
Analysis	of	Code	Heterogeneity	for	
High-precision	Classification	
of	Repackaged	Malware
Ke Tian,	Daphne	Yao,	Barbara	Ryder

MOBILE 
SECURITY 
TECHNOLOGIES 
2016

Department	of	Computer	Science	
Virginia	Tech

Gang	Tan
Department	of	Computer	Science	
and	Engineering	
Penn	State	University

1



2

Background Repackaged Malware Machine Learning

üMotivation:

üSolution:

üExperiment:

Repackaged	malware	skews	machine	learning	
results

Partition	+	Machine	learning	classification

30-fold	improvement	in	False	Negative	than	
non-partition	ML-approach!



Repackaged	Malware

Background Repackaged Malware Machine Learning

Android	Malware	writers	are	repackaging	legitimate	
(popular)	apps	with	malicious	payload[1].

[1]	http://www.zdnet.com/article/android-malwares-dirty-secret-repackaging-of-legit-apps/

Original	Apps

Injecting	
Malicious	
payload
&
Re-assembling

Disassembling	
Front Back

Stealing	SMS
Info.

Game	activity

3

FakeAngryBird.apk



Conventional	Machine	Learning	for	Malware	
Classification

Background Repackaged Malware Machine Learning

A	huge	Dataset Extract	Feature	vectors

Train	and	Classification
Benign	&
Malicious

DroidAPIMiner :	Sensitive	APIs	
Drebin :	APIs,	constant	strings,	URLs
Peng et	al.:			Permission

4



Background Repackaged Malware Machine Learning

No	– What	the	specific	challenges	and	solutions?
5



Benign	
behaviors

Malicious	
behaviors

Motivation Code	Heterogeneity Challenges

Existing machine learning techniques extracts features 
from the entire app, repackaged malware skews 
classification results (i.e., introduce false negatives) 

Heterogeneous	
Code:
Code	with	different	
Security		behaviors	
in	different	code	portions

Research Question: How to recognize 
heterogeneity in code?

6

FakeAngryBird.apk



Motivation Code	Heterogeneity Challenges

• How to partition the code?
• How to extract efficient features?
• How to calculate the malware score?

1 4 5 2 0 6 4 2

0 1 1 0 0 1 2 0

1 3 4 2 0 5 2 2

{0,1}

Malware
Score	r	

Ours:

Non-partition

Tasks:

7



Motivation Code	Heterogeneity Challenges

8

First	Attempt:		partition	based	on	direct	method	
call	relations

Class	A
Class	B

Class	C

OnCreate

OnPasue

b1

OnCreate

OnStart

c1 c2c3

Directed	callDirect	call



Motivation Code	Heterogeneity Challenges

9

Class	A
Class	B

Class	C

OnCreate

OnPasue

b1

OnCreate

OnStart

c1 c2c3

Directed	call

implicit	life-cycle	call

Data	field	used

ICC	call	

Missed	implicit	
dependence	
relations!

Direct	call

First	Attempt:		not	wok	well



2-level	graph

Solution Feature ExtractionGraph Generation Partition&Mapping

Class-level	Dependence	Graph	(CDG)	to	capture	
event	(activity)	relations.		

A	Class

10

Method-level	Call	Graph	(MCG)	for	subsequent	
feature	extraction.	



Class-level	Dependence	Graph	(CDG)

ü Class-level	call	dependence.
ü Class-level	data	dependence
ü Class-level	ICC	dependence.

Class	A

Class	B

Class	C

Class	D

Class	E

Class	F

Inferring	from	static	analysis	

invoke

iget

invoke

startActivity
(explicit	ICC)

Solution Feature ExtractionGraph Generation Partition&Mapping

call

data
iget

ICC
11



Can	feature	extraction	be	done	on	class-level	
call	graph?

No.	Why?
Class-level	call	graph	is	too	coarse-grained,	lacking	
useful	method	information.	Need	method-level	
details

12

So	far,	we	got	code	partitioned	at	class-level	
dependence	graph



Solution Partition&Mapping Feature ExtractionGraph Generation

Mapping	Through	Projection	(to	prepare	for	feature	extraction)

Class	D

Class	F

Dependence
Region	1

a b c

f1 f2 f2 f3 f2 f4

f1 3*f2 f3 f4 …

Aggregation	features	
in	each	region

13



Solution Feature ExtractionGraph Generation

Feature	Extraction	for	Regions

ü Type	I:	User	Interaction	Features
*user-related	functions	and	the	graph-related	impact	features	

ü Type	II:	Sensitive	API	Features.
*sensitive	Java	and	Android	APIs

ü Type	III:	Permission	Request	Features.
*permissions	used	in	each	region

1.Features	are	used	to	profile	the	region’s	behaviors.
2.Combined	with	traditional	features,	user	interaction	and	
graph	properties

Partition&Mapping

14



Solution Partition&Mapping Feature ExtractionGraph Generation

Classification	of	Apps

• Binary	Classification	for	each	dependence	region.	
• Computing	the	malware	score	for	an	app	based	on	

results	from	all	regions.

𝑀𝑎𝑙𝑤𝑎𝑟𝑒	𝑠𝑐𝑜𝑟𝑒	𝑟+
	 Malicious	regions

Total	regions	in	the	app

Continuous	value in	[0,1]
15



16

• Graph	Accuracy.		-- More	accurate	program	analysis
• Dynamic	Code			-- Native	Libraries
• Integrated	Malware	– Hard	to	partition

Limitations	:

Solution Partition&Mapping Feature ExtractionGraph Generation

• (Partition)	Partition	the	app	into	different	Regions	–>	
Class-level	Dependence	Graph	(CDG)

• (Feature)	 Independently	classify	each	Region	–>		Method-
Level	Call	Graph(MCG)

• (Classification)	Mapping	the	features	through	projection,	
calculating	Malware	Score

Solution	summaries:



Experiment Partition&Mapping Feature ExtractionGraph Generation

Classification	of	non-repackaged	Apps

• Each	of	apps	contains	just	a	single	region	
(dependence	region).	

• The	region	is	labeled	as	benign	or	malicious	from	
dataset

• Used	to	evaluate	the	features	and	get	trained	
classifiers

Single-region	 apps	
dataset	

Train	classifiers Classify	multiple-region	 apps
17



Experiment Ads Library

Classification	of	non-repackaged	Apps
Random	
Forest	
performs	
Best

Use	Random	Forest	as	
the	standard	classifier	to	test	
repackaged	malware

Non-repackaged app Repackaged app

18

All	three	types	of	
features	are	
effective	



Experiment Partition&Mapping Feature ExtractionGraph Generation

Classification	of	Repackaged	Malware

Use	the	Same trained	Random	Forest	to	test

Test	three	repackaged	
malware	families:
1 Geinimi
2 Kungfu
3				AnserverBot

Comparison:
1	Entire-app	classification	(Basic)
2	Our	partition	classification

our	FNR	gets	30-fold	improvement	than	the	non-partition!

Experiment Ads LibraryNon-repackaged app Repackaged app

19



Case	Study	of	Heterogeneous	Properties
• Malicious	

Region		with	
sensitive	
permissions&		
APIs

• Benign	Region	
with	user-
interaction	
functions

Experiment Ads LibraryNon-repackaged app Repackaged app

20

Need	to
look	into	
the	code	
structure!



Region	analysis	in	popular	apps

Table.	Alerts	made	by	Group	2	Ads	library	
(Group	1:admob	|	Group	2:adlantis)

• Analyzing	1,617	free	popular	apps	from	Google	Play.
• 158/1,617=		9.7%	Apps	contain	multiple	regions
• Ad	Libraries	introduce	multiple	regions	in	Apps.
• Some	aggressive	ads	libraries	introduce	alerts	in	the	
detection.		

Experiment Ads LibraryNon-repackaged app Repackaged app

21



Experiment Partition&Mapping Feature ExtractionGraph Generation

False	Negatives:

False	Positives:

1) Integrated	benign	and	malicious	behaviors.
2)	Not	enough	malicious	behaviors	in	malicious	
components

Some	aggressive	packages	and	libraries,	e.g.,	
Adlantis,	results	in	a	false	alarm	in	our	detection.	

Experiment Ads LibraryNon-repackaged app Repackaged app

22



Discussion Limitations Future WorkUsage

23

Conclusions:
• Our	approach	achieves	30-fold	improvement	than	the	non-

partition-based	approach.

• Our	approach	is	able	to	identify	malicious	code	in	repackaged	
malware.	

• Partition	can	be	used	to	label	malicious	code	or	Isolate	inserted	
code	(Ads	packages	or	dead	code)

Future	work:

More	Effort	on	Partition/Detection	for	Code	Provenance!



24


