
Learning from Ourselves:
Where are we and where can we go in
mobile systems security?

Patrick McDaniel, Penn State University

1!

A cautionary tale …

Where are we now ...

•  September 23, 2008 – May 26th, 2016
•  7.67 years
•  242,179,200 seconds
•  4,036,320 minutes
•  67,272 hours

•  2,803 days
•  400 weeks and 3 days

2008 View : Security and smartphones

•  Smartphones: long awaited realization of mobile
computing

•  Usage model is very different
•  Multi-user single machine to single-user multiple

machines
•  Always on, always computing social instrument
•  Enterprise: separate action from geography

•  Changing Risk
•  Necessarily contains secrets (financial, personal)
•  Collects sensitive data as a matter of operation
•  Drifts between “unknown” environments
•  Highly malleable development practices, largely

unknown developers

4!

Where are we now ...

•  We are closing in on a decade of research and use
of smartphones.

•  What questions have we asked and what have
we learned?

•  What questions should we be asking?

Promise: the next four dissertations will be ….!

Three questions
(2009-2011) …

6!

What do applications ask for?
•  Kirin certifies applications by vetting policies

at install-time (relies on runtime enforcement)
•  Obvious insight: app config and security policy

is an upper bound on runtime behavior.
•  Kirin is a modified application installer

•  Apps with unsafe policies are rejected

7!

Where’s the system policy?!

William Enck, Machigar Ongtang, and Patrick McDaniel. On Lightweight Mobile Phone App Certification. Proceedings of the 16th ACM
Conference on Computer and Communications Security (CCS), pages 235-245, November 2009.

2009

Studying the (early) Market
•  Kirin enforces security invariants at install-time

•  Signatures of “malicious permission sets”
approach

•  Local evaluation of requested permissions, Intent listeners

Evaluate 311* popular Market apps (Jan 2009)

•  5 had both dangerous configuration / functionality (1.6%)

•  5 dangerous configs, but plausable use of permisions (1.6%)

8!

(1) An application must not have the SET_DEBUG_APP permission!
(2) An application must not have the PHONE_STATE, RECORD_AUDIO, and INTERNET permissions!
(3) An application must not have the PROCESS_OUTGOING_CALL, RECORD_AUDIO, and INTERNET permissions!
(4) An application must not have the ACCESS_FINE_LOCATION, INTERNET, and RECEIVE_BOOT_COMPLETE permissions!
(5) An application must not have the ACCESS_COARSE_LOCATION, INTERNET, and RECEIVE_BOOT_COMPLETE permissions!
(6) An application must not have the RECEIVE_SMS and WRITE_SMS permissions!
(7) An application must not have the SEND_SMS and WRITE_SMS permissions!
(8) An application must not have the INSTALL_SHORTCUT and UNINSTALL_SHORTCUT permissions!
(9) An application must not have the SET_PREFERRED_APPLICATION permission and receive Intents for the CALL action string!

3 apps failed -- (2) An application must!
not have the PHONE_STATE, RECORD_AUDI
O, and INTERNET permissions!

restrict	
 permission	
 [ACCESS_FINE_LOCATION,	
 INTERNET]	
 	

	
 	
 	
 	
 	
 and	
 receive	
 	
 	
 	
 [BOOT_COMPLETE]	

What do the applications do?
•  TaintDroid is performs system-wide taint

 tracking in the Android platform
1. VM Layer: variable tracking throughout Dalvik VM
2. Native Layer: patches state after native method (JNI)
3. Binder IPC Layer: extends tracking between applications
4. Storage Layer: persistent tracking on files

9!

William Enck, Peter Gilbert, Byung-Gon Chun, Landon P. Cox, Jaeyeon Jung, Patrick McDaniel, and Anmol N. Sheth, TaintDroid: An Information-Flow Tracking System
for Realtime Privacy Monitoring on Smartphones. Communications of the ACM, 57(3), March, 2014.

2010

(Firmware mod)!

Findings

10!

...&s=a14a4a93f1e4c68&..&t=062A1CB1D476DE85
B717D9195A6722A9&d%5Bcoord%5D=47.6612278900
00006%2C-122.31589477&...

•  15 of the 30 applications shared physical location
with an ad server (admob.com, ad.qwapi.com,
ads.mobclix.com, data.flurry.com)

•  Not trying hard to hide (e.g., AdMob HTTP GET):

•  7 applications sent device (IMEI) and 2 apps sent
phone info (Ph. #, IMSI, ICC-ID) to a remote server
without informing the user.

The image cannot be displayed. Your computer may not have enough memory
to open the image, or the image may have been corrupted. Restart your
computer, and then open the file again. If the red x still appears, you may have
to delete the image and then insert it again.

What can the applications do?
•  Static analysis: look at the possible paths

and interaction of data
•  Very, very hard (often undecidable), but community has

learned that we can do a lot with small analyses.

•  Step 1: decompiler for
Android applications (ded)

•  Step 2: static source code
analysis for both dangerous
functionality and vulnerabilities

•  What data could be exfiltrated from
the application?

•  Are developers safely using interfaces?

11!
William Enck, Damien Octeau, Patrick McDaniel, and Swarat Chaudhuri. A Study of Android Application Security. Proceedings of the 20th USENIX Security
Symposium, August 2011. San Francisco, CA.

2011

Studying Application Security
•  Decompiled top 1,100 apps from Android market: >21 MLOC
•  Queried for security properties using program analysis,

followed by manual inspection to understand purpose
•  Used several types of analysis to design

security properties specific to Android
using the Fortify SCA framework

12!

Misuse of Phone Identifiers! Data flow analysis!
Exposure of Physical Location! Data flow analysis!
Abuse of Telephony Services! Semantic analysis!
Eavesdropping on Video! Control flow analysis!

Eavesdropping on Audio! Structural analysis
(+CG)!

Botnet Characteristics
(Sockets)! Structural analysis!

Havesting Installed
Applications! Structural analysis!

Leaking Information to Logs! Data flow analysis!
Leaking Information to IPC! Control flow analysis!
Unprotected Broadcast
Receivers! Control flow analysis!

Intent Injection Vulnerabilities! Control flow analysis!
Delegation Vulnerabilities! Control flow analysis!
Null Checks on IPC Input! Control flow analysis!
Password Management*! Data flow analysis!
Cryptography Misuse*! Structural analysis!
Injection Vulnerabilities*! Data flow analysis!

Analysis for Dangerous Behavior! Analysis for Vulnerabilities!

Phone Identifiers

•  Analysis pin-pointed 33 apps leaking Phone
IDs

13!

com.avantar.wny - com/avantar/wny/PhoneStats.java!
public String toUrlFormatedString()
{

 StringBuilder $r4;
 if (mURLFormatedParameters == null)
 {
 $r4 = new StringBuilder();
 $r4.append((new StringBuilder("&uuid=")).append(URLEncoder.encode(mUuid)).toString());
 $r4.append((new StringBuilder("&device=")).append(URLEncoder.encode(mModel)).toString());
 $r4.append((new StringBuilder("&platform=")).append(URLEncoder.encode(mOSVersion)).toString());
 $r4.append((new StringBuilder("&ver=")).append(mAppVersion).toString());
 $r4.append((new StringBuilder("&app=")).append(this.getAppName()).toString());
 $r4.append("&returnfmt=json");
 mURLFormatedParameters = $r4.toString();
 }

 return mURLFormatedParameters;
}

IMEI!

Tracking

14!

public void onCreate(Bundle r1)
{

...
IMEI = ((TelephonyManager) this.getSystemService("phone")).getDeviceId();

 retailerLookupCmd = (new
StringBuilder(String.valueOf(constants.server))).append("identifier=").append(EncodeU
RL.KREncodeURL(IMEI)).append("&command=retailerlookup&retailername=").toString();
 ...
}

http://kror.keyringapp.com/service.php!
com.froogloid.kring.google.zxing.client.android - Activity_Router.java (Main Activity)!

public void run()
{

...
r24 = (TelephonyManager) r21.getSystemService("phone");

 url = (new
StringBuilder(String.valueOf(url))).append("&vid=60001001&pid=10010&cid=C1000&uid=").appen
d(r24.getDeviceId()).append("&gid=").append(QConfiguration.mGid).append("&msg=").append(QC
onfiguration.getInstance().mPCStat.toMsgString()).toString();
 ...
}

http://client.qunar.com:80/QSearch!
com.Qunar - net/NetworkTask.java!

public static String getDeviceId(Context r0)
{

 String r1;
 r1 = "";

 label_19:
 {
 if (deviceId != null)
 {
 if (r1.equals(deviceId) == false)
 {
 break label_19;
 }
 }

 if (r0.checkCallingOrSelfPermission("android.permission.READ_PHONE_STATE") == 0)
 {
 deviceId = ((TelephonyManager) r0.getSystemService("phone")).getSubscriberId();
 }
 } //end label_19:

 ...
}

Probing for Permissions

15!

com/casee/adsdk/AdFetcher.java!

Checks before accessing!

Ad/Analytics Libraries
•  51% of the apps included an ad or

analytics library (many also had custom
 functionality)

•  A few libraries were used most frequently

•  Use of phone identifiers and location
sometimes configurable by developer

16!

367

91

32 37

15
8 10

1
1

10

100

1000

1 2 3 4 5 6 7 8

N
um

be
r

of
 li

br
ar

ie
s

Number of apps

1 app
has 8

libraries!!

Library Path! # Apps! Obtains!

com/admob/android/ads! 320! L!

com/google/ads! 206! -!

com/flurry/android! 98! -!

com/qwapi/adclient/android! 74! L, P, E!

com/google/android/apps/
analytics! 67! -!

com/adwhirl! 60! L!

com/mobclix/android/sdk! 58! L, E!

com/mellennialmedia/android! 52! -!

com/zestadz/android! 10! -!

com/admarvel/android/ads! 8! -!

com/estsoft/adlocal! 8! L!

com/adfonic/android! 5! -!

com/vdroid/ads! 5! L, E!

com/greystripe/android/sdk! 4! E!

com/medialets! 4! L!

com/wooboo/adlib_android! 4! L, P, I!

com/adserver/adview! 3! L!

com/tapjoy! 3! -!

com/inmobi/androidsdk! 2! E!

com/apegroup/ad! 1! -!

com/casee/adsdk! 1! S!

com/webtrents/mobile! 1! L, E, S, I!

Total Unique Apps! 561!
L = Location; P = Ph#; E = IMEI; S = IMSI; I = ICC-ID!

Intent Vulnerabilities
•  Similar analysis rules as independently verified

by Chin et al. [Mobisys 2011]

•  Leaking information to IPC - unprotected intent broadcasts are
common, occasionally contain sensitive info

•  Unprotected broadcast receivers - a few apps receive custom
action strings w/out protection (lots of “protected bcasts”)

•  Intent injection attacks - 16 apps had potential vulnerabilities

•  Delegating control - pending intents are tricky to analyze
(notification, alarm, and widget APIs) --- no vulns found

•  Null checks on IPC input - 3925 potential null dereferences in
591 apps (53%) --- most were in activity components

17!

Non-app centric work …

18!

So … then what?

•  The community has been working in concert since
the early days trying to sort out not just what
applications are doing, but how we deal with this
new world of security.

•  You can distill the non-app centric work into two
areas ...

Thanks to: Octeau, Enck, Porter Felt,
Liu, Roesner, … and hundreds more.!

What to do about
permissions?

20!

Permissions define security policy ...
•  Perhaps no subject has spurred more discussion and

research than permissions.
•  Understanding permissions
•  Enhancing permissions

•  Perhaps define who can do what to whom and when.

What is a permission?

•  The existential question: a permission is a
statement of a right of an application to use some
interface or resource.

•  In a broader sense, a permission is a (non-
negotiable) contract between the application and
the user about security relevant actions.

Application A can use interface/resource P.

Permission problems

•  Permissions are presented largely without the
context needed to make an informed decision:

Application A can use interface/
resource P (FOR WHAT?).

•  Dynamic permissions in Marshmallow start to
address context by providing temporal context, but
this still lacks the specificity needed.

Permission problems

•  Permissions lack the kinds of clear meaning for
people to understand what they mean or what the
implications are:

Application A can use interface/resource
 P (THAT ENCOMPASSES ..) (FOR WHAT?).

•  Permission groups start to address context by
providing needed semantics (calendar, contacts,
location). But …

Permission problems

•  The scope of permissions are sometimes too
coarse to make informed decisions:

Application A can use interface/resource
 P(.REFINEMENT) (THAT ENCOMPASSES ..) (FOR WHAT?).

•  Consider the calendar permission group. That
protects the calendar database, but not controls on
the elements of it.

A debate …

android.permission.INTERNET

The myth of the user …

•  All of these arguments are true, but rely on a
particular interpretation of “user”.

•  The problem is that there is no one single class of
user or uniform set of needs for a permission
system.

•  The current permission system has NOT failed, it
has just failed to address all possible user needs
and the same time.

… the emergent system policy

•  One of the key challenges of the
current permission system is that
it leads to an emergent security policy.

•  Each application adds something to the aggregate
information flow allowed in the system, and
therefore alters the security policy.

•  Implication: Inter-component communication (ICC)
analysis is essential to the security of the phone.

•  Challenge: adding a new application may substantially
influence security. Therefore security analysis must be
a maintenance process, not a certification process.

What about markets?

29!

Application markets
•  Markets have changed the software

industry.

•  Easy access to consumer market

•  Vender channel (30% to market),
highly profitable

•  Low barrier to entry

•  Android structure and tools
are designed to ease barriers
and reduce learning curves

•  There to foster innovation
(think 2008-ish)

•  Fast-always available patching Trivia: 460,00 distinct
developers as of Feb 2016!

Application market myths …
•  Myth: application markets provide security
•  Actually, Markets can’t provide security

•  They don’t know what it means (because it is
unknowable for any future context)

•  They can evaluate applications for compliance
with proper design usage, and identify over
malware … (and they do, but details are sketchy)

•  Even markets could provide security, they could
not possibly perform the necessarily expensive
analysis for the thousands of applications hitting
the market every day

Patrick McDaniel and William Enck, Not So Great Expectations: Why Application Markets Haven't Failed Security. IEEE Security &
Privacy Magazine, 8(5):76--78, September/October, 2010.

Application markets myths …
•  Myth: markets identify developers and provide

transparency of how users and data are part of economy
•  You know where you are getting your software from

and how your data is used …
•  Actually, Markets don’t and can’t provide transparency

•  Developer environment and run-time economy is a
complex collection of hidden, and fluid relationships

•  App developers, libraries providers, third-party
networks, add resellers, all have a role in
development and execution

•  Monetization is opaque to the user and market.
•  Repackaging: a serious consequence

Stepping back …

Future research

•  There are two open areas of research that will
define the future of research:

•  Permissions: how do we define and maintain
security policy

•  Markets: how do we provide applications to
users in a safe way

•  Put another way: the next 4 dissertations topics …

Permission research

•  Open problems:

•  Permission structures and definition: how to we
design permission systems that can map to the
cognitive models of users (usability) while
providing for complete, granular and
contextually meaningful mediation?

•  Separating system and user policy: How do we
trade off system defined policy with user
defined policy – note that the sweet spot is likely
going to be dependent on the application, user,
and environment?

Research in market systems …

•  Open problems:

•  Code provenance: how can we identify the (a)
developers of the application and its parts, (b)
identify different parts of the application (app
vs. library)

•  Behavioral disclosure and regulation: disclose
behaviors that have security consequences
(SMS premium rate, ad acquisition)

Conclusions

37!

•  Android security research is often conflated with
application security analysis, but it is much larger.

•  Access control and the way we define it is
essential to the future of security research

•  Getting a handle on the applications

Questions?

mcdaniel@cse.psu.edu

https://www.patrickmcdaniel.org

2008 View : Security and smartphones

•  Smartphones: long awaited realization of mobile
computing

•  Usage model is very different
•  Multi-user single machine to single-user multiple

machines
•  Always on, always computing social instrument
•  Enterprise: separate action from geography

•  Changing Risk
•  Necessarily contains secrets (financial, personal)
•  Collects sensitive data as a matter of operation
•  Drifts seamlessly between “unknown” environments
•  Highly malleable development practices, largely

unknown developers

40!

Rethinking (host) Security

•  Permissions define capabilities.

•  Application markets deliver packaged
applications from largely unknown sources.

•  Users make permission decisions.

•  Applications are run within middleware
supported sandboxes provided by the OS.

Note: App markets don’t (and can’t) provide security.

41!

Patrick McDaniel and William Enck, Not So Great Expectations: Why Application Markets Haven't Failed Security. IEEE Security &
Privacy Magazine, 8(5):76--78, September/October, 2010.

A 8-ishYear Span ...

•  Evaluating Android Application Security ….

42!

2009

Permission
Analysis

[CCS ’09]

2010

System
Dynamic
Analysis

[OSDI ’10]

2011

Static
Analysis

[USENIX Sec ’11]

2012

Bytecode
Retargeting

[FSE ’12]
2013

ICC
Analysis

[USENIX Sec ’13]2015

Enhanced ICC
Analysis

[ICSE ’15]

2016

Market-Scale
Analysis

[POPL ’16]

2014

Application
Dynamic
Analysis

[PLDI ’14]

2015

Market SOK

[IEEE S&P ’16]

Example: Android Security
•  Permissions granted to applications and never changed

•  Permissions allow an application to accesses a component,
API, ..

•  Runtime decisions look for assigned permissions
(access is granted IFF app A assigned perm X at install)

•  Permissions levels: normal, dangerous, signature, or system

•  Example permissions: location, phone IDs, microphone,
camera, address book, SMS, application “interfaces”

43!
William Enck, Machigar Ongtang, and Patrick McDaniel, Understanding Android Security. IEEE Security & Privacy Magazine, 7(1):50--57, January/February, 2009.

Aside: Dalvik EXecutables

•  Android applications written in Java, compiled to Java
bytecode, and translated into DEX bytecode (Dalvik VM)

•  We want to work with Java (bc), not DEX bytecode
•  There are a lot of existing program analysis tools for Java
•  We want to see what the developer was doing (i.e., confirmation)

•  Non-trivial to retarget back to Java: register vs. stack
architecture, constant pools, ambiguous scalar types, null
references, etc.

44!

•  The ded (later dare) decompiler
•  Refers to both the entire process

and .dex ⇒ .class retargeting tool

•  ded/dare recovers logic

•  from application package

•  Retargeting: type inference, instruction translation, etc

•  Optimization: use Soot to optimize Java bytecode

•  Decompilation/IR: standard Java decompilation (Soot),
or translate to TyDe IR (typed dex in DARE)

Retargeting Process!

Getting back to the source

45!

DARE: Damien Octeau, Somesh Jha, and Patrick McDaniel. Retargeting Android Applications to Java Bytecode. 20th International Symposium on the Foundations of
Software Engineering (FSE), November 2012. Research Triangle Park, NC. (best artifact award).

2012
2011

What can the applications do?

•  Static analysis: look at the possible paths and
interaction of data

•  Very, very hard (often undecidable), but community has
learned that we can do a lot with small analyses.

•  Step 1: decompiler for Android applications (ded)

•  Step 2: static source code analysis for both
dangerous functionality and vulnerabilities

•  What data could be exfiltrated from the application?

•  Are developers safely using interfaces?

46!

William Enck, Damien Octeau, Patrick McDaniel, and Swarat Chaudhuri. A Study of Android Application Security. Proceedings of the 20th USENIX Security
Symposium, August 2011. San Francisco, CA.

2011

Studying Application Security

•  Decompiled top 1,100 apps from Android market: over 21 MLOC

•  Queried for security properties using program analysis,
followed by manual inspection to understand purpose

•  Used several types of analysis to design
security properties specific to Android
using the Fortify SCA framework

47!

Misuse of Phone Identifiers! Data flow analysis!
Exposure of Physical Location! Data flow analysis!
Abuse of Telephony Services! Semantic analysis!
Eavesdropping on Video! Control flow analysis!

Eavesdropping on Audio! Structural analysis
(+CG)!

Botnet Characteristics
(Sockets)! Structural analysis!

Havesting Installed
Applications! Structural analysis!

Leaking Information to Logs! Data flow analysis!
Leaking Information to IPC! Control flow analysis!
Unprotected Broadcast
Receivers! Control flow analysis!

Intent Injection Vulnerabilities! Control flow analysis!
Delegation Vulnerabilities! Control flow analysis!
Null Checks on IPC Input! Control flow analysis!
Password Management*! Data flow analysis!
Cryptography Misuse*! Structural analysis!
Injection Vulnerabilities*! Data flow analysis!* included with analysis framework!

Analysis for Dangerous Behavior! Analysis for Vulnerabilities!

Also studied inclusion of advertisement and
analytics libraries and associated

properties!

Phone Identifiers

•  Analysis pin-pointed 33 apps leaking Phone
IDs

48!

com.avantar.wny - com/avantar/wny/PhoneStats.java!
public String toUrlFormatedString()
{

 StringBuilder $r4;
 if (mURLFormatedParameters == null)
 {
 $r4 = new StringBuilder();
 $r4.append((new StringBuilder("&uuid=")).append(URLEncoder.encode(mUuid)).toString());
 $r4.append((new StringBuilder("&device=")).append(URLEncoder.encode(mModel)).toString());
 $r4.append((new StringBuilder("&platform=")).append(URLEncoder.encode(mOSVersion)).toString());
 $r4.append((new StringBuilder("&ver=")).append(mAppVersion).toString());
 $r4.append((new StringBuilder("&app=")).append(this.getAppName()).toString());
 $r4.append("&returnfmt=json");
 mURLFormatedParameters = $r4.toString();
 }

 return mURLFormatedParameters;
}

IMEI!

Tracking

49!

public void onCreate(Bundle r1)
{

...
IMEI = ((TelephonyManager) this.getSystemService("phone")).getDeviceId();

 retailerLookupCmd = (new
StringBuilder(String.valueOf(constants.server))).append("identifier=").append(EncodeU
RL.KREncodeURL(IMEI)).append("&command=retailerlookup&retailername=").toString();
 ...
}

http://kror.keyringapp.com/service.php!

com.froogloid.kring.google.zxing.client.android - Activity_Router.java (Main
Activity)!

public void run()
{

...
r24 = (TelephonyManager) r21.getSystemService("phone");

 url = (new
StringBuilder(String.valueOf(url))).append("&vid=60001001&pid=10010&cid=C1000&uid=").appen
d(r24.getDeviceId()).append("&gid=").append(QConfiguration.mGid).append("&msg=").append(QC
onfiguration.getInstance().mPCStat.toMsgString()).toString();
 ...
}

http://client.qunar.com:80/QSearch!
com.Qunar - net/NetworkTask.java!

Registration and Login

50!

com.statefarm.pocketagent - activity/LogInActivity$1.java (Button
callback)!

public void onClick(View r1)
{

 ...
 r7 = Host.getDeviceId(this$0.getApplicationContext());

 LogInActivity.access$1(this$0).setUniqueDeviceID(r7);
 this$0.loginTask = new LogInActivity$LoginTask(this$0, null);
 this$0.showProgressDialog(r2, 2131361798, this$0.loginTask);
 r57 = this$0.loginTask;
 r58 = new LoginTO[1];
 r58[0] = LogInActivity.access$1(this$0);
 r57.execute(r58);
 ...
}

IMEI!

Is this necessarily bad?!How would you feel about a PII to phone database?!

public static String getDeviceId(Context r0)
{

 String r1;
 r1 = "";

 label_19:
 {
 if (deviceId != null)
 {
 if (r1.equals(deviceId) == false)
 {
 break label_19;
 }
 }

 if (r0.checkCallingOrSelfPermission("android.permission.READ_PHONE_STATE") == 0)
 {
 deviceId = ((TelephonyManager) r0.getSystemService("phone")).getSubscriberId();
 }
 } //end label_19:

 ...
}

Probing for Permissions

51!

com/casee/adsdk/AdFetcher.java!

Checks before accessing!

Ad/Analytics Libraries

•  51% of the apps included an ad or analytics
library (many also had custom functionality)

•  A few libraries were used most frequently

•  Use of phone identifiers and location
sometimes configurable by developer

52!

367

91

32 37

15
8 10

1
1

10

100

1000

1 2 3 4 5 6 7 8

N
um

be
r

of
 li

br
ar

ie
s

Number of apps

1 app
has 8

libraries!!

Library Path! # Apps! Obtains!

com/admob/android/ads! 320! L!

com/google/ads! 206! -!

com/flurry/android! 98! -!

com/qwapi/adclient/android! 74! L, P, E!

com/google/android/apps/
analytics! 67! -!

com/adwhirl! 60! L!

com/mobclix/android/sdk! 58! L, E!

com/mellennialmedia/android! 52! -!

com/zestadz/android! 10! -!

com/admarvel/android/ads! 8! -!

com/estsoft/adlocal! 8! L!

com/adfonic/android! 5! -!

com/vdroid/ads! 5! L, E!

com/greystripe/android/sdk! 4! E!

com/medialets! 4! L!

com/wooboo/adlib_android! 4! L, P, I!

com/adserver/adview! 3! L!

com/tapjoy! 3! -!

com/inmobi/androidsdk! 2! E!

com/apegroup/ad! 1! -!

com/casee/adsdk! 1! S!

com/webtrents/mobile! 1! L, E, S, I!

Total Unique Apps! 561!
L = Location; P = Ph#; E = IMEI; S = IMSI; I = ICC-ID!

Intent Vulnerabilities
•  Similar analysis rules as independently verified

by Chin et al. [Mobisys 2011]

•  Leaking information to IPC - unprotected intent broadcasts are
common, occasionally contain sensitive info

•  Unprotected broadcast receivers - a few apps receive custom
action strings w/out protection (lots of “protected bcasts”)

•  Intent injection attacks - 16 apps had potential vulnerabilities

•  Delegating control - pending intents are tricky to analyze
(notification, alarm, and widget APIs) --- no vulns found

•  Null checks on IPC input - 3925 potential null dereferences in
591 apps (53%) --- most were in activity components

53!

Data Flow (revisited)

•  Application analysis is more challenging
because of application execution “life-cycle”

•  E.g., component asynchrony, multiple entry
points, system events, callbacks …

•  FlowDroid is a static taint analysis system that
tracks data flow from sources to sinks

•  Approach: identify all entry points construct a
dummy main, perform analysis

•  Analysis: 93% recall and 86% precision
•  DroidBench (39 hand crafted applications)

•  Market or enterprise level analysis
•  Getting back to the certification model of Kirin

2014
source, single and

entry-point detection

parse manifest file

parse .dex file

parse layout xmls

generate main
method

build call graph

perform taint
analysis

Steven Arzt, Siegfried Rasthofer, Christian Fritz, Eric Bodden, Alexandre Bartel, Jacques Klein, Yves Le Traon, Damien Octeau, and Patrick McDaniel. FlowDroid: Precise Context,
Flow, Field, Object-sensitive and Lifecycle-aware Taint Analysis for Android Apps. Proc. of the 35th Programming Language Design and Implementation (PLDI), June 2014

How do applications work on concert?
•  Intents are used to pass information between apps

•  IPC (intra-) and component (inter-application) data flows

•  ICC Analysis: location of ICC, and data (types,
attributes)

•  Soundness: all Intra-Component-Communication (ICC)
identified

•  Precision: reduce number of false positives
•  Enable security analysis of ensemble of applications

•  Data flows between components within application
•  Exported flows/interfaces are used by other applications

55!

Damien Octeau, Patrick McDaniel, Somesh Jha, Alexandre Bartel, Eric Bodden, Jacques Klein, and Yves Le Traon. Effective Inter-Component Communication Mapping
in Android with Epicc: An Essential Step Towards Holistic Security Analysis.Proceedings of the 22th USENIX Security Symposium, August 2013. Washington, DC.

2013

Analysis Results
•  Epicc builds a model of ICC

•  Reduce to an Interprocedural Distributive Environment (IDE)
problem and extract possible Intent values (specifications)

•  Experiment: attempt to recover Intent use in 1200
applications (850 most popular, 350 random applications),
•  Runtime: average 113 seconds per application

•  Entry/exit point analysis
•  All attributes known in about 93% of ICC specifications
•  56,106 exits points

•  90% were found to have fixed Intent specification
•  45% have key-value data

•  29,154 entry points
•  About 95% were found to have single Intent Filter specification
•  8,566 exported components, 5% protected by permissions

56!

ICC Analysis version 2.0

•  IC3: Inter-Component Communication
Analysis in Android with COAL

•  More sophisticated two-phase string analysis using
flow graph of constraints on string operations

•  Added deeper URI analysis

•  Experiment: analyze ICC for 460 apps using IC3 and
Epicc

2015

Damien Octeau, Daniel Luchaup, Matthew Dering, Somesh Jha, and Patrick McDaniel. Composite Constant Propagation: Application to Android Inter-Component
Communication Analysis. Proceedings of the 37th International Conference on Software Engineering (ICSE), May 2015.

EPICC! IC3!
Intents/Filters! 69%! 86%!
URIs! 34%! 72%!
Total! 66%! 85%!

Precision!
Identified (possible) ICC Flows!

Epicc: 120,817!
IC3: 26, 872!

Ongoing: Scaling up analysis …

•  Static analysis

•  Epicc/EC2: find all Intent values at message-passing
program points

•  Small static analysis imprecisions
cause explosion in number of
links at large scale

•  600 apps -> 2 million links!

•  Two challenges

•  Intent resolution

•  Intent flow ranking

1 public void sendExplicitIntent() {
2 Intent intent = new Intent();
3 intent.setComponentName("my.second.app", "Dialer");
4 startActivity(intent); }
5 public void sendImplicitIntent() {
6 Intent intent = new Intent();
7 intent.setAction("DIAL");
8 Uri phoneNumber = Uri.parse("tel:1234567890");
9 intent.setData(phoneNumber);

10 startActivity(intent); }

(a) Explicit and implicit Intents

1 <activity android:name="Dialer" android:exported="true">
2 <intent-filter>
3 <action android:name="DIAL"/>
4 <action android:name="VIEW"/>
5 <data android:scheme="tel"/>
6 <category android:name="DEFAULT"/>
7 </intent-filter> </activity >

(b) Intent Filter for a dialer component
Figure 2: Example Intents to launch a dialer and the corre-
sponding Intent Filter.

A prerequisite for statically matching Intents with their possible
targets is to determine the values of Intents, Intent Filters and URIs.
Recent work has studied how to infer these values [25, 26]. Most
Intent Filter values are obtained with a straightforward parsing pro-
cess of the manifest file. URIs, Intents and dynamically registered
Intent Filters, on the other hand, are inferred using a complex static
data flow analysis. The Epicc [26] and IC3 [25] tools perform this
analysis. IC3 is more precise than Epicc, which is due to a more
sophisticated analysis of the strings of characters used for actions,
categories and data. Epicc can only resolve constant strings of char-
acters, whereas IC3 can handle more complex constructs such as
string concatenation. Further, IC3 can handle URIs, whereas Epicc
cannot. This results in more precise Intent values, since URIs are
used to specify the data field of Intents. We refer interested readers
to the detailed presentation of the ICC analysis tools [25, 26]. In
our experiments, we use ICC values computed by IC3.

A limitation of statically inferring ICC values is that some of
these values are either too computationally expensive to compute
statically or they are completely determined by runtime context.
For example, it may not be possible to infer the action field of an In-
tent because it is generated in a way that is not modeled with static
analysis. In this case, the action field cannot be used for matching
with potential target Intent Filters. This can result in matching In-
tents with many Filters, even though such links are not possible in
practice (i.e., false positives).

2.3 Running Example
Figure 3 shows a running example that will be used through-

out. We consider an application rest.app that allows users to find
restaurants near their current location. It is composed of two Ac-
tivity components (i.e., two user screens). The ListActivity compo-
nent displays a list of nearby restaurants. It may send implicit Intent
(1) to display a map with all nearby restaurants. It can also send ex-
plicit Intent (2) to display details about a particular restaurant. The
DescActivity component displays descriptions of specific restau-
rants. It can display a map centered on a restaurant by sending
implicit Intent (3), or it may trigger a phone call to the restaurant
by emitting implicit Intent (4). Finally, it can start the ListActivity
component by sending explicit Intent (5) to it.

On the same device, there are four other applications with ex-
ported components. The map application renders a map when given
coordinates. Its MapActivity component declares an Intent Fil-
ter that accepts URI data with a geo scheme, which is meant to
indicate geographic coordinates. The spy application declares ac-
cepting Intents with geographic data. It then leaks the data to an

Spy Application

Restaurant Search Application
(rest.app)

Phone Application

Map Application

ListActivity

DescActivity

Action: VIEW - VIEW
Categories: DEFAULT -
DEFAULT
Data scheme: geo - geo

Intent (1)

Action: DIAL - DIAL
Category: DEFAULT -
DEFAULT
Data scheme: tel - tel

Intent (4)

MapActivity

Actions: VIEW
Categories: DEFAULT
Data scheme: geo

Intent Filter (1)

Target App: rest.app -
rest.app
Target Comp: DescActivity -
DescActivity

Intent (2)

Action: VIEW - .*
Categories: DEFAULT -
DEFAULT
Data scheme: geo - .*

Intent (3)

DialerActivity

Actions: DIAL, VIEW
Categories: DEFAULT
Data scheme: tel

Intent Filter (3)

Target App: rest.app - .*
Target Comp: ListActivity - .*

Intent (5)

Other Application

OtherActivity

Actions: CUSTOM
Categories: DEFAULT
Data scheme: custom

Intent Filter (4)

MapActivity

Actions: VIEW
Categories: DEFAULT
Data scheme: geo

Intent Filter (2)

Real links
False positives

L11

L21

L51

L31

L52

L53

L54

L55

L32

L41

L12

L33

L34

Figure 3: Running example. Fields values in red indicate the
values inferred by the ICC inference process, with .* being a
regular expression that matches any string.
unauthorized third-party. The phone application declares a dialer
component that receives Intents with a tel scheme, which contain
telephone numbers. Finally, another application has a component
that declares a custom action and a custom data scheme. This can
be useful if an application performs an action that is not described
by the default actions strings.

For each Intent, we first indicate the real field values (that is, as
declared by the application developer). We also indicate in red font
the field values that are inferred by the static analysis. For exam-
ple, the real value of the categories field of Intent (3) is accurately
inferred as DEFAULT. On the other hand, the action field, which is
declared to be VIEW, is observed by the static analysis process as
.*. Similarly, the geo data scheme is imprecisely inferred as .*.

We have represented ICC links that may occur with black ar-
rows. These links are all inferred by the static analysis since it is a
conservative process. However, because of the limited precision of
static analysis, unfeasible links are also inferred. They are shown
in Figure 3 with red dashed arrows. For example, let us consider
Intent (3). Since its action and data scheme fields are not inferred
as constants, they are matched with Intent Filters that have DIAL
and CUSTOM actions, and tel and custom data schemes. Similarly,
the fields of explicit Intent (5) are all inferred as the .* regular
expression, which matches all the components in all applications.

In this paper, we seek to perform triage on these links, with the
goal of prioritizing the true positives over the false positives. The
expected outcome of our techniques is to associate a priority value
with each link such that the priority values of real links are greater
than the priority values of false positives. In particular, real links
to the spy application should have a high priority. In Section 4, we
show how to approximate the likelihood that a given link is a true
positive by utilizing a probabilistic model of Intents. We subse-
quently use this approximation to rank the links based on the prob-

2016

D. Octeau, S. Jha, M. Dering, P.McDaniel, A. Bartel, Li Li, J.Klein, and Yves Le Traon. Combining Static Analysis with Probabilistic Models to Enable Market-Scale Android Inter-
Component Analysis. Proceedings of the 43rd ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL), January 2016. St. Petersburg, Florida, USA.

1: Intent Resolution

•  Intent resolution – identifying the flows between
apps

•  Compute inter-component links in scalable manner
•  Take into account field value regular expressions
•  Our algorithm is based on intersecting sets of Filters that

verify several Intent resolution tests
•  Exploits fast matching of constant intent values

•  Runs in time , where e is small constant
•  Experiment

•  Match 10,928 applications
•  Runtime: 8,434 seconds (140 min)

O(e · |I|)

2: Intent flow ranking
•  Intent flow ranking – determining estimated likelihood of

flows being “real” by comparing against known flows
•  Idea: Intents are highly predictable

•  For example, displaying a map is done by sending Intent with
VIEW action and geo scheme (common to applications)

•  Explicit Intents almost always target components within the same
application, but often identified as being inter-application

•  Approach
•  Estimate the probability of having a given Intent field combination,

given the Intents that are known, i.e., to simplify

P(flow) = % known Intent matching specifications matching Intent
filter

•  Intuition: how similar is potential flow to known flows

Preliminary Results

•  10,928 applications, 489,099,606 potential ICC flows
•  111,254 components, 58,480 Intent filters
•  452,984 Intent values (47% explicit, 53% implicit)
•  Key Results

•  97.3% links Pr() < 0.1
•  75% explicit links are

tagged as inter-application
•  99.6% of Implicit links

are inter-application

•  Take away: vastly reduces the number of links

Conclusions
•  The security community has been analyzing mobile

applications for almost a decade now ..

•  Research is driven by deep and deeper questions

•  Analysis techniques are getting more sophisticated …

•  Volumes of data are getting larger …

•  Adversarial behavior getting subtler and more costly …

•  Industrial and academic cooperation is very strong …

•  Future is bright for research!

