNR	gets	30-fold	improvement	than	the	non-partition!

Experiment Ads LibraryNon-repackaged app Repackaged app
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Case	Study	of	Heterogeneous	Properties
• Malicious	

Region		with	
sensitive	
permissions&		
APIs

• Benign	Region	
with	user-
interaction	
functions

Experiment Ads LibraryNon-repackaged app Repackaged app
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Need	to
look	into	
the	code	
structure!



Region	analysis	in	popular	apps

Table.	Alerts	made	by	Group	2	Ads	library	
(Group	1:admob	|	Group	2:adlantis)

• Analyzing	1,617	free	popular	apps	from	Google	Play.
• 158/1,617=		9.7%	Apps	contain	multiple	regions
• Ad	Libraries	introduce	multiple	regions	in	Apps.
• Some	aggressive	ads	libraries	introduce	alerts	in	the	
detection.		

Experiment Ads LibraryNon-repackaged app Repackaged app
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Experiment Partition&Mapping Feature ExtractionGraph Generation

False	Negatives:

False	Positives:

1) Integrated	benign	and	malicious	behaviors.
2)	Not	enough	malicious	behaviors	in	malicious	
components

Some	aggressive	packages	and	libraries,	e.g.,	
Adlantis,	results	in	a	false	alarm	in	our	detection.	

Experiment Ads LibraryNon-repackaged app Repackaged app
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Discussion Limitations Future WorkUsage
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Conclusions:
• Our	approach	achieves	30-fold	improvement	than	the	non-

partition-based	approach.

• Our	approach	is	able	to	identify	malicious	code	in	repackaged	
malware.	

• Partition	can	be	used	to	label	malicious	code	or	Isolate	inserted	
code	(Ads	packages	or	dead	code)

Future	work:

More	Effort	on	Partition/Detection	for	Code	Provenance!
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