
The Weird Machines in Proof-Carrying Code
Invited paper

IEEE Security and Privacy LangSec Workshop 2014

Julien Vanegue

Bloomberg L.P.

New York, USA.

Abstract—We review different attack vectors on Proof-
Carrying Code (PCC) related to policy, memory model, machine
abstraction, and formal system. We capture the notion of weird
machines in PCC to formalize the shadow execution arising
in programs when their proofs do not sufficiently capture and
disallow the execution of untrusted computations. We suggest a
few ideas to improve existing PCC systems so they are more
resilient to memory attacks.

I. INTRODUCTION

Proof-Carrying Code (PCC) [Nec97] is a framework in

which untrusted programs can be securely executed based

on enforcing a contract, checked either before (or during)

program execution. In the last few decades, a great amount

of effort has been dedicated to verify the safety of critical

programs from embedded real-time systems to common

software part of major operating systems.

Proof-Carrying code comes into two main flavors: the

original Proof-Carrying Code of Necula, and the Foundational

Proof-Carrying (FPCC) Code by Appel. While in PCC, it is

possible to make use of type rules directly in the axioms of

the system (therefore making the system strongly tied to the

type system), FPCC forces each type rule to be first defined

from ground axioms. As such, new FPCC’s type systems can

be customized without losing soundness.

A tempting assumption for PCC is to use it as an

integrity system where the program is ensured to satisfy its

specification as long as its proof is independently verified

by the executing system. However, the original PCC goal

was not to prove that the system only executes what the

specification enforces, and nothing else. This is shown

in the set of original PCC articles where invariants are

checked at specific program points by introducing a new

virtual instruction INV whose parameter is an assertion

that must be verified by the program in that context so

that execution can continue. PCC does not capture whether

the program also executed additional instructions that were

not accounted for in the specification. We say that PCC is

vulnerable to weird machines, computational artifacts (some

say gadgets) where additional code execution can happen

in proved programs and will escape the program specification.

Foundational Proof Carrying Code (FPCC) [App01] was

designed in a different approach, where semantic rules

for an abstract machine instruction set contain additional

conditions capturing that parts of the machine contexts

(memory, registers, etc) are not affected by instructions.

This is characterized in FPCC by using memory contexts to

track only alues that have changed during the execution of

the typed inference rule. As such, FPCC is more resiliant

to weird machines than PCC. Additionally, FPCC suggests

the use of type-preserving compilers, such as the one

in CompCert [Ler06], where proofs in source code can

translate to proofs on machine code. This is to protect against

invalidating the safety invariants in an untrusted or incorrect

compiler. Such end-to-end certification systems offer much

fewer opportunities to go wrong than traditional PCC-style

systems.

Nonetheless, attacks on FPCC can happen when the

memory model, the machine abstraction, or the policy itself

are incomplete or incorrect.

In attacks against memory model, an attacker takes advantage

of the fact that real machine operations are not captured

in the PCC machine semantics. For example, the order of

bits in the encoding of data types such as integers, pointers

and bit vectors is specified by the memory model. The

CompCert memory model [XL12] represent memory at

the byte level and models integer signs. It can deal with

invalid computations acting on a mix of pointer and integer

variables. For example, the pointer type in CompCert cannot

be manipulated byte by byte, which blocks attacks based on

partial pointer overrides due to memory corruption issues. On

the other hand, no bit field algebra is available besides the

one allowing conversion from integer to float (double) type

such as in the presence of union types in the C language. As

such, the model fails to capture cases where bit field of 31

bits are cast from/to 32 bits integers. Since variable-length bit

fields are not supported in the memory model, it is unclear

how to define a program that manipulates such objects in

CompCert, as this can be the case in common programs.

2014 IEEE Security and Privacy Workshops

© 2014, Julien Vanegue. Under license to IEEE.

DOI 10.1109/SPW.2014.37

204

2014 IEEE Security and Privacy Workshops

© 2014, Julien Vanegue. Under license to IEEE.

DOI 10.1109/SPW.2014.37

204

2014 IEEE Security and Privacy Workshops

© 2014, Julien Vanegue. Under license to IEEE.

DOI 10.1109/SPW.2014.37

209

The machine abstraction is used to simplify the real

machine and forget details that are not important to perform

proofs. If the (F)PCC framework is driven by a fixed set

of invariants, then such loss of precision can be controlled

by introducing appropriate representations for resources

and instructions and keep soundness when verifying these

invariants. However, when faced to an attacker with the ability

to inject code in the program, the proof system can be built

around specific properties. Therefore, any used abstraction

is the opportunity for an attacker to introduce uncaptured

computations or side effects that are not accounted for in the

proof. As such, failure to capture some of the real machine

specification introduce potential to perform computations that

will discover unintended state space of the program.

Policy modeling can also suffer from limits when data and

code can be intermixed (sometimes on purpose to support

self-modifying code). Such policies are dangerous not only

when code can be rewritten but also when data can be

executed. This gives a full cycle of code generation primitives

for an attacker to fool the security system. Therefore, we

discourage the allowance of such primitives when real

program safety is expected.

A central trait of architecture in both PCC and FPCC
resides in the underlying formal system used to verify

logic formulae encoding the desired invariants of programs.

In PCC, a subset of first order predicate logic as well as

application-dependent predicates are predominating. In FPCC,

Church’s Higher Order Logic (HOL) is used, giving proofs

the ability to reason on function types (as well as record

types). None of these logic take resource into account, and it

is possible to define proofs in multiple ways depending on

what order of application is chosen on hypothesis (in lambda

calculus jargon: multiple evaluation strategies can be chosen

to reduce the proof term down its normal form). For example,

proving the type of a record r : A × B can be proved first

by proving π1(r) : A then π2(r) : B, or by first proving

π2(r) : B then π1(r) : A. The order of evaluation is not

specified by the formal logic. Moreover, there can be unused

hypothesis, or hypothesis can be used multiple times. This

introduces an opportunity for attackers to perform hypothesis

reuse and compute additional operations without invalidating

proofs. Other systems based on linear logic [Gir87] attempted

controlling the resource management aspect of such proofs

directly in the logic [PP99], though no complete theory

or implementation of linear proof carrying code has been

established as of today.

This article falls short of defining such new flavor of PCC.

Our goal is much simpler: we use the basic rules of Proof-

Carrying Code to study formally what weird machines are

and where they can hide in program even in the presence of

proofs. Our next section introduces basics of proof-carrying

code reasoning. We perform a higher level axiomatic reasoning

on program traces to characterize how additional state space

exploration can be achieved without invalidating the precepts

of Proof-Carrying Code.

II. PROOF-CARRYING CODE

Proof-Carrying Code (or PCC) is a framework for the

verification of safety policies applied to mobile, untrusted

programs. PCC relies upon the fact that, while the construction

of a proof is a complex task involving the code compiler and

a Verification Condition generator (VCGen), verification of

proofs is easy enough given the proof and the program.

Mechanisms of PCC are captured using type rules of the

general form:

ρ � o : T

where ρ is the register state containing the values of

registers r0, r1, r2, ..., rn, and o is a program object of type

T down to individual expressions and (constant) variables.

Type rule derivations employed to represent the program

constitute the proof that the program executes accordingly

to its type specification. Types can be used to prove that

an address is valid, read-only, or that a result register holds

the expected value at chosen program points given certain

inputs of the verification procedure. As such, proof-carrying

code in its simple form corresponds to program property

checking, where particular constraints are expected to be true

and consistent at a given program point (for example, at the

precondition of a particular API, or at the header of a loop,

etc).

We make the following remarks about PCC:

• While this approach to verification is central to various

abstract models in program analysis and certification, it

is a widespread misconception that PCC can be used for

lightweight program integrity. We explain in this section

why using PCC for program integrity is insecure even

though PCC employs a sound proof system to verify

mobile proofs.

• We show that this problem is independent of the chosen

proof construction, encoding or verification algorithms,

neither are the problems specific to particular programs

or policies.

• Using abstractions in proofs gives attackers highways for

introducing additional malicious program parts whose

execution do not invalidate original proofs but allow

attackers to perform other unspecified operations as part

of the normal proved program behavior.

• Only specific families of proof systems taking resources

into accounts have the ability to express proofs in a way

that can avoid unwanted computations. In particular, the

ability to control the number of times that resources

(registers, processor flags, memory cells, etc) are

consumed and produced is central to such proofs. Such

205205210

immune systems are typically constructed out of linear

(or affine) logic or game semantics [HO00]

In other words, any program can satisfy the proof enforced

by the property checker, as long as the same values are

provably always observed at these program points.

The Global Safety Proof for a program is expressed as

follow:

SP (Π, Inv, Post) = ∀rk :
∧

i∈Inv Invi ⊃ V Ci+1

which enforces that the verification condition constructed

from the verified program since the beginning of the ith

procedure segment implies that the enforced invariant is true

at the end of the procedure segment i+ 1 .

A. The Proof aliasing problem

Formally, the limits of proof-carrying code are illustrated

by the creation of another program Π′ which also verifies the

proof originally made for Π :

∃Π′ : SP (Π′, Inv, Post)

We call this phenomenon the program proof aliasing or PPA
problem. The PPA problem has macro-level consequences for

the whole program proof as expressed in PCC since there is

now an equivalence relation such as:

Π ≡ Π′

�
SP (Π, Inv, Post) ⇐⇒ SP (Π′, Inv, Post)

Two programs are proof-aliased when one satisfy the proof

if and only if the other does.

B. Ideal Proof-Carrying Code

It is possible to define an ideal version of PCC where the

PPA problem does not arise. We call this version PCC≡α to

distinguish it from PCC as originally defined. The absence

of proof aliasing for programs leads to defining the strongest
formulation for the safety condition that avoids unwanted

computations. Such formalization states that there is a unique

program satisfying a given safety proof:

∃!p such that SP (p, Inv, Post)

Under this definition, one cannot construct a proof that is

applicable to two programs. This is a very strong statement

which is equivalent to the existence of an isomorphism

between low-level programs and their proofs. A weaker

safety condition that avoids unwanted computation is similar

but allow used resources (such as register names) to be

different while allowing the same proof (modulo the same

renaming):

Π1 ≡α Π2

�
SP (Π1, Inv, Post)⇐⇒ SP (Π2, Invα, Postα)

where Invα (resp. Postα) are the original Invariant (resp.

Postcondition) of the Safety Proof SP after applying the

same α-renaming used to obtain P2 from P1 . Inversely, a

symmetric definition is given for proof-equivalence modulo

α-renaming from P2 to P1 . This alternate definition can

be useful when resources used in proofs are identified by

indices, addresses or offsets rather than names.

An obvious limitation to this approach is that any two

programs must have strictly different proofs (e.g. different

proof trees) even when these programs are observationally

equivalent. This captures the intuition that the amount of

resources needed to satisfy a specification should be minimal

and well identified for each program pretending to satisfy it.

Unlike such ideal system, a realistic system should aim at

finding equivalence classes of programs where the same proof

is acceptable for two different elements as long as certain

properties of interest are guaranteed.

III. WEIRD MACHINES

In this section, we approach the definition of weird
machines (WM) objects [BLP+11] . WM are made of

untrusted control flow and instructions which can happen

when proof-carrying systems like PCC fail to capture all

required and sufficient conditions to characterize what a safe

program constitutes when verifying a given specification. The

use of the axiomatic semantic ala Hoare [Hoa69] allows us to

study the machines independently of the chosen instruction set.

Following Hoare, we note {P}c{Q} to express the partial

verification conditions when a code fragment c terminates

with given postconditions Q when provided with initial pre-

conditions P. Axiomatic semantics of a program is given by

applying such rules compositionally based on the semantics

of its individual fragments.

A. Weird control-flow

Let CFG =< {V }, {E} > a control flow graph is made

of a set of vertices and edges (with the edge set E : V → V)

.

Vi ∈ V = (i1, i2, ..., in) is a vertice in the CFG such as a

basic block made of a list of instructions).

We define a family of projections Πj : V → V such

that Πj(Vi) = Vi′ = {ij} a singleton obtained by unitary

projection on the list of instructions of the basic block.

Let ΠS(VS) : V → V such that V ′
S = {ij∈S}

= {Vj1, Vj2, ..., Vjn} with {j1, ..., jn} ∈ S such that

j1 < ... < jn .

be a partition obtained by bigger (union of) projections. The

sequence of instructions obtained by union of projections is

guaranteed to be in order, but does not have to be contiguous

206206211

over V.

Some examples of projections on S are V-suffixes, or

more general sub-sequences. Such sub-sequences can be

contiguous or non-contiguous. Projections can be V-suffixes

as in the case where new basic blocks are created from the

end of existing ones by skipping instructions at the beginning

of blocks. They can also be sub-sequences of basic blocks

in which not all instructions are executed in the block, but

where executed instructions are guaranteed to be found one

after the other. We call contiguous sub-sequences of V the

result of these projections. These can arise if an exception

is triggered and not all instructions in the basic block are

executed. We also distinguish non-contiguous sub-sequences

of V where executed instructions are not guaranteed to be

contiguous in the address space of the program. This is the

case for architectures with conditional instructions whose

execution depends on some internal state of the processor

such as status flags, content of translation look-aside buffers

used in linear to physical address translation, or other state

that may or may not be directly accessible to the program.

We define the Weird Control-Flow Graph (WCFG) as:

WCFG = {CFG} ⋃ {〈V ′, E′〉}
such that E′ = W → V ′ with W ∈ V (CFG) and

V ′ /∈ V (CFG) . By definition of the WCFG, E′ /∈ E . Note

that a WCFG cannot exist if E = E′ since any extra state

would not be reachable on the WCFG. Therefore, E′
>> E#

B. Weird computations

Weird computations can be defined using Hoare’s

Axiomatic semantics as interpretation over the Weird Control-

Flow Graph (WCFG) :

{Pre} < V > {Post}
= {Pre} < i1; i2; ...; in > {Post}
= {Pre} < i1 > {Post1}... < in > {Postn}

Each Pre and Post are invariants conditions (first order logic

formulae) locally verified at each state of the execution.

We can express, very much like the tape of a Turing

machine, the values in vs satisfying the Invariant Inv, where

VS is a value store and vs are the values in the store.

vs = (d1, d2, ..., dn) : V S � Inv

Value stores can represent registers and memory cells. While

it is easier to reason about states using invariants at the abstract

level, values allow to map invariant to concrete execution states

of the program, may they be legitimate (expected) states or

unexpected and unspecified weird states. Depending on the

invariant, there may be a single, multiple, or no valuation

satisfying it.

The axiomatic semantics on vertices of the WCFG can be

seen as:

{Pre} < V ′ > {Post}
= {Pre}ΠS(< i1; i2; ...; in >){Post′}
= {Pre} < iα > {Post′} < iβ > {Postβ} < ... > {Postω}

where {α, β, ..., ω} ∈ S such that α < β < ... < ω .

Note: {Postω} is a Weird state ↔ ∃ΠS such that

{Postω} � {Post} .

C. Weird executions

We now abstract the executable code to focus on the

sequence of states produced by executing this code.

A weird sequence s ∈ S = Postα, Postβ , ..., Postω

is a sequence of invariants verified by executing paths on

the WCFG. We can represent the weird sequence using

valuations satisfying all the intermediate invariants, rather

than the invariant themselves:

vsα � Postα

vsβ � Postβ

...

vsω � Postω

In order to reach one such weird state, we define a distance

function : δ : S × S → N and we say that a weird sequence

converges if:

δ(Postα, F) > δ(Postβ , F) > ... > δ(Postω, F)

e.g. the distance between the current weird state and the

desired final weird state F keeps diminishing.

ex: δ(S1, S2) =
∑

i di ∈ S1 ≡ di ∈ S2

Final states can be chosen depending on the desired end

state for an attacker. For example, a final state can be defined

as a state where the values of specific registers is controlled

(such as the instruction pointer register). Sometimes, an at-

tacker will choose desired final states that do not necessarily

involve full untrusted execution, such as these allowing to read

or write specific variables. For example, one may want to read

credential information from a program, or force the program

to accept a successful authentication even though no valid

credentials have been entered.

The distance metric between two states can be defined

(without loss of generality) as the number of equivalent values

in the value stores representing each state. State equivalence

can then be defined as:

S1 ≡ S2 ⇐⇒ ∀di ∈ S1,2 : di1 = di2

If δ −→ 0 , the weird sequence is said to converge.

Otherwise, the sequence diverges (that is, it comes back to

207207212

a non-weird state, or may simply diverge in the weird state

space if not enough computational power is given to reach

desired final weird states)

IV. FUTURE WORK

Beyond simple principles described in this document,

a more complete detailed review of proof-carrying code

security is due. Weird machines are a convenient way of

modeling untrusted code execution but a complete definition

of weird machines remain to be given. A weird machine

should be defined in terms of push-down automata to

accurately represent the stack-based control mechanisms used

in common security exploits. For example, overwriting a

return address or an exception handler to redirect control flow

can be modeled as a reachability problem on a push-down

automata. Moreover, features of transducers, in particular

the ability to reason on program output, is necessary to

develop compositions of traces where a first execution is

used to obtain some information about the program (such

as variable values or internal address space information)

and a subsequent trace is used to perform operation based

on this guessed information. For example, an information

disclosure vulnerability may be used to guess the location of

existing legitimate instructions that will be later be executed

to perform new operations. This corresponds to reordering

valid computations within a program to reach new states.

Such a complete definition and illustrative example is the

subject of future work.

A more ambitious problem is to define a version of proof-

carrying code that is restricted enough to avoid weird machines

but relaxed enough to allow equivalence classes between

programs, so that some legit modifications of the program

(like optimizing transformation) may be performed without

invalidating the proofs. Such system could possibly use prin-

ciples of linear logic under the hood, so that resources are

precisely accounted for. For example, it should be forbidden

for programs to compute intermediate results that are not

reused, or that are reused multiple times. While the former

can be resolved using program simplification such as dead-

code elimination, the latter can be difficult if the intent of

the program is to store the results of computations for later

reuse (as in dynamic programming). It becomes necessary

to measure operations performed on these value stores to

ensure that only intended code gets executed and no extra

computational power is given to attackers.

V. CONCLUSION

We characterized the concept of weird machines in relation

to the framework of proof-carrying code. Proof-Carrying code

guarantees that a program satisfies safety properties. The

introduction of abstraction in such proof systems surrenders

the ability to distinguish the presence of unintended program

computations when these do not invalidate program proofs.

Such abstract traits can be used to perform shadow execution

of code that remains uncaptured by the program specification.

As such, Proof-Carrying Code should be used in conjunction

to systems providing strong integrity, such as these introduced

by the usage of cryptographic signatures.

REFERENCES

[App01] Andrew W. Appel. Foundational proof-carrying code. 2001.
[BLP+11] Sergey Bratus, Michael E Locasto, Meredith L Patterson, Len

Sassaman, and Anna Shubina. Exploit programming: from buffer
overflows to weird machines and theory of computation.; login,
2011.

[Gir87] Jean-Yves Girard. Linear logic. Theoretical Computer Science,
50(1):1 – 101, 1987.

[HO00] J.M.E. Hyland and C.-H.L. Ong. On full abstraction for pcf: I,
ii, and {III}. Information and Computation, 163(2):285 – 408,
2000.

[Hoa69] C. A. R. Hoare. An axiomatic basis for computer programming.
Commun. ACM, 12(10):576–580, October 1969.

[Ler06] Xavier Leroy. Formal certification of a compiler back-end or:
Programming a compiler with a proof assistant. SIGPLAN Not.,
41(1):42–54, January 2006.

[Nec97] George C. Necula. Proof-carrying code. 1997.
[PP99] Mark Plesko and Frank Pfenning. A formalization of the proof-

carrying code architecture in a linear logical framework. 1999.
[XL12] Sandrine Blazy Gordon Stewart Xavier Leroy, Andrew Appel.

The compcert memory model, version 2. INRIA Research Report
7987, 2012.

208208213

