MOBILE Virginia

. SECURITY
. TECHNOLOGIES |1} Tech
2016 F

Analysis of Code Heterogeneity for
High-precision Classification
of Repackaged Malware

Ke Tian,
Department of Computer Science Department of Computer Science
Virginia Tech and Engineering

Penn State University

Background | Repackaged Malware Machine Learning

v’ Motivation:

Repackaged malware skews machine learning
results

v'Solution:
Partition + Machine learning classification

v Experiment:

30-fold improvement in False Negative than
non-partition ML-approach!

Background | Repackaged Malware Machine Learning

Repackaged Malware

Android Malware writers are repackaging legitimate
(popular) apps with malicious payload[1].

Injecting
" Malicious
Original Apps payload
&
Re-assembling

Disassembling

Game activity Stealing SMS
Info.

FakeAngryBird.apk

3
[1] http://www.zdnet.com/article/android-malwares-dirty-secret-repackaging-of-legit-apps/

Background | Repackaged Malware Machine Learning

Conventional Machine Learning for Malware
Classification

Cl1 C2 C3 C4 C5

XXXXX
XXXXX
XXXXX
XXXXX

XXXXX

ﬁ\@

Train and Classification

Benign &

A huge Dataset Extract Feature vectors Malicious

\

DroidAPIMiner: Sensitive APlIs
Drebin : APIs, constant strings, URLs
Peng etal.: Permission

4

Background Repackaged Malware Machine Learning

Is machine learning
taking over the worla?

No — What the specific challenges and solutions?

Motivation Code Heterogeneity Challenges

Heterogeneous
Code:

Code with different
Security behaviors
in different code portions

Malicious
behavior

behaviors

FakeAngryBird.apk

Existing machine learning techniques extracts features
from the entire app, repackaged malware skews
classification results (i.e., introduce false negatives)

Research Question: How to recognize
heterogeneity in code?

Motivation Code Heterogeneity Challenges

‘:ﬁ — pOoEEEnoa — o1

“\popooDED
 Bnonann +

Non-partition

= ‘/«

(l',l
AUU

Malware
Scorer

Ours:

o

Tasks: « How to partition the code?
« How to extract efficient features?
« How to calculate the malware score?

Motivation Code Heterogeneity Challenges

First Attempt: partition based on direct method
call relations

Motivation Code Heterogeneity Challenges

First Attempt: not wok well

ICC call

Class A

‘.
\.
N

./‘/ .
/;/_—7{ OnCreate] .

. ‘
. -1///1 implicit life-cycle call
v

[OnStart } /

-

./.

P
I
-

Missed implicit
/ dependence
- relations!

9

Solution Graph Generation Partition&Mapping Feature Extraction

P

*
& vVl a 254
ggggggg S
-
s L-icvael &slapyr 0 K ,
DS My crazy cat
Abby learned a new trick.

7

.
L 2

Class-level Dependence Graph (CDG) to capture E==x A Class
event (activity) relations.

Method-level Call Graph (MCG) for subsequent
feature extraction.

10

Solution Graph Generation Partition&Mapping Feature Extraction

Class-level Dependence Graph (CDG)

Inferring from static analysis
Class E

v’ Class-level call dependence.
v’ Class-level data dependence
v’ Class-level ICC dependence.

invoke

call

invoke Class C

Class A

startActivity
(explicit ICC

Class B

. I

So far, we got code partitioned at class-level
dependence graph

Can feature extraction be done on class-level
call graph?

No. Why?

Class-level call graph is too coarse-grained, lacking
useful method information. Need method-level
details

Solution Graph Generation Partition&Mapping Feature Extraction

Mapping Through Projection (to prepare for feature extraction)

Dependence

CHEDEECEEE 7o

A

| |
Aggregation features
in each region ? ?
A BE R

Solution Graph Generation Partition&Mapping Feature Extraction

Feature Extraction for Regions

v’ Type |: User Interaction Features
*user-related functions and the graph-related impact features

v Type II: Sensitive AP| Features.
*sensitive Java and Android APIs

v Type Ill: Permission Request Features.
*permissions used in each region

1.Features are used to profile the region’s behaviors.
2.Combined with traditional features, user interaction and
graph properties

Solution Graph Generation Partition&Mapping Feature Extraction

Classification of Apps

* Binary Classification for each dependence region.
e Computingthe malware score for an app based on
results from all regions.

Malware score 1y,

Malicious regions

Total regions in the app

Continuous value in [0,1]

15

Solution Graph Generation Partition&Mapping Feature Extraction

Solution summaries:

* (Partition) Partition the app into different Regions —>
Class-level Dependence Graph (CDG)

* (Feature) Independently classify each Region—> Method-
Level Call Graph(MCG)

* (Classification) Mapping the features through projection,
calculating Malware Score

Limitations :

 Graph Accuracy. -- More accurate program analysis
* Dynamic Code -- Native Libraries
* Integrated Malware — Hard to partition

16

Experiment Graph Generation Partition&Mapping Feature Extraction

Classification of non-repackaged Apps

 Each of apps contains just a single region
(dependence region).

* Theregionis labeled as benign or malicious from
dataset

 Used to evaluate the features and get trained
classifiers

Train classifiers Classify multiple-region apps
Single-region apps
dataset

17

Experiment Non-repackaged app

Repackaged app

Ads Library

Classification of non-repackaged Apps

Cases FNR(%) FPR(%) ACC(%) Random

KNN 6.43+5.22 | 6.50 +2.67 | 93.54 + 3.33

DTree | 4.78 £2.90 | 3.52 £ 1.57 | 95.70 £ 2.14 |. Forest
R.Forest | 3.85+3.27 | 1.33+0.78 | 97.30+1.96 performs

SVM 7.42+4.85 | 1.46 £ 0.58 | 95.28 + 2.58 Best

B P 7 A A S R S

.......
go_os 0099 0.048..0.047 All three types of
s P seeseen 1 features are
el i R effective
Use Random Forest as

the standard classifier to test
repackaged malware

Experiment Non-repackaged app Repackaged app Ads Library
Classification of Repackaged Malware
Malware Families | Geinimi Kungfu AnserverBot Average
FN FNR(%) | EN FNR(%) | IN FNR(%) | FNR(%)
Partition-based 062) 0 1374 107 0(185) 0 0.35
Non-partition-based | 12(62) 19.36 12(374) 9.89 3(185) 1.62 10.29
Test three repackaged Comparison:

malware families:

1 Geinimi

2 Kungfu

3 AnserverBot

1 Entire-app classification (Basic)
2 Our partition classification

Use the Same trained Random Forest to test

our FNR gets 30-fold improvement than the non-partition!

19

Experiment

Non-repackaged app

Repackaged app

Ads Library

Case Study of Heterogeneous Properties

Malicious
Region with
sensitive
permissions&
APIs

Benign Region
with user-
interaction
functions

DroidKungful-881e*.apk Partiti urs) Non-partition
Feature Description DRegionl | DRegion2 N/A
READ_PHONE_STATE / 0 1 \ 1
Type 111 permission
READ_LOGS / 0 1 \ 1
permission
getDeviceld function in
Landroid/telephone/ 0 1 1
Type 11 telephoneManager
read function in 0 3 3
Ljava/io/InputStream
write function in 0 1 1
Ljava/io/FileOutput
Type # of distinct
user-interaction 5 1 5
functions
onKeyDown function
occurrence \ 3 0 / 3
Classification Benign | Malicious Benign
Correctness X (No)

Need to
look into
the code
structure!

Experiment

Non-repackaged app

Repackaged app Ads Library

Region analysis in popular apps

* Analyzing 1,617 free popular apps from Google Play.

158/1,617= 9.7% Apps contain multiple regions
Ad Libraries introduce multiple regions in Apps.

 Some aggressive ads libraries introduce alerts in the

detection.

w/o Ads

w/ Group 1 Ads

w/ Group 2 Ads

% of Alerts

2.96%

2.96%

5.18%

Table. Alerts made by Group 2 Ads library

(Group 1:admob | Group 2:adlantis)

Experiment Non-repackaged app Repackaged app Ads Library

False Negatives:

1) Integrated benign and malicious behaviors.
2) Not enough malicious behaviors in malicious
components

False Positives:

Some aggressive packages and libraries, e.g.,
Adlantis, results in a false alarm in our detection.

22

Discussion Usage Limitations Future Work

Conclusions:

* QOurapproach achieves 30-fold improvementthan the non-
partition-based approach.

* Ourapproach is able to identify malicious code in repackaged
malware.

e Partition can be used to label malicious code or Isolate inserted
code (Ads packages or dead code)

Future work:

More Effort on Partition/Detection for Code Provenance!

