Graphical User Interface for Virtualized Mobile Handsets

Janis Danisevskis,

Michael Peter, Jan Nordholz, Matthias Petschick, Julian Vetter

> Security in Telecommunications Technische Universität Berlin

> > MoST San José May 21st, 2015

・ロト ・部ト ・ヨト ・ヨト

Bring You Own Device

Business Phone Policy (possibly)

- Restricted set of apps
- Restricted internet access (VPN/Firewall)
- Remote provisioning

Bring You Own Device

Private Phone Policy (likely)

This is my phone, so I do whatever I want. And, don't meddle with my stuff.

★ E → ★ E →

Our approach on BYOD

Speaker: Janis Danisevskis

Graphical User Interface for Virtualized Mobile Handsets 4/20

Our approach on BYOD

Speaker: Janis Danisevskis

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < Graphical User Interface for Virtualized Mobile Handsets 4/20

э

Our approach on BYOD

Speaker: Janis Danisevskis Graphical User Interface for Virtualized Mobile Handsets 4/20

Our approach on BYOD

Speaker: Janis Danisevskis

Graphical User Interface for Virtualized Mobile Handsets 4/20

Challenges addressed by this work

Threat Model

Private side is under the control of an attacker

- Impersonation attacks
- Eavesdropping attacks
- Evasion of isolation

Graphical User Interface for Virtualized Mobile Handsets 5/20

Challenges addressed by this work

Threat Model

Private side is under the control of an attacker

- Impersonation attacks
- Eavesdropping attacks
- Evasion of isolation

Corporate Email App

From: Your Boss

Subject: New Aquisition

Transfer \$gazillion to account no: xxxevilxxxx

Your Boss

Speaker: Janis Danisevskis

Challenges addressed by this work

Threat Model

Private side is under the control of an attacker

- Impersonation attacks
- Eavesdropping attacks
- Evasion of isolation

- Keylogging/ Logging of touch events
- Spying on screen output

→ E > < E >

Challenges addressed by this work

Threat Model

Private side is under the control of an attacker

- Impersonation attacks
- Eavesdropping attacks
- Evasion of isolation

DMA devices can threaten isolation

[7] Cloudburst (2009)

[6] Dark Side of the Shader: Mobile GPU-Aided Malware Delivery (2013)

[3, 5, 4] "Fire in the (root) hole!" (2014)

・ 同 ト ・ ヨ ト ・ ヨ ト

Challenges addressed by this work

Threat Model

Private side is under the control of an attacker

- Impersonation attacks
- Eavesdropping attacks
- Evasion of isolation

Design Goals

• High graphics performance

・ 回 ト ・ ヨ ト ・ ヨ ト

- Low impact on CPU load
- Low impact on the TCB

Challenges addressed by this work

Threat Model

Private side is under the control of an attacker

- Impersonation attacks
- Eavesdropping attacks
- Evasion of isolation

Design Goals

• High graphics performance

★ E → ★ E →

- Low impact on CPU load
- Low impact on the TCB

< < >> < </>

Design and Implementation

- Secure GUI (Trusted path)
- Secure Mobile GPU Virtualization

Output label

Speaker: Janis Danisevskis

Graphical User Interface for Virtualized Mobile Handsets 6/20

Screen is split into label region and client region

Speaker: Janis Danisevskis Graphical User Interface for Virtualized Mobile Handsets 7/20

ъ

Client VMs have private framebuffers

Speaker: Janis Danisevskis Graphical User Interface for Virtualized Mobile Handsets 7/20

▶ < Ξ

Label controlled by the switcher indicates output routing

★ ≥ > < ≥</p>

Zero copy and composition in hardware

Speaker: Janis Danisevskis Graphical User Interface for Virtualized Mobile Handsets 7/20

∃ → (∃ →

Speaker: Janis Danisevskis Graphical User Interface for Virtualized Mobile Handsets 8/20

ヘロン 人間 とくほど くほとう

э

Speaker: Janis Danisevskis Graphical User Interface for Virtualized Mobile Handsets 9/20

イロト 不得 とくほ とくほとう

э

Summary: Secure GUI

- Unforgeable labels
 - \rightarrow prevents impersonation
- Private framebuffers and exclusive input routing
 - \rightarrow prevent eavesdropping
- Zero copy with hardware overlays
 - \rightarrow low CPU load and low complexity

→ E → < E →</p>

Mobile GPU Driver Stack

- User-space driver
 - Provides: OpenGL/EGL abstraction
 - Comprises: shader compiler, linker, ...
- Kernel-space driver
 - Schedules rendering tasks
 - Protects memory

Mobile GPU Driver Stack

- User-space driver
 - Provides: OpenGL/EGL abstraction
 - Comprises: shader compiler, linker, ...
- Kernel-space driver
 - Schedules rendering tasks

・ 同 ト ・ ヨ ト ・ ヨ ト

Protects memory

Mobile GPU Driver Stack

- User-space driver
 - Provides: OpenGL/EGL abstraction
 - Comprises: shader compiler, linker, ...
- Kernel-space driver
 - Schedules rendering tasks
 - Protects memory

Graphical User Interface for Virtualized Mobile Handsets 11/20

Mobile GPU Driver Stack (paravirtualized)

• User-space driver unmodified

- User-kernel interface unmodified
- Custom protocol between GPU driver stub and GPU server
 - <u>No</u> forwarding of high bandwidth data, such as textures, attribute lists, or shader programs
 - Forwards job requests to the GPU server (and job completion notifications to the client)
 - Forwards mapping requests to the GPU server

Graphical User Interface for Virtualized Mobile Handsets 12/20

Mobile GPU Driver Stack (paravirtualized)

- User-space driver unmodified
- User-kernel interface unmodified
- Custom protocol between GPU driver stub and GPU server
 - <u>No</u> forwarding of high bandwidth data, such as textures, attribute lists, or shader programs
 - Forwards job requests to the GPU server (and job completion notifications to the client)
 - Forwards mapping requests to the GPU server

Graphical User Interface for Virtualized Mobile Handsets 12/20

Mobile GPU Driver Stack (paravirtualized)

- User-space driver unmodified
- User-kernel interface unmodified
- Custom protocol between GPU driver stub and GPU server
 - <u>No</u> forwarding of high bandwidth data, such as textures, attribute lists, or shader programs
 - Forwards job requests to the GPU server (and job completion notifications to the client)
 - Forwards mapping requests to the GPU server

Graphical User Interface for Virtualized Mobile Handsets 12/20

Mobile GPU Driver Stack (paravirtualized)

Hardware

Samsung Galaxy SIII

- Exynos4412 SoC
- 4 × ARM Cortex A9 @ 1.4 GHz
- ARM Mali 400 MP4 GPU

Software

- Fiasco.OC (based on rev. 38)
- L4Re (based on rev. 38)
- L4Linux (based on Linux 3.0.101)
- Cyanogenmod CM-10.1.3

27

Module	SLOC ¹	
GPU-RG ²	2,679	
display driver	2,382	
framebuffer switch	548	
input driver	710	
input switch	539	
total	6,858	

¹Source lines of code measured with David A. Wheeler's "SLOCCount" ²GPU-RG: Name of our GPU-server (RG is for resource governor)

Speaker: Janis Danisevskis Graphical User Interface for Virtualized Mobile Handsets 14/20

Performance evaluation — experiments

Native

Cyanogenmod on Linux on bare metal

Pass-through

Cyanogenmod on L4Linux on Fiasco.OC GPU driven by the guest kernel

GPU-RG

Cyanogenmod on L4Linux on Fiasco.OC GPU driven by GPU-RG

Speaker: Janis Danisevskis Graphical User Interface for Virtualized Mobile Handsets 15/20

ヘロト ヘワト ヘビト ヘビト

Performance evaluation — benchmarks

Speaker: Janis Danisevskis Graphical User Interface for Virtualized Mobile Handsets 16/20

Performance evaluation — benchmarks

Job Submission and Notification cost

experiment			GP ¹	PP ¹
native	submit	[µs]	15.0	25.2
pass-through	submit	[µs]	22.1	34.9
	notify	[µs]	3.6	3.2
GPU-RG	submit	[µs]	47.3	67.5
	notify	[µs]	52.8	49.7

Takeaway:

To meet a job submission rate of 60 Hz, an additional 2.3 % of CPU utilization is incurred on one CPU core.

¹The ARM Mali 400 MP4 GPU has a geometry processor (GP) and 4 pixes presenters (PP)

Conclusion

Secure GUI (Trusted Path) addresses:

- Impersonation attacks
- Eavesdropping attacks
- Impact on CPU load and TCB

Secure GPU virtualization addresses:

- Enforced isolation of GPU jobs
- Low overhead for GPU jobs

ヘロト ヘワト ヘビト ヘビト

Low impact on TCB

Questions?

Speaker: Janis Danisevskis Graphical User Interface for Virtualized Mobile Handsets 20/20

[1] 0xbench.

https://code.google.com/p/0xbench/.

[2] Qiiii4a.

https://play.google.com/store/apps/details? id=com.n0n3m4.QIII4A&hl=de.

[3] Cve-2014-0972.

http://cve.mitre.org/cgi-bin/cvename.cgi?
name=CVE-2014-0972, 01 1014.

・ 同 ト ・ ヨ ト ・ ヨ ト ・

[4] Rob Clark.

Fire in the (root) hole!
http://bloggingthemonkey.blogspot.de/2014/
06/fire-in-root-hole.html.

[5] Rob Clark.

Kilroy.

https://github.com/robclark/kilroy.

References III

[6] Janis Danisevskis, Marta Piekarska, and Jean-Pierre Seifert.

Dark side of the shader: Mobile gpu-aided malware delivery.

In Hyang-Sook Lee and Dong-Guk Han, editors, <u>Information</u> Security and Cryptology - ICISC 2013 - 16th International Conference, Seoul, Korea, November 27-29, 2013, Revised Selected Papers, volume 8565 of <u>Lecture Notes in</u> Computer Science, pages 483–495. Springer, 2013.

[7] Kostya Kortchinsky.

Cloudburst.

Black Hat USA June, 2009.

A B A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

(< ∃) < ∃)</p>