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Automated Analysis

@ Obtain rich static view of an app

@ Obtain rich dynamic view of an app

Type of Problems

@ Malware Detection
o Crucial for final users
o Family Identification
e Crucial for analysis of threats and mitigation planning




State of the Art

On Family Identification

Smart Phones Desktop
Static | Dynamic || Static | Dynamic

@

@ In the mobile realm
° @ Dendroid : CFG

API: Application Programming Interface, API-F: Information Flow between APIs, INT: Intents, CG: Call Graph, PER:
Requested Permissions, CFG: Control Flow Graph, PKG: Package information of API, SYS: System Calls
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@ In the mobile realm

° @ Dendroid : CFG

o (2) DroidLegacy : API

o (3) DroidMiner : CG, API

o (4) DroidSIFT : API-F

° @ RevealDroid : PER, API, API-F, INT, PKG
@ In the desktop realm

e SYS have been successfully used

API: Application Programming Interface, API-F: Information Flow between APIs, INT: Intents, CG: Call Graph, PER:
Requested Permissions, CFG: Control Flow Graph, PKG: Package information of API, SYS: System Calls
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Android System Call Profile

@ Android services are invoked through ioctl

@ ioctls are dispatched to the Binder kernel driver, which
implements Android's main IPC and ICC

@ Distinguishing Binder calls is essential for the malware classif.




Our Contribution
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Goal To evaluate the use of dynamic analysis for family
identification under challenging conditions

Challenges

@ Similar/sparse behaviors

Our contributions

@ RQ1: What is the best level abstraction?

@ RQ2: Can we deal with sparse behaviors?




Dynamic Analysis Component

CopperDroid?!

@ Runs apps in a sandbox, records system calls and their
arguments, and reconstructs high-level behavior

@ Reconstructs contents of all transactions going through the
Binder mechanism for inter-process communication

Tam, K., Khan, S.J., Fattori, A. and Cavallaro, L. “CopperDroid: Automatic
Reconstruction of Android Malware Behaviors.” NDSS. 2015.



Machine Learning Component

@ Use existing malware classified into families as training data

@ Use Support Vector Machines as the classification algorithm

Linear function Radial-basis function

Source: An Introduction to Statistical Learning—G. James et al.



Overview of the Classification Framework

TRAINING DATA

Family 1 Family 2 ------ Family N TEST DATA
Dynamic Analysis
(CopperDroid)
Android IPC (Binder) High-level behavior
System calls OS objects
Test data Training
features features
Classification Trained -
result Classifier Training




System-calls vs. abstract behaviors

What is the best level abstraction?

e Experiments on the Drebin dataset (5,246 malware samples).
@ Reconstructing Binder calls adds 141 meaningful features.
@ High level behaviors added 3 explanatory features.

Accuracy (%)
Runtime (sec)

sys rec_b rec_b+

(a) Accuracy (b) Runtime



Set-Based Prediction

Dynamic analysis is limited by code coverage

Classifier has only partial information about its behaviors

Identify when malware cannot be classified into a family
e Based on a measure of the statistical confidence

Helpful human analyst by identifying the top matching families



Classification from Observed Features

@ When more than one choice of similar likelihood exists, ...

@ ... traditional classification algorithms are prone to error
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Classification with Statistically Confidence

Conformal Predictor (CP)
@ Is statistical learning algorithm tailored at classification
@ Provides statistical evidences on the results

Credibility

Supports how good a sample fits into a class
Confidence

Indicates if there are other good choices

Robust Against Outliers

Aware of values from other members of the same class




CP: Overview and Example

@ P-value is the probability of truth for the hypothesis that a
sample belongs to a class

nem_S = |s1| + |s2]| + |s3]
nem_P = |p1| + |p2| + |p3]
nem Q = |q1]| + [q2]| + [q3]

ncm_S > ncm_P > ncm_Q

pval_S = 0/3
pval P = 1/3
pval_Q = 2/3




In an ideal world

Given a new object s, conformal predictor picks the class with the
highest p-value and return a singular prediction.

significance-level (e) = 0.05
confidence = (1- ) = 0.95

1.00 A
0.80 ;

confidence=0.95

P-value

¥ 0.03 0.02

Prediction = A



Obtaining Prediction Sets

Given a new object s, we can set a significance-level e for p-values
and obtain a prediction set I'¢ includes labels whose p-value is

greater than e for the sample.

significance-level (e) = 0.30

confidence = (1 -e) = 0.70
1.00 A
confid‘ence 0.60

g 0.50
©
7 ' 0.40
o

R T RS N N MU N

e 0.20
0.00 y
A B C D

Prediction Set = {A, C, D}



When to use Conformal Prediction?
In an Operational Setting

@ CP is an expensive algorithm
o For each sample, we need to derive a p-value for each class
o Computation complexity of O(nc) where n is number of
samples and c is the number of classes

Conformation Evaluation

@ Provide statistical evaluation of the quality of a ML algorithm
o Quality threshold to understand when should be trusting SVM
e Statistical evidences of the choices of SVM
e Selectively invoke CP to alleviate runtime performance




Step 1. Computing Confidence in Training Decisions

@ During training, compute p-values for each sample for each
class

@ Compute the confidence in the decision for each sample

A

Confidence in
SVM's decision

P-value

A

Credibility of
SVM's decision

SVM's decision
Best match
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Step 2. Using Class-level Confidence Scores

@ For each class, calculate the mean confidence for all decisions
mapping to the class

@ Use the median of the class-level confidence across all classes
as a reliability threshold

TRAINING DATA

Reliability
Citof

SVM classification + Conformal Evaluation

Average Confidence
in correct SVM's decisions

C X J LX)
.0. .0
o000 .0 .

Classes



Step 3. Invoking the Conformal Predictor

New Sample
1.0
Threshold  Prediction Set
SVM
1.0
R TV — @
: TN Y

1 v 0000

o o ! A B c D
Reliable Unreliable ...
SVM decision SVM decision

CONFORMAL PREDICTION

The threshold for picking prediction sets is fully tunable \
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Accuracy vs. Prediction Set Size

Can we deal with sparse behaviors?
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Accuracy improves with the prediction set size



Conclusion

Resolving Binder invocations improves classification accuracy

Poor coverage leads to misclassification in dynamic analysis

°
°

@ Predicting sets of top matches ameliorates this problem

@ Statistical evaluation can be used to minimize computation
°

DroidScribe can be integrated into dynamic analysis
frameworks such as CopperDroid
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Computing P-values

e Nonconformity Measure (NCM) is a geometric measure of
how well a sample is far from a class.

o For SVM, the NCM N,§ of a sample z w.r.t. class D is sum
distances from all hyperplanes bounding the class D.

Z = Z d(z,H;)

@ P-value is a statistical measure of how well a sample fits in a
class.
o P-value Pj represents the proportion of samples in D that
more different than z w.r.t. D. .
H— . J
Pz = {j=1,....,n: N, >N}

n




Probability of Membership

@ Standard classification algorithms
calculate probability of a sample
belonging to a class

@ For the case of SVM, this is based on
Euclidean distance (Platt's scaling )

Using Probabilites

@ Platt’s scaling is based on logistic regression

o Logistic regression is sensitive to outliers which introduces
inaccuracies

@ Probabilities to sum up to one which introduces skewing
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