
No SQL, No Injection?
Examining NoSQL Security

Aviv Ron
Cyber security Center of Excellence

IBM

Beer Sheba, Israel

rona@il.ibm.com

Alexandra Shulman-Peleg

Cyber security Center of Excellence

IBM,

Beer Sheba, Israel

shulmana@il.ibm.com

Emanuel Bronshtein

Application Security Research

IBM

Herzliya, Israel

emanuelb@il.ibm.com

Abstract—NoSQL data storage systems have become very

popular due to their scalability and ease of use. This paper

examines the maturity of security measures for NoSQL

databases, addressing their new query and access mechanisms.

For example the emergence of new query formats makes the old

SQL injection techniques irrelevant, but are NoSQL databases

immune to injection in general? The answer is NO. Here we

present a few techniques for attacking NoSQL databases such as

injections and CSRF. We analyze the source of these

vulnerabilities and present methodologies to mitigate the attacks.

We show that this new vibrant technological area lacks the

security measures and awareness which have developed over the

years in traditional RDBMS SQL systems.

Keywords—sql injection; nosql; sql; database; mongodb;

nodejs; php; json ; injection; couchdb; cassandra; cloudant

I. INTRODUCTION

Database security has been and will continue to be one of
the more critical aspects of information security. Access to
enterprise database grants an attacker a great control over the
most critical data. For example, SQL injection attacks insert
malicious code into the statements passed by the application to
the database layer. This enables the attacker to do almost
anything with the data including accessing unauthorized data
as well as altering, deleting and inserting new data. Although
the exploitation of SQL injection has been declining steadily
over the years due to secure frameworks and improved
awareness it has remained a high impact means to exploit
system vulnerabilities. For example, it was shown that web
applications receive 4 or more web attack campaigns per
month and SQL injections are the most popular attacks on
Retailers [1]. Lately NoSQL databases have emerged and are
becoming more and more popular. Such databases for example
are MongoDB [2], Redis [3], and Cassandra [4]. Some of these
NoSQL databases use different query languages which make
the traditional SQL injection techniques irrelevant. But does
that mean NoSQL systems are immune to injections? Our
study shows that while the security of the query language itself
and the drivers has largely improved, there are still techniques
for injecting malicious queries. In this paper we wish to raise
the awareness of developers and information security owners
to NoSQL security – focusing on the dangers and their
mitigations. We present new injection techniques and discuss
approaches for the mitigation of such attacks such as PHP

array injection attack, MongoDB OR injection, arbitrary
JavaScript injection and more.

II. NOSQL

NoSQL (Not Only SQL) is a trending term in modern data

stores. These are non-relational databases that rely on different

storage mechanisms such as document store, key-value store,

graph and more. The wide adoption of these databases is

facilitated by the new requirements of modern large scale

applications (e.g. Facebook, Amazon, Twitter) which need to

distribute the data across a huge number of servers. These

scalability requirements cannot be met by traditional relational

databases which require that all operations of the same

transaction are executed by a single database node [5][6].

According to accepted database popularity ranking three of the

most common NoSQL databases (MongoDB, Cassandra and

Redis) are ranked among the 10 most popular databases [10]

and the popularity of NoSQL databases is constantly growing

over the last years [11] . Like almost every new technology,

NoSQL databases were lacking security when they first

emerged [7] [8]. They suffered from lack of encryption, proper

authentication and role management as well as fine grained

authorization [9], Furthermore, they allowed dangerous

network exposure and denial of service attacks [7]. Today the

situation is better and popular databases introduced built-in

protection mechanisms (e.g.,[23]). Yet, many best practices

from traditional SQL databases are overlooked and the security

of NoSQL deployments has not matured enough. In this paper

we extend the observations of Okman et al [8] by providing

detailed examples of NoSQL injection attacks. We describe

CSRF vulnerabilities and discuss the actions needed to mitigate

the risks of NoSQL attacks.

III. JSON QUERIES AND DATA FORMATS

In the following sections we demonstrate how the popular

JSON representation format allows new types of injection

attacks. We illustrate this on the example of MongoDB, which

is one of the most popular NoSQL databases [10]. MongoDB

is a document-oriented database, which has been adopted for

usage by multiple large vendors such as EBay, Foursquare,

LinkedIn and others [13].

Queries and Data are represented in JSON format, which is

better than SQL in terms of security because it is more “well

defined”, very simple to encode/decode and also has good

native implementations in every programming language.

Breaking the query structure as has been done in SQL

injection is harder to do with a JSON structured query. A

typical insert statement in MongoDB looks like:

This inserts a new document into the books collection with a

title and author field. A typical query looks like:

Queries can also include regular expressions, conditions, limit

which fields get queried and more.

IV. PHP ARRAY INJECTIONS

Let us examine an architecture depicted in Figure 1, where a

web application is implemented with a PHP backend, which

encodes the requests to the JSON format used to query the

data store. Let’s use an example of MongoDB to show an

array injection vulnerability – an attack similar to SQL

injection in its technique and results.

Figure 1: Architecture of a PHP web application

PHP encodes arrays to JSON natively. So for example the

following array:

would be encoded by PHP to the following json:

Lets consider the following situation: A PHP application has a

login mechanism where username and password are sent from

the users browser via HTTP POST (the vulnerability is

applicable also HTTP GET as well). A typical POST payload

would look like:

And the backend PHP code to process it and query MongoDB

for the user would look like:

This makes perfect sense and is intuitively what the developer

is likely to do, intending a query of:

But PHP has a built in mechanism for associative arrays which

allows an attacker to send the following malicious payload:

PHP translates this input into:

Which is encoded into the mongo query:

Since $ne is the not equals condition in MongoDB, this is

querying all the entries in the logins collection where the

username is not equal to 1 and the password is not equal to 1

which means this query will return all the users in the logins

collection, in SQL terminology this is equivalent to:

In this scenario the vulnerability will lead to the attacker being

able to log in to the application without a username and

password. In other variants the vulnerability might lead to

illegal data access or privileged actions performed by an

unprivileged user. To mitigate this issue it is needed to cast the

parameters received from the request to the proper type, in this

case string.

V. NOSQL OR INJECTION

One of the common reasons for a SQL injection vulnerability

is building the query from string literals which include user

input without using proper encoding. The JSON query

structure makes it harder to achieve in modern data stores like

MongoDB. Nevertheless it is still possible. Let us examine a

login form which sends its username and password parameters

via an HTTP POST to the backend which constructs the query

by concatenating strings. For example the developer would do

something like:

With valid input (tolkien + hobbit) this would build the query:

But with malicious input this query can be turned to ignore the

password and login into a user account without the password,

here is an example for malicious input:

This input will be constructed into the following query:

This query will succeed as long as the username is correct. In

SQL terminology this query is similar to:

That is, the password becomes a redundant part of the query

since an empty query {} is always true and the comment in the

end does not affect the query. How did this happen? Let’s

examine the constructed query again and color the user input

in bold red and the rest in black:

This attack will succeed in any case the username is correct,

an assumption which is valid since harvesting user names isn’t

hard to achieve [15].

db.books.find({ title: ‘The Hobbit’ })

db.books.insert({
 title: ‘The Hobbit’,
 author: ‘J.R.R. Tolkien’
})

{ username: ‘tolkien’, $or: [{}, { ‘a’: ‘a’, password: ‘’ }
], $comment: ‘successful MongoDB injection’ }

SELECT * FROM logins WHERE username = ‘tolkien’ AND (TRUE OR
(‘a’=’a’ AND password = ‘’)) #successful MongoDB injection

{ username: ‘tolkien’, $or: [{}, { ‘a’: ‘a’, password: ‘’ }
], $comment: ‘successful MongoDB injection’ }

username=tolkien’, $or: [{}, { ‘a’:’a&password=’ }],
$comment:’successful MongoDB injection’

{ username: ‘tolkien’, password: ‘hobbit’ }

string query = “{ username: ‘“ + post_username + “’, password:
‘” + post_password + “’ }”

SELECT * FROM logins WHERE username <> 1 AND password <> 1

db.logins.find({ username: { $ne: 1 }, password: { $ne: 1 } })

array(“username” => array(“$ne” => 1), “password” =>
array(“$ne” => 1));

username[$ne]=1&password[$ne]=1

db.logins.find({ username: ‘tolkien’, password: ‘hobbit’ })

db->logins->find(array(“username”=>$_POST[“username”],
“password”=>$_POST[“password”]));

username=tolkien&password=hobbit

{“title”: ”The hobbit”, “author”: “J.R.R. Tolkien” }

array(‘title’ => ‘The hobbit’, ‘author’ => ‘J.R.R. Tolkien’);

VI. NOSQL JAVASCRIPT INJECTION

A common feature of NoSQL databases is the ability to run

javascript in the database engine in order to perform

complicated queries or transactions such as map reduce. For

example popular databases which allow this are MongoDB,

CouchDB and its based descendants Cloudant [16] and

BigCouch [17]. Javascript execution exposes a dangerous

attack surface if un-escaped or not sufficiently escaped user

input finds its way to the query. For example consider a

complicated transaction which demanded javascript code and

which includes an unescaped user input as a parameter in the

query. As a use case let’s take a model of a store which has a

collection of items and each item has a price and an amount.

The developer wanted to get the sum or average of these

fields, so he writes a map reduce function that takes the field

name that it should act upon (amount or price) as a parameter

from the user. In PHP such code can look like this (where

$param is user input):

This code sums the field given by $param for each item by

name. $param is expected to receive either “amount” or

“price” for this code to behave as expected, but since user

input is not being escaped here, a malicious input might

include arbitrary javascript that will get executed. For

Example, consider the following input:

In its first part (in green) this payload closes the original map

reduce function, then the attacker can execute any javascript

he wishes on the database (in red) and eventually the last part

(in blue) calls a new map reduce in order to balance the

injected code into the original statement. After combining this

user input into the string that gets executed we get (injected

user input is colored in red):

This injection looks very similar to “classic” SQL injection.

The defense against such an attack is disabling usage of

javascript execution but if still required, properly escaping

user input that finds its way into the code.

VII. HTTP REST API AND ITS CONSEQUENCES

Another common feature of NoSQL databases is exposing an

HTTP REST API that enables querying the database from

client applications. For example, databases that expose a

REST API include MongoDB, CouchDB and HBase. The

exposure of a REST API enables simple exposure of the

database to applications; even HTML5 only based

applications, since it terminates the need for a mediate driver

and allows any programming language to perform HTTP

queries on the database. The advantages are clear, but does

this feature come with a risk to security? We answer this on

the affirmative: the REST API exposes the database to CSRF

attacks allowing an attacker to bypass firewalls and other

perimeter defenses. Let us examine how. As long as a

database is deployed in a secure network behind security

measures, such as firewalls, in order to compromise the

database an attacker must either find a vulnerability that will

let him into the secure network or perform an injection that

will allow him to execute arbitrary queries. When a database

exposes a REST API inside the secured network it allows

anyone with access to the secured network to perform queries

on the database using HTTP only – thus allowing such queries

to be initiated even from the browser. If an attacker can inject

an HTML form into a website or trick a user into a website of

his own the attacker can perform any POST action on the

database by submitting the form. POST actions include adding

documents. For example, an attacker controls a malicious

website and tricks an employee of company A to browse to

that website, a technique called spear phishing (step 1 in Fig

2). Once the employee browses to the website a script submits

an HTML form with an Action URL of an internal NoSQL

DB (step 2). Since the employee is inside the secure network

the DB is accessible for him and the action will succeed (step

3).

Figure 2: CSRF via NoSQL REST API

VIII. MITIGATION

Mitigating security risks in NoSQL deployments is important

in light of the attack vectors we presented in this paper. Let’s

examine a few recommendations for each of the threats:

A. Security scanning to prevent injections

In order to mitigate injection attacks it is recommended to use

out of the box encoding tools when building queries. For

JSON queries such as in MongoDB and CouchDB almost all

languages have good native encoding which will terminate the

db.stores.mapReduce(function() {
 for (var i = 0; i < this.items.length; i++) {
 emit(this.name, this.items[i].a);
 }
},function(kv) { return 1; }, { out: 'x' });
db.injection.insert({success:1});
return 1;db.stores.mapReduce(function() { { emit(1,1); } },
function(name, sum) { return Array.sum(sum); }, { out:
'totals' });"

a);}},function(kv) { return 1; }, { out: 'x'
});db.injection.insert({success:1});return
1;db.stores.mapReduce(function() { { emit(1,1

$map = "function() {
 for (var i = 0; i < this.items.length; i++) {
 emit(this.name, this.items[i].$param); } }";
$reduce = "function(name, sum) { return Array.sum(sum); }";
$opt = "{ out: 'totals' }";
$db->execute("db.stores.mapReduce($map, $reduce, $opt);");

injection risk. It is also recommended to run Dynamic

Application Security Testing (DAST) and static code analysis

on the application in order to find any injection vulnerabilities

if coding guidelines were not followed [18]. The problem is

that many of the tools in the market today still lack rules for

detecting NoSQL injections. DAST methodology is

considered more reliable than static analysis [20], especially if

used in conjunction with some backend inspection technology

that improves detection reliability, a methodology referred to

as Interactive Application Security Testing (IAST) [21][22].

B. REST API exposure

To mitigate the risks of REST API exposure and CSRF

attacks, there is a need to control the requests, limiting their

format. For example, CouchDB has adopted some important

security measures that mitigate the risk from having a REST

API exposed. These measures include accepting only JSON in

the content type. HTML forms are limited to URL encoded

content type and hence an attacker will not be able to use html

forms for CSRF and the other alternative is using AJAX

requests and those are blocked by the browser thanks to same

origin policy. It is also important to make sure JSONP and

CORS are disabled in the server API to make sure that no

actions can be made directly from a browser. It is important to

note that some databases like MongoDB have many third

party REST API’s which are encouraged by the main project,

some of these are really lacking in the security measures we

described here.

C. Access Control and Prevention of Privilege Escalation

In the past NoSQL did not support proper authentication and

role management [9], today it is possible to manage proper

authentication and RBAC authorization on most popular

NoSQL databases. Utilizing these mechanisms is important

for two reasons. First, they allow enforcing the principle of

least privilege thus preventing privilege escalation attacks by

legitimate users. Second, similarly to SQL injection

attacks [19], proper privilege isolation allows to minimize the

damage in case of data store exposure via the above described

injections. Figure 3 illustrates an example in which the data

accessible via a web application is authorized with a “user”

role, while the sensitive entries require the “admin” role,

which is never granted via the web interface. This allows

scoping the damage in case of attack, ensuring that no

administrators’ data is leaked.

Figure 3: RBAC implemented on a NoSQL data store

IX. SUMMARY

We have shown that NoSQL databases suffer from the same

security risks as their SQL counterparts. Some of the low level

techniques and protocols have changed but still the risks of

injection, improper access control management and unsafe

network exposure are high and similar between SQL and

NoSQL systems. We recommend using mature databases with

built-in security measures. However, even using the most

secure data store does not prevent injection attacks which

leverage vulnerabilities in the web applications accessing the

data store. One way to prevent these is via careful code

examination and static analysis. However, these may have

high false positive rates and are difficult to conduct. While,

dynamic analysis tools were shown to be very useful for the

detection of SQL injection attacks [21], these should be

adjusted to detect the specific vulnerabilities of NoSQL

databases that we described in this paper.

REFERENCES

[1] "Imperva Web Application Attack Report"
http://www.imperva.com/docs/HII_Web_Application_Attack_Report_E
d4.pdf

[2] MongoDB web site www.mongodb.org

[3] Redis Web site http://redis.io/

[4] Cassandra Web site http://cassandra.apache.org/

[5] Moniruzzaman, A. et. Al,. "Nosql database: New era of databases for
big data analytics-classification, characteristics and comparison."

[6] Parker, Zachary, et. al. "Comparing nosql mongodb to an sql
db." Proceedings of the 51st ACM Southeast Conference. ACM, 2013.

[7] No SQL and No Security https://www.securosis.com/blog/nosql-and-no-
security

[8] Okman, Lior, et al. "Security issues in nosql databases." Trust, Security
and Privacy in Computing and Communications (TrustCom), 2011 IEEE
10th International Conference on. IEEE, 2011.

[9] Factor, Michael, et al. "Secure Logical Isolation for Multi-tenancy in
cloud storage." Mass Storage Systems and Technologies (MSST), 2013
IEEE 29th Symposium on. IEEE, 2013.

[10] DB-Engines Ranking, http://db-engines.com/en/ranking

[11] DB-Engines trends, http://db-engines.com/en/ranking_trend

[12] DB-Engines popularity changes, http://db-
engines.com/en/ranking_categories

[13] MongoDB, Customers http://www.mongodb.com/industries/high-tech

[14] MongoDB, Sharding http://docs.mongodb.org/manual/sharding/

[15] “Invalid Username or Password”: a useless security measure
https://kev.inburke.com/kevin/invalid-username-or-password-useless/

[16] Cloudant web site https://cloudant.com/

[17] BigCouch web site http://bigcouch.cloudant.com/

[18] Static or Dynamic Application Security Testing? Both!
http://blogs.gartner.com/neil_macdonald/2011/01/19/static-or-dynamic-
application-security-testing-both/

[19] Least Privilege mitigation to SQL injection
https://www.owasp.org/index.php/SQL_Injection_Prevention_Cheat_Sh
eet#Least_Privilege

[20] Haldar, Vivek, Deepak Chandra, and Michael Franz. "Dynamic taint
propagation for Java." Computer Security Applications Conference, 21st
Annual. IEEE, 2005.

[21] 9 Advantages of Interactive Application Security Testing (IAST) over
Static (SAST) and Dynamic (DAST) Testing
http://www1.contrastsecurity.com/blog/9-reasons-why-interactive-tools-
are-better-than-static-or-dynamic-tools-regarding-application-security

[22] Glass Box: The Next Phase of Web Application Security Testing?
http://www.esecurityplanet.com/network-security/glass-box-the-next-
phase-of-web-application-security-testing.html

[23] MongoDB documentation on Security
http://docs.mongodb.org/manual/core/security-introduction/

[24] J. H. Saltzer and M. D. Schroeder. The protection of information in
computer systems. In Proc. IEEE, 63(9):1278–1308, 1975.

http://www.imperva.com/docs/HII_Web_Application_Attack_Report_Ed4.pdf
http://www.imperva.com/docs/HII_Web_Application_Attack_Report_Ed4.pdf
http://www.imperva.com/docs/HII_Web_Application_Attack_Report_Ed4.pdf
http://www.mongodb.org/
http://redis.io/
http://cassandra.apache.org/
https://www.securosis.com/blog/nosql-and-no-security
https://www.securosis.com/blog/nosql-and-no-security
http://db-engines.com/en/ranking
http://db-engines.com/en/ranking_trend
http://db-engines.com/en/ranking_categories
http://db-engines.com/en/ranking_categories
http://www.mongodb.com/industries/high-tech
http://docs.mongodb.org/manual/sharding/
https://kev.inburke.com/kevin/invalid-username-or-password-useless/
https://cloudant.com/
http://bigcouch.cloudant.com/
http://blogs.gartner.com/neil_macdonald/2011/01/19/static-or-dynamic-application-security-testing-both/
http://blogs.gartner.com/neil_macdonald/2011/01/19/static-or-dynamic-application-security-testing-both/
https://www.owasp.org/index.php/SQL_Injection_Prevention_Cheat_Sheet#Least_Privilege
https://www.owasp.org/index.php/SQL_Injection_Prevention_Cheat_Sheet#Least_Privilege
http://www1.contrastsecurity.com/blog/9-reasons-why-interactive-tools-are-better-than-static-or-dynamic-tools-regarding-application-security
http://www1.contrastsecurity.com/blog/9-reasons-why-interactive-tools-are-better-than-static-or-dynamic-tools-regarding-application-security
http://www.esecurityplanet.com/network-security/glass-box-the-next-phase-of-web-application-security-testing.html
http://www.esecurityplanet.com/network-security/glass-box-the-next-phase-of-web-application-security-testing.html
http://docs.mongodb.org/manual/core/security-introduction/

