Learning from Ourselves:
Where are we and where can we go in

mobile systems security?

Patrick McDaniel, Penn State University

| A cautionary tale ...

‘Where are we now ...

« September 23, 2008 - May 26, 2016
o /.6/ years

242,179,200 seconds M
4 036,320 minutes

67,272 hours
2,803 days

400 weeks and 3 days

S

« Smartphones: long awaited realization of mobile
computing

« Usage model is very different

« Multi-user single machine to single-user multiple

machines

« Always on, always computing social instrument

Enterprise: separate action from geography

« Changing Risk

Necessarily contains secrets (financial, personal)
Collects sensitive data as a matter of operation
Drifts between “unknown” environments

Highly malleable development practices, largely
unknown developers

HOME. HOUSE
20 Portman Square
London WIH SHF

THE RESTAURANT

SRV 80 TABLE 123/1 TIME 22:55
1 HILDON 3.25
1 ARTI SOUP 5,95
1 TIGER PRAWNS 12.50
1 EER SRR 0.00
1 BREAST/OF DUCK 17.50
1 WELSH® ICAMB. 18.45
1.DAUPHINOISE 2310
1 ROAST-PARSNIPS LAl
1 HONORE DE BERTIC 19.50
2 PUDDING TROLLEY 11.90
1 Main Away 0.00
2 CAPPUCCINO 5.90

SERVICE CHARGE 12.60

NET SALES ~ 100.75 GRAND TOTAL 113.35

THIS IS NOT A VAT RECEIPT

VAT ANALYSIS

RATE % NET TAX TOTAL
17.500 66.37 11:63 78.00
17.500 2.0 0,48 3.25
17.500 16.60 2.90 19.50

STGNATUREA M 7ot 8 koo

RN N A e e T

MEHBERSHIRAN o R e o

A DISCRETIONARY 12.5% SERVICE CHARGE
HAS BEEN ADDED TO YOUR ACCOUNT

‘Where are we now ...

« We are closing in on a decade of research and use
of smartphones.

« What questions have we asked and what have
we learned?

« What questions should we be asking?

Promise: the next four dissertations will be

Three questions

(2009-2011) ...

s
o Kirin certifies applications by vetting policies

at install-time (relies on runtime enforcement)

« Obvious insight: app config and security policy
is an upper bound on runtime behavior.

» Kirin is a modified application installer

« Apps with unsafe policies are rejected

New Kinin ' Optional Extension |
Application Security : !

{Vhere’s the system policy ’f

Kirin

(
|

’ Android Application Installer

William Enck, Machigar Ongtang, and Patrick McDaniel. On Lightweight Mobile Phone App Certification. Proceedings of the 16th ACM
Conference on Computer and Communications Security (CCS), pages 235-245, November 2009.

esa

o Kirin enforces security invariants at install-time

and receive [BOOT_COMPLETE]

[PestPict permission [ACCESS FINE_ LOCATION, INTERNET]

Evaluate 311* popular Market apps (Jan 2009)

« 5 had both dangerous configuration / functionality (1.6%)

7:36 AM
12 N
° 3H
\s »,
7 6 5
v
J

« Local evaluation of requested permissions, Intent listeners

« 5 dangerous configs, but plausable use of permisions (1.6%)

(1) An applicati
(2) An applicati
(3) An applicati
(4) An applicati
(5) An applicati
(6) An applicati
(7) An applicati
(8)

(9)

3 apps failed -- (2) An application must
not have the PHONE_STATE, RECORD_AUDI
O, and INTERNET permissions

issions
bermissions

An applicaticr
An application must not have the SET_PREFERRED_APPLICATION permission and receive Intents for the CALL action string

ot 17t 711ave o TITINO TAALL_OTrTuUrtrouT arfi UINTTNO T _OJTrtTourtrouTt VUIIIIIOOIUI TS

J

| What do the applications do?

e TaintDroid is performs system-wide taint

tracking in the Android platform
1.VM Layer: variable tracking throughout Dalvik VM
2.Native Layer: patches state after native method (JNI)

3.Binder IPC Layer: extends tracking between applications

4.Storage Layer: persistent tracking on files

Message-level tracking

Application Code

4

Lk

Application Code

Virtual
Machine

| Virtual
Machine

l Native System Libraries l

Network Interface ‘ Secondary Storage

-
- -

-

Variable-level
tracking

Method-level (Firmware mod)
tracking

File-level
tracking

William Enck, Peter Gilbert, Byung-Gon Chun, Landon P. Cox, Jaeyeon Jung, Patrick McDaniel, and Anmol N. Sheth, TaintDroid: An Information-Flow Tracking System
for Realtime Privacy Monitoring on Smartphones. Communications of the ACM, 57(3), March, 2014.

S

e 15 of the 30 applications shared physical location
with an ad server (admob.com, ad.qwapi.com,
ads.mobclix.com, data.flurry.com)

« Not trying hard to hide (e.g., AdMob HTTP GET):

.. .&s=a1404a93f1e4c68&. .&t=062A1CB1D476DE85
B717D9195A6722A9&d%5Bcoord®s5SD=47.6612278900
00006%2C-122.315894774&. ..

« 7/ applications sent device (IMEI) and 2 apps sent
phone info (Ph. #, IMSI, ICC-ID) to a remote server
without informing the user.

S
o Static analysis: look at the possible paths 2011

and interaction of data

« Very, very hard (often undecidable), but community has
learned that we can do a lot with small analyses.

« Step 1: decompiler for . d
Android applications (ded) oot || e
» Step 2: static source code i e X
analysis for both dangerous S
functionality and vulnerabilities

« What data could be exfiltrated from
the application?

« Are developers safely using interfaces?

William Enck, Damien Octeau, Patrick McDaniel, and Swarat Chaudhuri. A Study of Android Application Security. Proceedings of the 2o0th USENIX Security
Symposium, August 2011. San Francisco, CA.

S

« Decompiled top 1,100 apps from Android market: >27 MLOC
« Queried for security properties using program analysis,

followed by manual inspection to understand purpose

« Used several types of analysis to design oy
security properties specific to Android «_~ 1\

using the Fortify SCA framework

Analysis for Dangerous Behavior

p4
empty

error
. p1 =i8new_class(...)
p2 =i.8new(..) |
.Snew_action(...)
p3 = i.8set_class(...) |
.Sset_component(...)
p4 = i.Sput_extra(...)
p5 = i.8set_class(...) |
.Sset_component(...)
p6 = Sunprotected _send(i) |
Sprotected _send(i, null)

has_data

Analysis for Vulnerabilities

Misuse of Phone Identifiers

Data flow analysis

Leaking Information to Logs

Data flow analysis

Exposure of Physical Location

Data flow analysis

Leaking Information to IPC

Control flow analysis

Abuse of Telephony Services

Semantic analysis

Eavesdropping on Video

Control flow analysis

Unprotected Broadcast
Receivers

Control flow analysis

Eavesdropping on Audio

Structural analysis
(+CQ)

Intent Injection Vulnerabilities

Control flow analysis

Delegation Vulnerabilities

Control flow analysis

Botnet Characteristics
(Sockets)

Structural analysis

Null Checks on IPC Input

Control flow analysis

Havesting Installed
Applications

Structural analysis

Password Management*

Data flow analysis

Cryptography Misuse*

Structural analysis

Injection Vulnerabilities*

Data flow analysis

Phone Identifiers

com.avantar.wny - com/avantar/wny/PhoneStats.java

public String toUrlFormatedString()

{
StringBuilder $r4; | I\/l El
if (mURLFormatedParameters == null)
: /
$r4 = new StringBuilder();
$r4.append((new StringBuilder("&uuid=")).append(URLEncoder.encode(mUuid)).toString());
$r4.append((new StringBuilder("&device=")).append(URLEncoder.encode(mModel)).toString());
$r4.append((new StringBuilder("&platform=")).append(URLEncoder.encode(mOSVersion)).toString());
$r4 . append((new StringBuilder("&ver=")).append(mAppVersion).toString());
$r4.append((new StringBuilder("&app=")).append(this.getAppName()).toString());
$r4 . append("&returnfmt=json");
mURLFormatedParameters = $r4.toString(Q);
ks
return mURLFormatedParameters;
}

150 T

com.froogloid.kring.google.zxing.client.android - Activity_Router.java (Main Activity)

Izublic void onCreate(Bundle rl1) http://kror.keyringapp.com/service.php

IMEI = ((TelephonyManager) this.getSystemService("phone")).getDeviceId()j"l
retailerLookupCmd = (new
StringBuilder(String.valueOf(constants.server))).append("identifier=").append(EncodelU
RL.KREncodeURL(IMEI)).append("&command=retailerlookup&retailername=").toString();

}
N —
com.Qunar - net/NetworkTask.java

?”bnc void run() http://client.qunar.com:80/QSearch

r24 = (TelephonyManager) r2l.getSystemService("phone");

url = (hew
StringBuilder(String.valueOf(Curl))).append("&vid=60001001&p1id=10010&cid=C1000&uid=").appen
d(r24.getDeviceld()).append("&gid=").append(QConfiguration.mGid).append("&msg=").append(QC
onfiguration.getInstance().mPCStat.toMsgString()).toString();

}

T — I

\ Probing for Permissions

com/casee/adsdk/AdFetcher.java

public static String getDeviceld(Context r@)

{
String ri;
rli ="";
label_19:
if (deviceld !'= null)
¢ if (rl.equals(deviceld) == false)
preak label_19; Checks before accessing
) ¥
if (r@.checkCallingOrSelfPermission("android.permission.READ_PHONE_STATE") == @)
¢ deviceld = ((TelephonyManager) r@.getSystemService("phone™)).getSubscriberId();
} //ind label_19:
}

, \Ad/Ana\ tics Libraries

e 51% of the apps included an ad or Library Pah #Apps | Obtains
. . com/admob/android/ads 320 L
analytics library (many also had custom ———— —
fu n Ct' O n a | |ty) com/flurry/android 98
com/gwapi/adclient/android 74 L, P, E
 Afew libraries were used most frequently |cmgceensoees g,
com/adwhirl 60 L
« Use of phone identifiers and location commobolendrodiedk |58 |LE
sometimes configurable by developer sl el |6 :
com/zestadz/android 10
com/admarvel/android/ads 8
| 000 com/estsoft/adlocal 8 L
§ 367 com/adfonic/android 5
E comj/vdroid/ads 5 L E
g I OO 1 ap p com/greystripe/android/sdk 4 E
HC_) haS 8 com/medialets 4 L
S IO ' . com/wooboo/adlib_android 4 L P
() o 1P
'g I O | l br leS l com/adserver/adview 3 L
> com/tapjoy 3 -
Z | com/inmobi/androidsdk 2 E
| com/apegroup/ad 1 -
I 2 3 4 5 6 7 8 com/casee/adsdk . 1 S
com/webtrents/mobile 1 L,E S, I
Number Of aPPS Total Unique Apps 561 e

" Intent Vulnerabilities

« Similar analysis rules as independently verified
by Chin et al. [Mobisys 2011]

« Leaking information to IPC - unprotected intent broadcasts are
common, occasionally contain sensitive info

o Unprotected broadcast receivers - a few apps receive custom
action strings w/out protection (lots of “protected bcasts”)

« Intent injection attacks - 16 apps had potential vulnerabilities

« Delegating control - pending intents are tricky to analyze
(notification, alarm, and widget APIs) --- no vulns found

e Null checks on IPC input - 3925 potential null dereferences in
591 apps (53%) --- most were in activity components

Non-app centric work ...

So ... then what?

e The community has been working in concert since
the early days trying to sort out not just what
applications are doing, but how we deal with this
new world of security.

« You can distill the non-app centric work into two
areas ...

Thanks to: Octeau, Enck, Porter Felt,
Liu, Roesner, ... and hundreds more.

What to do about

permissions?

Permissions define security policy ...

e Perhaps no subject has spurred more discussion and
research than permissions.

« Understanding permissions

« Enhancing permissions

- N
Application 1 Application 2
- —
\- Y,

« Perhaps define who can do what to whom and when.

‘What is a permission?

« The existential question: a permission is a

statement of a right of an application to use some
interface or resource.

Application A can use interface/resource P.

« In a broader sense, a permission is a (non-

negotiable) contract between the application and
the user about security relevant actions.

Permission poroblems

« Permissions are presented largely without the
context needed to make an informed decision:

Application A can use interface/
resource P (FOR WHAT?).

e Dynamic permissions in Marshmallow start to
address context by providing temporal context, but
this still lacks the specificity needed.

Permission poroblems

« Permissions lack the kinds of clear meaning for
people to understand what they mean or what the
implications are:

Application A can use interface/resource
P (THAT ENCOMPASSES ..) (FOR WHAT?).

« Permission groups start to address context by
providing needed semantics (calendar, contacts,
location). But ...

Permission poroblems

e The scope of permissions are sometimes too
coarse to make informed decisions:

Application A can use interface/resource
P(.REFINEMENT) (THAT ENCOMPASSES ..) (FOR WHAT?).

« Consider the calendar permission group. That
protects the calendar database, but not controls on
the elements of it.

android.permission.INTERNET

th of the user ...

« All of these arguments are true, but rely on a
particular interpretation of “user”.

e The problem is that there is no one single class of
user or uniform set of needs for a permission
system.

e The current permission system has NOT failed, it
has just failed to address all possible user needs
and the same time.

One of the key challenges of the
current permission system is that
it leads to an emergent security policy.

a

« Each application adds something to the aggregate
information flow allowed in the system, and
therefore alters the security policy.

Implication: Inter-component communication (ICC)
analysis is essential to the security of the phone.

Challenge: adding a new application may substantially
influence security. Therefore security analysis must be
a maintenance process, not a certification process.

What about markets?

| Application markets

Tool Chain P Uses tool chain
Provider -

App Developers

« Markets have changed the software

Publish App Publish App

i ﬂ d U St ry Google Play 3rd Party Market
' Install Sideloading
Advertisement — —_—— = _——— _——
E k R 3rd Party App 3rd Party App
e Easy access to consumer market _
Web Services | “IPC I Access Android API i IPC ™

| Application Framework |
Android Middleware

« Vender channel (30% to market),
highly profitable

_| Inter-Process Communication |—

Linux

Android Platform

« Low barrier to entry

« Android structure and tools
are designed to ease barriers
and reduce learning curves

e« There to foster innovation
(think 2008-ish)

« Fast-always available patching Trivia: 460,00 distinct
developers as of Feb 2016

S

« Myth: application markets provide security

« Actually, Markets can’t provide security

e They don't know what it means (because it is
unknowable for any future context)

e They can evaluate applications for compliance
with proper design usage, and identify over
malware ... (and they do, but details are sketchy)

« Even markets could provide security, they could
not possibly perform the necessarily expensive
analysis for the thousands of applications hitting
the market every day

Patrick McDaniel and William Enck, Not So Great Expectations: Why Application Markets Haven't Failed Security. IEEE Security &
Privacy Magazine, 8(5):76--78, September/October, 2010.

S

« Myth: markets identify developers and provide
transparency of how users and data are part of economy

« You know where you are getting your software from
and how your data is used ...

« Actually, Markets don't and can’t provide transparency

« Developer environment and run-time economy is a
complex collection of hidden, and fluid relationships

« App developers, libraries providers, third-party
networks, add resellers, all have a role in
development and execution

« Monetization is opaque to the user and market.

« Repackaging: a serious consequence

Stepping back ...

Future research

e There are two open areas of research that will
define the future of research:

e Permissions: how do we define and maintain
security policy

« Markets: how do we provide applications to
users in a safe way

« Put another way: the next 4 dissertations topics ...

S

« Open problems:

« Permission structures and definition: how to we
design permission systems that can map to the
cognitive models of users (usability) while
providing for complete, granular and
contextually meaningful mediation?

« Separating system and user policy: How do we
trade off system defined policy with user
defined policy - note that the sweet spot is likely
going to be dependent on the application, user,
and environment?

'Research in market systems ...

« Open problems:

« Code provenance: how can we identify the (a)
developers of the application and its parts, (b)
identity different parts of the application (app
vs. library)

« Behavioral disclosure and regulation: disclose
behaviors that have security consequences
(SMS premium rate, ad acquisition)

Conclusions

« Android security research is often conflated with
application security analysis, but it is much larger.

« Access control and the way we define it is
essential to the future of security research

« Getting a handle on the applications

Questions?

2008 View : Security and smartphones

« Smartphones: long awaited realization of mobile

computing

T

20 Portman Square

. . London WIH SHF
o Usage mOdel IS Ve ry dlffe rent SRV BOT?EBEESTA?SQ,}I TIME 22:55
o Multi-user single machine to single-user multiple 1;%@22’;% > S
maChiheS | ERERST ?DULK/ 750
. . . QJWEL %ﬂﬁx&?’/
« Always on, always computing social instrument Rl pahes—— .78
1 HONORE DE BERTIC 19.50
. . 2 PUDDING TROLLEY 11.90
« Enterprise: separate action from geography ! te 0.0
SERVICE CHARGE 12 60

NET SALES ~ 100.75 GRAND TOTAL 113 35

o Changlng R|Sk THIS IS NOT A VAT RECEIPT

VAT ANALYSIS

« Necessarily contains secrets (financial, personal) Pawy yw
« Collects sensitive data as a matter of operation ;ai:mwj e
o Drifts seamlessly between “unknown” environments s l.?..b.v.d/
« Highly malleable development practices, largely =~ e

un kn own d eve | @) p ers A DISCRETIONARY 12.5% SERVICE CHARGE

HAS BEEN ADDED TO YOUR ACCOUNT

security == permaissions X apps

security # users

« Permissions define capabilities.

« Application markets deliver packaged
applications from largely unknown’sources.

« Users make permission decisions.

« Applications are run within middleware
supported sandboxes provided by the OS.

Note: App markets don't (and can’t) provide security.

Ful B O 230

This application can access the following on your

phone:

Your location
fine (GPS) location

Network communication
full Internet access

Your personal information
read contact data

Your accounts

manage the accounts list, Picasa Web
Albums, use the authentication
credentials of an account

Storage
modify/delete USB storage contents

Phone calls
read phone state and identity

System tools
prevent phone from sleeping, write
subscribed feeds, write sync settings

Show all @

Patrick McDaniel and William Enck, Not So Great Expectations: Why Application Markets Haven't Failed Security. IEEE Security &

Privacy Magazine, 8(5):76--78, September/October, 2010.

S

« Evaluating Android Application Security

2009 291 2011
System
Dynamic
Analysis

Static
Analysis

Permission

Analysis

[CCS ’09] [USENIX Sec ’11]

[OSDI *10]

2012 Wi>§

2015 Wi}\ 2016 2015 Wii%

Market-Scale Enhanced ICC

Market SOK Analysis | Analysis

[IEEE S&P ’16] (POPL *16] [ICSE *15]

Bytecode
Retargeting
[FSE ’12]
2013
ICC
Analysis
2014 [USENIX Sec '13]
Application
Dynamic
Analysis

[PLDI *14]

le: Android Securit

« Permissions granted to applications and never changed

« Permissions allow an application to accesses a component,
API, ..

« Runtime decisions look for assigned permissions
(access is granted IFF app A assigned perm X at install)

e Permissions levels: normal, dangerous, signature, or system
4)\

Application 2

« Example permissions: location, phone IDs, microphone,
camera, address book, SMS, aE_EIication “Iinterfaces”

William Enck, Machigar dngtang, and Patrick McDaniel, Understanding Android Se IEEE Security & Privacy Magazine, 7(1):50--57, January/February, 2009.

| Aside: Dalvik EXecutables

« Android applications written in Java, compiled to Java
bytecode, and translated into DEX bytecode (Dalvik VM)

Java
Compiler

(dextie)

Class1 definition

(.java files)

ClassN definition
Data

Class Info
Data

« We want to work with Java (bc), not DEX bytecode

« There are a lot of existing program analysis tools for Java
« We want to see what the developer was doing (i.e., confirmation)

« Non-trivial to retarget back to Java: register vs. stack
architecture, constant pools, ambiguous scalar types, null
references, etc.

$

« The ded (later dare) decompiler

« Refersto both the entire process
and .dex = .class retargeting tool

« ded/dare recovers logic

 from application package

Retargeting Process

l (1) DEX Parsing

A4

v

(3) Java .class
Optimization

1

(2) Java .class E
Conversion '

1

1

Missing Type
Inference

1
Constant Pool | !
Conversion

1
1
1
| i
i[Method Code |1
| Retargeting '
1
| . |

Construction

Type Inference
Processing

Constant
Identification

Constant Pool
Translation

Bytecode
i | Reorganization |!

Y N\
i| Instruction Set |!
Translation

« Retargeting: type inference, instruction transiation, etc

« Optimization: use Soot to optimize Java bytecode

» Decompilation/IR: standard Java decompilation (Sog

or translate to TyDe IR (typed dex in DARE)

DARE: Damien Octeau, Somesh Jha, and Patrick McDaniel. Retargeting Android Applications to Java Bytecode. 20th International Symposium on the Foundations of

Software Engineering (FSE), November 2012. Research Triangle Park, NC. (best artifact award).

2011

2012

S

 Static analysis: look at the possible paths and 2011
interaction of data

« Very, very hard (often undecidable), but community has
learned that we can do a lot with small analyses.

o Step 1: decompiler for Android applications (ded)

« Step 2: static source code analysis for both
dangerous functionality and vulnerabilities

« What data could be exfiltrated from the application?

« Are developers safely using interfaces?

William Enck, Damien Octeau, Patrick McDaniel, and Swarat Chaudhuri. A Study of Android Application Security. Proceedings of the 20th USENIX Security
Symposium, August 2011. San Francisco, CA.

targeted error
O . p1=i$new_class(...)
p2 =i.8new(..) |
pi .Snew_action(...)

Decompiled top 1,100 apps from Android market? oyer 268 M O Tssar componen.
oo - e case()|
p2 .Sset_component(...)

p6 = Sunprotected _send(i) |
Queried for security properties using program analysjs, * . e

IRISNER B8 TIAHEERSES BEARLG SR dersaEhBIVERS Ry Vulnerabilities

A

Misuse of Phone Identifiers Data flow analysis ~|Leaking Information to Logs |Data flow analysis
Exposure of Physical Location |Data flow analysis 19T Leaking Information to IPC Control flow analysis
: : :)
Abuse of Telephony Services |Semantic analysis id Unprc_)tected Broadcast Control flow analysis
: : . Receivers
Eavesdropping on Video Control flow analysis
: Intent Injection Vulnerabilities |Control flow analysis
Eavesdropping on Audio S SRS
9 (+CG) Delegation Vulnerabilities Control flow analysis
Botnet Characteristics S | vsi Null Checks on IPC Input Control flow analysis
(SEY) ructurel anaysi Password Management™ Data flow analysis
W W |
\%éﬁHéji,%gd”g&pIUSIOﬂ o1 advertisement and = " Mg 5 I Iy
Applgaiahetics libraries afmi adEoRREY POy b e OO SR
properties * lﬂlﬁﬁﬁ'ﬂ%}q%ﬁﬁkﬂwﬁ@gis franaRdiqy analysis

Phone Identifiers

com.avantar.wny - com/avantar/wny/PhoneStats.java

public String toUrlFormatedString()

{
StringBuilder $r4; | I\/l El
if (mURLFormatedParameters == null)
: /
$r4 = new StringBuilder();
$r4.append((new StringBuilder("&uuid=")).append(URLEncoder.encode(mUuid)).toString());
$r4.append((new StringBuilder("&device=")).append(URLEncoder.encode(mModel)).toString());
$r4.append((new StringBuilder("&platform=")).append(URLEncoder.encode(mOSVersion)).toString());
$r4 . append((new StringBuilder("&ver=")).append(mAppVersion).toString());
$r4.append((new StringBuilder("&app=")).append(this.getAppName()).toString());
$r4 . append("&returnfmt=json");
mURLFormatedParameters = $r4.toString(Q);
ks
return mURLFormatedParameters;
}

150 T

com.froogloid.kring.google.zxing.client.android - Activity_Router.java (Main
Activity)

Izublic void onCreate(Bundle rl1) http://kror.keyringapp.com/service.php

IMEI = ((TelephonyManager) this.getSystemService("phone")).getDeviceId()j"l
retailerLookupCmd = (new

StringBuilder(String.valueOf(constants.server))).append("identifier=").append(EncodelU
RL.KREncodeURL(IMEI)).append("&command=retailerlookup&retailername=").toString();

}
I —
com.Qunar - net/NetworkTask.java

?”bnc void run() http://client.qunar.com:80/QSearch

r24 = (TelephonyManager) r2l.getSystemService("phone");

url = (hew
StringBuilder(String.valueOf(Curl))).append("&vid=60001001&p1id=10010&cid=C1000&uid=").appen
d(r24.getDeviceld()).append("&gid=").append(QConfiguration.mGid).append("&msg=").append(QC
onfiguration.getInstance().mPCStat.toMsgString()).toString();

}

I — I

, \ Reqistration and Login

com.statefarm.pocketagent - activity/LogInActivity$1.java (Button
callback)

public void onClick(View ri1) / ”\/lEl
{

r7 = Host.getDeviceld(this$0.getApplicationContext());
LogInActivity.access$1(this$0).setUniqueDeviceID(r7);
this$0.1loginTask = new LogInActivity$LoginTask(this$@, null);
this$0.showProgressDialog(r2, 2131361798, this$0.loginTask);
r57 = this$0.loginTask;

r58 = new LoginTO[1];

r58[0] = LogInActivity.access$1(this$0);

r57.execute(r58);

}

H>w would you feel about a Pll to phone databas 7

\ Probing for Permissions

com/casee/adsdk/AdFetcher.java

public static String getDeviceld(Context r@)

{
String ri;
rli ="";
label_19:
if (deviceld !'= null)
¢ if (rl.equals(deviceld) == false)
preak label_19; Checks before accessing
) ¥
if (r@.checkCallingOrSelfPermission("android.permission.READ_PHONE_STATE") == @)
¢ deviceld = ((TelephonyManager) r@.getSystemService("phone™)).getSubscriberId();
} //ind label_19:
}

, \Ad/Ana\ tics Libraries

Library Path # Apps Obtains
com/admob/android/ads 320 L
com/google/ads 206
com/flurry/android 98
com/gwapi/adclient/android 74 L, P, E
com/qoogle/android/apps/ 67

analytics

com/adwhirl 60 L

e 51% of the apps included an ad or analyticlemmpdemmaa s e
library (many also had custom functionality|cermelememedaendaia s

com/zestadz/android 10
com/admarvel/android/ads 8
el 0 1 -
o RALwW,ijoraries were used most frequently |comestsotiadioca g]
@ com/adfonic/android 5
(-
8 com/vdroid/ads 5 L, E
£ U 9,% ng Igentifiers and | ocaju 69 P com/greystripe/android/sdk 4 E
[
(o) é com/medialets 4 L
°som usable lg)ydever@é ——
o 8 | | b r | e S l com/wooboo/adlib_android 4 L,P,I
o I O ' com/adserver/adview 3 L
g com/tapjoy 3 -
Z com/inmobi/androidsdk 2 E
| com/apegroup/ad 1 -
I 2 3 4 5 6 7 8 com/casee/adsdk 1 S
com/webtrents/mobile 1 L,E S, I
Number Of apps Total UniqueApps (561 |

" Intent Vulnerabilities

« Similar analysis rules as independently verified
by Chin et al. [Mobisys 2011]

« Leaking information to IPC - unprotected intent broadcasts are
common, occasionally contain sensitive info

o Unprotected broadcast receivers - a few apps receive custom
action strings w/out protection (lots of “protected bcasts”)

« Intent injection attacks - 16 apps had potential vulnerabilities

« Delegating control - pending intents are tricky to analyze
(notification, alarm, and widget APIs) --- no vulns found

e Null checks on IPC input - 3925 potential null dereferences in
591 apps (53%) --- most were in activity components

$

« Application analysis is more challenging
because of application execution “lite-cycle”

« E.g., component asynchrony, multiple entry
points, system events, callbacks ...

E source, single and
! entry-point detection

parse manifest file

v

parse .dex file

« FlowDroid is a static taint analysis system that

tracks data flow from sources to sinks I
« Approach: identify all entry points constructa | =< |
dummy main, perform analysis I E— -

generate main

e Analysis: 93% recall and 86% precision "

« DroidBench (39 hand crafted applications) buildcall graph
v

perform taint
analysis

« Market or enterprise level analysis

. Getting back to the certification model of Kirin

Steven Arzt, Siegfried Rasthofer, Christian Fritz, Eric Bodden, Alexandre Bartel, Jacques Klein, Yves Le Traon, Damien Octeau, and Patrick McDaniel. FlowDroid: Precise Context,
Flow, Field, Object-sensitive and Lifecycle-aware Taint Analysis for Android Apps. Proc. of the 35% Programming Language Design and Implementation (PLDI), June 2014

S
o Intents are used to pass information between apps

Component A 1 r Component B
Intent Intent Filter
- Action - Actions
- Categories - Categories
- Data - Data

o IPC (intra-) “Ss——T" data flows

« |CC Analysis: location of ICC, and data (types,
attributes)

« Soundness: all Intra-Component-Communication (ICC)
identified

« Precision: reduce number of false positives

« Enable security analysis of ensemble of applications
« Data flows between components within application
« Exported flows/interfaces are used by other applications

Damien Octeau, Patrick McDaniel, Somesh Jha, Alexandre Bartel, Eric Bodden, Jacques Klein, and Yves Le Traon. Effective Inter-Component Communication Mapping
in Android with Epicc: An Essential Step Towards Holistic Security Analysis.Proceedings of the 22th USENIX Security Symposium, August 2013. Washington, DC.

| Analysis Results

« Epicc builds a model of ICC

« Reduce to an Interprocedural Distributive Environment (IDE)
problem and extract possible Intent values (specifications)

« Experiment: attempt to recover Intent use in 1200
applications (850 most popular, 350 random applications),
e Runtime: average 113 seconds per application
« Entry/exit point analysis
o All attributes known in about 93% of ICC specifications
e 56,106 exits points

« 90% were found to have fixed Intent specification
o 45% have key-value data
e 29,154 entry points
« About 95% were found to have single Intent Filter specification
e 8,566 exported components, 5% protected by permissions

$

e |C3: Inter-Component Communication 2015
Analysis in Android with COAL

« More sophisticated two-phase string analysis using
flow graph of constraints on string operations

« Added deeper URI analysis
Precision

o—Ekp&HﬁW#@%{ 460 apps using IC3 and

e |dentified (possible) ICC Flows
Intelt&¥eftters 69% 86% .
Epicc: 120,817
URIs 34% 72% IC3: 26. 872

Total 66% 85%

Damien Octeau, Daniel Luchaup, Matthew Dering, Somesh Jha, and Patrick McDaniel. Composite Constant Propagation: Application to Android Inter-Component
Communication Analysis. Proceedings of the 37th International Conference on Software Engineering (ICSE), May 2015.

s

o Static analysis

o Epicc/EC2: find all Intent values at message-passing

program points

« Small static analysis imprecisions
cause explosion in number of
links at large scale

e 600 apps -> 2 million links!
« Two challenges
 Intent resolution

o Intent flow ranking

L51

Restaurant Search Application
(rest.app)

Intent (1)

Action: VIEW - VIEW
Categories: DEFAULT -
DEFAULT

Data scheme: geo - geo

Loy

Intent (2)

Target App: rest.app -
rest.app

Target Comp: DescActivity -
DescActivity

ListActivity

Intent (3)

Action: VIEW - .*
Categories: DEFAULT -
DEFAULT

Data scheme: geo - .*

Intent (4)

Action: DIAL - DIAL
Category: DEFAULT -
DEFAULT

Data scheme: tel - tel

Intent (5)
Target App: rest.app - .*

Target Comp: ListActivity - .*

DescActivity

——— Real links
—— - » False positives

2016

Map Application

Intent Filter (1)

Actions: VIEW
Categories: DEFAULT
Data scheme: geo

MapActivity

Spy Application

Intent Filter (2)

Actions: VIEW
Categories: DEFAULT
Data scheme: geo

MapActivity

Phone Application

Intent Filter (3)

Actions: DIAL, VIEW
Categories: DEFAULT
Data scheme: tel

DialerActivity

Other Application

Intent Filter (4)

Actions: CUSTOM
Categories: DEFAULT
Data scheme: custom

OtherActivity

D. Octeau, S. Jha, M. Dering, P.McDaniel, A. Bartel, Li Li, J.Klein, and Yves Le Traon. Combining Static Analysis with Probabilistic Models to Enable Market-Scale Android Inter-
Component Analysis. Proceedings of the 43rd ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL), January 2016. St. Petersburg, Florida, USA.

$

e Intent resolution - identitying the flows between

apps

« Compute inter-component links in scalable manner

« Take into account field value regular expressions

« Our algorithm is based on intersecting sets of Filters that
verify several I@tent fEgolution tests

« Exploits fast matching of constant intent values

e Runsintime

¢ Experiment
« Match 10,928 applications
e« Runtime: 8,434 seconds (140 mir

Intent

~where e is small constant

Application Name

Target Application

Target Component
Uses Permissions
Permission

Type

Action

Categories

Intent Filter

Data
e —

Application Name
Component Name
Permission

Uses Permissions
Exported

Type

Actions
Categories

Data
S —

S

Intent flow ranking - determining estimated likelihood of
flows being “real” by comparing against known flows

ldea: Intents are highly predictable

« For example, displaying a map is done by sending Intent with
VIEW action and geo scheme (common to applications)

« Explicit Intents almost always target components within the same
application, but often identified as being inter-application
Approach

« Estimate the probability of having a given Intent field combination,
given the Intents that are known, i.e., to simplify

P(flow) = % known Intent matching specifications matching Intent
filter

Intuition: how similar is potential flow to known flows

S

10,928 applications, 489,099,606 potential ICC flows
111,254 components, 58,480 Intent filters

452,984 Intent values (47% explicit, 53% implicit)
Key Results

: 107
e 97.3% links Pr() < 0.1 —10°
« 75% explicit links are g 10
. o o 10
tagged as mte.r—.appllcaho 2ol
e 99.6% of Implicit links 2 10" [
. . . o) 3
are inter-application A Il FIRR
0
1090 02 04 06 08 10
Probability P, ;

(a) Overall distribution of all probability values.

o Take away: vastly reduces the number of links

o | He secum!y Communliy Has !een ana|yzmg mo!l|e

applications for almost a decade now ..

Research is driven by deep and deeper questions

« Analysis techniques are getting more sophisticated ...

Volumes of data are getting larger ...

Adversarial behavior getting subtler and more costly ...

Industrial and academic cooperation is very strong ...

Future is bright for research!

