
1/23

DroidScribe
Classifying Android Malware Based on Runtime Behavior

Santanu Kumar Dash, Guillermo Suarez-Tangil,
Salahuddin Khan, Kimberly Tam, Mansour Ahmadi,

Johannes Kinder, and Lorenzo Cavallaro

Royal Holloway, University of London
University of Cagliari

May 26, 2016
Mobile Security Technologies (MoST)

Research supported by the UK EPSRC grants EP/K033344/1 and EP/L022710/1

2/23

Background

Automated Analysis

Obtain rich static view of an app

Obtain rich dynamic view of an app

Type of Problems

Malware Detection

Crucial for final users

Family Identification
Crucial for analysis of threats and mitigation planning

3/23

State of the Art
On Family Identification

Smart Phones Desktop
Static Dynamic Static Dynamic

1

In the mobile realm

1 Dendroid : CFG

2 DroidLegacy : API

3 DroidMiner : CG, API

4 DroidSIFT : API-F

5 RevealDroid : PER, API, API-F, INT, PKG

In the desktop realm

SYS have been successfully used

API: Application Programming Interface, API-F: Information Flow between APIs, INT: Intents, CG: Call Graph, PER:
Requested Permissions, CFG: Control Flow Graph, PKG: Package information of API, SYS: System Calls

3/23

State of the Art
On Family Identification

Smart Phones Desktop
Static Dynamic Static Dynamic

2

In the mobile realm

1 Dendroid : CFG

2 DroidLegacy : API

3 DroidMiner : CG, API

4 DroidSIFT : API-F

5 RevealDroid : PER, API, API-F, INT, PKG

In the desktop realm

SYS have been successfully used

API: Application Programming Interface, API-F: Information Flow between APIs, INT: Intents, CG: Call Graph, PER:
Requested Permissions, CFG: Control Flow Graph, PKG: Package information of API, SYS: System Calls

3/23

State of the Art
On Family Identification

Smart Phones Desktop
Static Dynamic Static Dynamic

3

In the mobile realm

1 Dendroid : CFG

2 DroidLegacy : API

3 DroidMiner : CG, API

4 DroidSIFT : API-F

5 RevealDroid : PER, API, API-F, INT, PKG

In the desktop realm

SYS have been successfully used

API: Application Programming Interface, API-F: Information Flow between APIs, INT: Intents, CG: Call Graph, PER:
Requested Permissions, CFG: Control Flow Graph, PKG: Package information of API, SYS: System Calls

3/23

State of the Art
On Family Identification

Smart Phones Desktop
Static Dynamic Static Dynamic

4

In the mobile realm

1 Dendroid : CFG

2 DroidLegacy : API

3 DroidMiner : CG, API

4 DroidSIFT : API-F

5 RevealDroid : PER, API, API-F, INT, PKG

In the desktop realm

SYS have been successfully used

API: Application Programming Interface, API-F: Information Flow between APIs, INT: Intents, CG: Call Graph, PER:
Requested Permissions, CFG: Control Flow Graph, PKG: Package information of API, SYS: System Calls

3/23

State of the Art
On Family Identification

Smart Phones Desktop
Static Dynamic Static Dynamic

5

In the mobile realm

1 Dendroid : CFG

2 DroidLegacy : API

3 DroidMiner : CG, API

4 DroidSIFT : API-F

5 RevealDroid : PER, API, API-F, INT, PKG

In the desktop realm

SYS have been successfully used

API: Application Programming Interface, API-F: Information Flow between APIs, INT: Intents, CG: Call Graph, PER:
Requested Permissions, CFG: Control Flow Graph, PKG: Package information of API, SYS: System Calls

3/23

State of the Art
On Family Identification

Smart Phones Desktop
Static Dynamic Static Dynamic

In the mobile realm
1 Dendroid : CFG

2 DroidLegacy : API

3 DroidMiner : CG, API

4 DroidSIFT : API-F

5 RevealDroid : PER, API, API-F, INT, PKG

In the desktop realm
SYS have been successfully used

API: Application Programming Interface, API-F: Information Flow between APIs, INT: Intents, CG: Call Graph, PER:
Requested Permissions, CFG: Control Flow Graph, PKG: Package information of API, SYS: System Calls

3/23

State of the Art
On Family Identification

Smart Phones Desktop
Static Dynamic Static Dynamic

In the mobile realm
1 Dendroid : CFG

2 DroidLegacy : API

3 DroidMiner : CG, API

4 DroidSIFT : API-F

5 RevealDroid : PER, API, API-F, INT, PKG

In the desktop realm
SYS have been successfully used

API: Application Programming Interface, API-F: Information Flow between APIs, INT: Intents, CG: Call Graph, PER:
Requested Permissions, CFG: Control Flow Graph, PKG: Package information of API, SYS: System Calls

3/23

State of the Art
On Family Identification

Smart Phones Desktop
Static Dynamic Static Dynamic

In the mobile realm
1 Dendroid : CFG

2 DroidLegacy : API

3 DroidMiner : CG, API

4 DroidSIFT : API-F

5 RevealDroid : PER, API, API-F, INT, PKG

In the desktop realm
SYS have been successfully used

API: Application Programming Interface, API-F: Information Flow between APIs, INT: Intents, CG: Call Graph, PER:
Requested Permissions, CFG: Control Flow Graph, PKG: Package information of API, SYS: System Calls

3/23

State of the Art
On Family Identification

Smart Phones Desktop
Static Dynamic Static Dynamic

In the mobile realm
1 Dendroid : CFG

2 DroidLegacy : API

3 DroidMiner : CG, API

4 DroidSIFT : API-F

5 RevealDroid : PER, API, API-F, INT, PKG

In the desktop realm
SYS have been successfully used

API: Application Programming Interface, API-F: Information Flow between APIs, INT: Intents, CG: Call Graph, PER:
Requested Permissions, CFG: Control Flow Graph, PKG: Package information of API, SYS: System Calls

4/23

State of the Art
On Family Identification

Smart Phones Desktop
Static Dynamic Static Dynamic

Android System Call Profile

Android services are invoked through ioctl

ioctls are dispatched to the Binder kernel driver, which
implements Android’s main IPC and ICC

Distinguishing Binder calls is essential for the malware classif.

5/23

Our Contribution

Smart Phones Desktop
Static Dynamic Static Dynamic

Goal To evaluate the use of dynamic analysis for family
identification under challenging conditions

Challenges

Similar/sparse behaviors

Our contributions

RQ1: What is the best level abstraction?

RQ2: Can we deal with sparse behaviors?

6/23

Dynamic Analysis Component

CopperDroid1

Runs apps in a sandbox, records system calls and their
arguments, and reconstructs high-level behavior

Reconstructs contents of all transactions going through the
Binder mechanism for inter-process communication

1Tam, K., Khan, S.J., Fattori, A. and Cavallaro, L. “CopperDroid: Automatic
Reconstruction of Android Malware Behaviors.” NDSS. 2015.

7/23

Machine Learning Component

Use existing malware classified into families as training data

Use Support Vector Machines as the classification algorithm

342 9. Support Vector Machines

−1 0 1 2 3

−1
0

1
2

3

X1

X
2

FIGURE 9.3. There are two classes of observations, shown in blue and in pur-
ple. The maximal margin hyperplane is shown as a solid line. The margin is the
distance from the solid line to either of the dashed lines. The two blue points
and the purple point that lie on the dashed lines are the support vectors, and the
distance from those points to the margin is indicated by arrows. The purple and
blue grid indicates the decision rule made by a classifier based on this separating
hyperplane.

support vectors, since they are vectors in p-dimensional space (in Figure 9.3,
support
vectorp = 2) and they “support” the maximal margin hyperplane in the sense

that if these points were moved slightly then the maximal margin hyper-
plane would move as well. Interestingly, the maximal margin hyperplane
depends directly on the support vectors, but not on the other observations:
a movement to any of the other observations would not affect the separating
hyperplane, provided that the observation’s movement does not cause it to
cross the boundary set by the margin. The fact that the maximal margin
hyperplane depends directly on only a small subset of the observations is
an important property that will arise later in this chapter when we discuss
the support vector classifier and support vector machines.

9.1.4 Construction of the Maximal Margin Classifier

We now consider the task of constructing the maximal margin hyperplane
based on a set of n training observations x1, . . . , xn ∈ Rp and associated
class labels y1, . . . , yn ∈ {−1, 1}. Briefly, the maximal margin hyperplane
is the solution to the optimization problem

Linear function

9.3 Support Vector Machines 353

−4 −2 0 2 4

−4
−2

0
2

4

−4 −2 0 2 4

−4
−2

0
2

4

X1X1

X
2

X
2

FIGURE 9.9. Left: An SVM with a polynomial kernel of degree 3 is applied to
the non-linear data from Figure 9.8, resulting in a far more appropriate decision
rule. Right: An SVM with a radial kernel is applied. In this example, either kernel
is capable of capturing the decision boundary.

In (9.24), γ is a positive constant. The right-hand panel of Figure 9.9 shows
an example of an SVM with a radial kernel on this non-linear data; it also
does a good job in separating the two classes.

How does the radial kernel (9.24) actually work? If a given test obser-
vation x∗ = (x∗

1 . . . x∗
p)

T is far from a training observation xi in terms of
Euclidean distance, then

∑p
j=1(x

∗
j −xij)

2 will be large, and so K(x∗, xi) =

exp(−γ
∑p

j=1(x
∗
j − xij)

2) will be very tiny. This means that in (9.23), xi

will play virtually no role in f(x∗). Recall that the predicted class label
for the test observation x∗ is based on the sign of f(x∗). In other words,
training observations that are far from x∗ will play essentially no role in
the predicted class label for x∗. This means that the radial kernel has very
local behavior, in the sense that only nearby training observations have an
effect on the class label of a test observation.

What is the advantage of using a kernel rather than simply enlarging
the feature space using functions of the original features, as in (9.16)? One
advantage is computational, and it amounts to the fact that using kernels,
one need only compute K(xi, x

′
i) for all

(
n
2

)
distinct pairs i, i′. This can be

done without explicitly working in the enlarged feature space. This is im-
portant because in many applications of SVMs, the enlarged feature space
is so large that computations are intractable. For some kernels, such as the
radial kernel (9.24), the feature space is implicit and infinite-dimensional,
so we could never do the computations there anyway!

Radial-basis function

Source: An Introduction to Statistical Learning–G. James et al.

8/23

Overview of the Classification Framework

Family 1 Family 2 Family N

9/23

System-calls vs. abstract behaviors

RQ1

What is the best level abstraction?

Experiments on the Drebin dataset (5,246 malware samples).
Reconstructing Binder calls adds 141 meaningful features.
High level behaviors added 3 explanatory features.

sys rec_b rec_b+

30

40

50

60

70

80

90

 A
c
c
u

ra
c
y
 (

%
)

(a) Accuracy

sys rec_b rec_b+

10

15

20

25

30

35

R
u

n
ti

m
e

 (
s
e

c
)

(b) Runtime

10/23

Set-Based Prediction

Dynamic analysis is limited by code coverage

Classifier has only partial information about its behaviors

Identify when malware cannot be classified into a family

Based on a measure of the statistical confidence

Helpful human analyst by identifying the top matching families

11/23

Classification from Observed Features

When more than one choice of similar likelihood exists, ...

... traditional classification algorithms are prone to error

12/23

Classification with Statistically Confidence

Conformal Predictor (CP)

Is statistical learning algorithm tailored at classification

Provides statistical evidences on the results

Credibility

Supports how good a sample fits into a class

Confidence

Indicates if there are other good choices

Robust Against Outliers

Aware of values from other members of the same class

13/23

CP: Overview and Example

P-value is the probability of truth for the hypothesis that a
sample belongs to a class

14/23

In an ideal world

Given a new object s, conformal predictor picks the class with the
highest p-value and return a singular prediction.

15/23

Obtaining Prediction Sets

Given a new object s, we can set a significance-level e for p-values
and obtain a prediction set Γ e includes labels whose p-value is
greater than e for the sample.

P
-v

a
lu

e

e

A B C D

Prediction Set = {A, C, D}

0.50

confidence

0.20

0.60

0.40

0.30

0.00

1.00

significance-level (e) = 0.30

confidence = (1 - e) = 0.70

16/23

When to use Conformal Prediction?
In an Operational Setting

CP is an expensive algorithm

For each sample, we need to derive a p-value for each class
Computation complexity of O(nc) where n is number of
samples and c is the number of classes

Conformation Evaluation

Provide statistical evaluation of the quality of a ML algorithm

Quality threshold to understand when should be trusting SVM
Statistical evidences of the choices of SVM
Selectively invoke CP to alleviate runtime performance

17/23

Step 1. Computing Confidence in Training Decisions

During training, compute p-values for each sample for each
class

Compute the confidence in the decision for each sample
P
-v

a
lu

e

Confidence in

SVM's decision

Credibility of

SVM's decision

A B C D

S
V

M
's

 d
e
c
is

io
n

B
e
s
t
 m

a
t
c
h

0

1

18/23

Step 2. Using Class-level Confidence Scores

For each class, calculate the mean confidence for all decisions
mapping to the class

Use the median of the class-level confidence across all classes
as a reliability threshold

19/23

Step 3. Invoking the Conformal Predictor

Threshold

The threshold for picking prediction sets is fully tunable

20/23

Confidence of correct SVM decisions
Invoke CP with a set of desired p-value cutoff size

S
M

S
re

g

K
m

in

Im
lo

g

Fa
ke

In
st

a
lle

r

G
lo

d
re

a
m

Y
zh

c

Jif
a
ke

D
ro

id
K

u
n
g
Fu

S
e
n
d
P
a
y

B
a
se

B
ri

d
g
e

B
o
x
e
r

A
d
rd

Li
n
u
x
Lo

to
o
r

Ic
o
n
o
sy

s

G
in

M
a
st

e
r

M
o
b
ile

T
x

Fa
ke

D
o
c

O
p
fa

ke

P
la

n
kt

o
n

G
a
p
p
u
si

n

G
e
in

im
i

D
ro

id
D

re
a
m

Fa
ke

R
u
n

0.0

0.2

0.4

0.6

0.8

1.0

C
o
n
fi
d
e
n
ce

21/23

Accuracy vs. Prediction Set Size

RQ2

Can we deal with sparse behaviors?

0.5 0.45 0.4 0.35 0.3 0.25 0.2 0.15 0.1 0.05 0.0
p-value thresholds (1.0-confidence)

0.82

0.84

0.86

0.88

0.90

0.92

0.94

0.96

0.98

1.00
P
re

ci
si
o
n
/R

e
ca

ll

Recall

Precision

Set size

0

5

10

15

20

25

N
u
m

b
e
r
o
f
cl

a
ss

e
s

Accuracy improves with the prediction set size

22/23

Conclusion

Resolving Binder invocations improves classification accuracy

Poor coverage leads to misclassification in dynamic analysis

Predicting sets of top matches ameliorates this problem

Statistical evaluation can be used to minimize computation

DroidScribe can be integrated into dynamic analysis
frameworks such as CopperDroid

23/23

DroidScribe
Classifying Android Malware Based on Runtime Behavior

Santanu Kumar Dash, Guillermo Suarez-Tangil,
Salahuddin Khan, Kimberly Tam, Mansour Ahmadi,

Johannes Kinder, and Lorenzo Cavallaro

Royal Holloway, University of London
University of Cagliari

May 26, 2016
Mobile Security Technologies (MoST)

Research supported by the UK EPSRC grants EP/K033344/1 and EP/L022710/1

23/23

Computing P-values

Nonconformity Measure (NCM) is a geometric measure of
how well a sample is far from a class.

For SVM, the NCM N z
D of a sample z w.r.t. class D is sum

distances from all hyperplanes bounding the class D.

N z
D =

∑

i

d(z ,Hi)

P-value is a statistical measure of how well a sample fits in a
class.

P-value Pz
D represents the proportion of samples in D that

more different than z w.r.t. D.

Pz
D =

|{j = 1, ..., n : N j
D ≥ N z

D}|
n

23/23

Probability of Membership

Standard classification algorithms
calculate probability of a sample
belonging to a class

For the case of SVM, this is based on
Euclidean distance (Platt’s scaling)

Using Probabilites

Platt’s scaling is based on logistic regression

Logistic regression is sensitive to outliers which introduces
inaccuracies

Probabilities to sum up to one which introduces skewing

	Android Malware Classification
	Set-Based Prediction

