On the Need of Precise Inter-App ICC
Classification for Detecting Android

Malware Collusions

Karim O. Elish,
Danfeng (Daphne) Yao, and Barbara G. Ryder
Department of Computer Science
Virginia Tech

May 21, 2015 MVirginiaTech

DIm/enf the Future

Problem and Motivation

NEW ANDROID MALWARE SAMPLES / HALF-YEARLY

Symbian 1,000,000
19% i0S
0.70%

others,
0.70% L%t 672,940

Windows
=\ i o 519,095
H%oblle 0.30% 500[000 ,,,,,,,,

BlackBerry
0.30%

751,136

Android
79%

250,000 185,210 4 e 0 4

~. > o 126 3683 29,117
o (H1)2011 (H2) (H1) 2012 (H2) (H1)2013 (H2) (H1)2014

Source: G DATA Software AG

Malware Threat to
Mobile OS [cIo Insight, 2012]

e Threats
* Abuse of system resources
» Leak of sensitive data

Malware Evolution: App Collusion

* Collusion refers to the scenario where two or more apps

Interact with each other to perform malicious tasks
— Directly: Android Intent-based inter-component communication (ICC)
— Indirectly: shared files,...etc.

« Existing solutions assume the attack model of a single
malicious app, and thus cannot detect collusion

App A
Operations:
Malicious App X 1. Access contacts
/‘ \\ Permissions:
1. Access contacts . . .
2. Network and operations being split
Permissions: App B between CoIIuding apps
1. READ_CONTACTS
2_INTERNET Operations:
k j 1. Network

Permissions:
1. INTERNET

Existing Solutions & Limitations

Solution Analysis Collusion Limitation
Type Classification
Policies
XManDroid - Dynamic Permissions - High false alerts
[NDSS'12] - Pair of apps | Combinations - Scalability
- Circumvented by long chain of collusion
CHEX - Static No - Vulnerability analysis only
[CCS’12] - Single app - Can not track data via ICC
CombDroid - Static No - Vulnerability analysis only
[MobiSys’11] | - Single app - Can’t track path from public component
to critical operation -> false alerts
Epicc - Static No - Same as ComDroid
[USENIX13] |- Single app
Amandroid - Static No - No analysis/info on how to connect ICC
[CCS’14] - Single app among apps

Our Goal

To characterize ICC and to experimentally demonstrate
the difficulties and technical challenges associated with
app collusion detection

Application X ApplicationY

DatafAction

Y ™

-

ICC Exit
Point

ICC Entry
Point

Component A Component C

DatafAction

ICC Entry
Point

™

-~

ICC Exit

Point Component D

Component B

App X has set of
permissions not
in App Y

App Y has set of
permissions not
in App X

Static Characterization of ICC

* We developed a static analysis tool (ICC Map) to model
the Intent-based ICC of Android apps

« |CC Map captures all types of communication (internal
and external) of an app

— <ICCName,, sourceComponent,, targetComponent,, typeOfCommunication,>,

abc ssd.TrafficInfoCheck. Traffi cInfoActlwty abc.ssd.TrafﬁcInfoCheck.Wldget.AppWidgetEx]
startActivityForResult (startActivityForResult () _ startService ()
stopService()
startActivity ()
abe.ssd.TrafficInfoCheck. Traffi cInfoSﬁeActwrty abc ssd.TrafficInfoCheck.SettingActivity abc.ssd. TrafficinfoCheck. Widget. WidgetRepeatReceiver
(Internal ICC) (Internal ICC) (Internal ICC)

[android.intent.action.VIEW (External ICC)] [abc.ssd.TrafﬁcInfo?lrr:te;rlzg:f:cé?g)t.ApledgetSerwce]

Partial ICC map for “abc.ssd.TrafficinfoCheck” app

Experimental Evaluation

« We statically construct ICC Maps of 2,644 benign
apps collected from Google Play

* The objectives of the study:

1.

How often do benign apps perform inter-app
communications with other apps?

How effective is the existing collusion detection solution
(namely XManDroid) in terms of false positive rate?

Experimental Evidence

Action Used in External Implicit Intent ICC # of Apps (%) Z
android.intent.action. VIEW 1870 (70.7%) 7
android.intent.action.SEND 943 (35.7%) 256
android.intent.action.DIAL 399 (15.1%) g 5
android.intent.action.GET _CONTENT 275 (10.4%) Y 4
android.media.action.IMAGE CAPTURE 231 (8.7%) fg
android.intent.action.CALL 158 (6.0%) * 3
android.intent.action.PICK 139 (5.3%) 2
android.intent.action.SENDTO 122 (4.6%) 1
android.media.action.VIDEO_CAPTURE 62 (2.3%) 0 . T T T
android.intent.action.DELETE 53 (2.0%) Policy # 8 Policy #9 Policy # 10Policy # 11
android.intent.action.EDIT 48 (1.8%) Existing collusion detection solution
aﬂgig-_SPeeih-ﬂétiOHﬂ?gS&GﬂlgS%PEEgCH jg 3-23}; (XManDroid) triggers a large number of false
android.intent.action. 6% . . . :
android.intent.action.INSERT 33 (1.2%) alerts I.n benlgn_app pa.l r.S (11 out of 2.0 benign
android intent. action SEARCH 20 (0.8%) app pairs are misclassified as collusion)
android.intent.action.RINGTONE_PICKER 19 (0.7%) Policy Description
android.intent.action. WEB_SEARCH 12 (0.5%)
android.intent.action.SYNC 3 (0.1%) 3 — communicate(A,B) if (A has INTERNET A
android.intent.action. ANSWER 2 (0.1%) B has ACCESS_FINE_LOCATION)
. — 9 — communicate(A,B) if (A has INTERNET A Subset of
of apps with external implicit Intent ICC 1932 (73.1%) B has READ_CONTACTS) XManDroid’s
of apps with external explicit Intent ICC 298 (11.3%) 10 . communicae(A.B) if (A has INTERNET A POlICY
" B has READ_SMS)
| Total # of apps with external ICC 2230 (84.4%) | _ _
11 = communicate(A.B) if (A has INTERNET A
Total # of apps with Internal ICC only 414 (15.6%) B has RECORD_AUDIO A PHONE_STATE)

Collusion Detection: Challenges

W Challenges & Problems:
O » Many benign apps interacts
ST e) with other apps
i, , B 4|« Analysis scalability with
Om: | O % minimum complexity
] comp EXisting solution produces
g Componenuui e large number of false alerts
sensitive data u Exit Point

Componentwith

sensitive operation | Entry Point

Solution for detecting malware collusion needs:

« To be able to characterize the context associated with communication
channels with fine granularity

« To define security policies to classify benign ICC flows from colluding ones
with low false alerts

 To be scalable to a large number of apps (e.g., tens of thousands of apps)

Improving Collusion Detection with Deep Cross-

App Data-flow Analysis

4 App Y N Case 1: request non-sensitive data 4 App X A
(Generate false alert)

. . %
Location info Network
Case 2: send non-sensitive data operation

(Generate false alert)

ACCESS_FINE_
LOCATION INTERNET
Permission Permission
_ J _

* |CC involving non-sensitive data or request should NOT be
alerted, despite of the sensitive permission combination
(ACCESS_FINE_LOCATION and INTERNET)

« We argue that there is a need for a more practical solution
based on in-depth static flow analysis that captures the
context associated with the ICC

Improving Collusion Detection with Deep Cross-

App Data-flow Analysis

/ Source -\ / Destination -\ Source App:
App X App Y v’ Access sensitive data
. v'Send sensitive data
User trigger

v'User triggers for
accessing & sending

Access Sensitive o BESti“i_“_iO“ App:
Data (location) Sensitive operation

v '
Sensitive .
[Operation] Deep static data-flow
/ (network) L.
analysis in both source
ACCESS _FINE I I
= INTERNET and c{estlnatlon apps
__Permission _/ \. / (requires new program

analysis algorithms
and data structures)

Conclusions & Future Work

« This work demonstrates experimentally the challenges to
detect malware collusion

 Future work

— We plan to utilize our ICC Map for app collusion detection
and define more fine-grained security policies to reduce
false alerts

« App collusion analysis has many useful applications:

— Enable app store to perform massive screening of the apps
to detect possible collusion

— Enable the user to check apps before installing to detect
possible collusion with the pre-installed apps

Thank You...

